
§1. Simple Turing Machines Lecture IV Page 1

Lecture IV

ELEMENTS OF COMPUTABILITY

Lecture 4: Honors Theory, Spring’02.

We have seen two language classes, REG and CFL. This section introduces two much larger classes,
REC and RE . In fact, we will have REG ⊆ CFL ⊆ REC ⊆ RE where all the inclusions are proper. The
new classes are defined using the Turing model of computation. Basic properties of these classes are shown,
via diagonalization and universality arguments.

The background of this material goes back to foundational studies in the 1930’s when mathematicians
began to formalize the concept of computability. Various models were studied but they all turned out to
be equivalent in the sense that what is computable in one model was also computable in another, and vice-
versa. The model introduced by Turing [2] is only one of them. It is chosen here because of its simplicity
and resemblance to modern computers in its essence.

§1. Simple Turing Machines

We introduce a class of automata called Simple Turing Machines (STM). This is a bare bones version1

of Turing’s model of computation. The Turing model can be elaborated in many ways. For instance, we will
later introduce a version that is suitable for complexity considerations.

A STM is a 6-tuple M = (Q, Σ, δ, q0, qA,t) where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is
the start state, qA ∈ Q the accept state, t ∈ Σ is the blank symbol and

δ ⊆ Q × Σ × Q × Σ × {−1, 0, +1}.
represents the transition rules, or instructions (this terminology makes the connection to modern comput-
ers). This is rather similar to finite automaton except we now have an implicit tape with infinitely many
tape cells indexed by the integers. The ith cell (i ∈ Z) can store any symbol in Σ; thus the tape contents
can be viewed as a function T : Z → Σ. The Turing machine M has a current state q ∈ Q as usual, but
it also has tape head that is positioned at some tape cell whose symbol it is being scanned. We say its
current (head) position is i if it is scanning the ith cell. If (q, a, q′, a′, D) ∈ δ, we will indicate this by
writing the 5-tuple in the style of transition rules,

(q, a → q′, a′, D). (1)

This instruction is executable if the current state is q and head is scanning symbol a. The pair (q, a) is the
“precondition” of the instruction. There may be several executable instructions (thus, M can be nondeter-
ministic). We say M is deterministic in case no more than one instruction is executable; equivalently, no
two instructions have the same precondition. To execute instruction (1), we enter state q′, change symbol
a to a′ and move to position i + D where i is the current head position. Thus D indicates the direction of
head movement.

State Diagrams. Again, we can represent a STM using state diagrams. This is again a graph whose
vertex set is Q and edges are labeled by one or more instructions. The instruction (1) will show up as
the label (a → a′, D) for the edge (q, q′). Consider the STM of figure 1 which recognizes the language of
“duplicate words”, Ldup :={w#w : w ∈ {0, 1}∗}. The reader is asked to verify its correctness, as an exercise
in familiarizing oneself with STMs.

1This is basically the original model described by Turing, except for the introduction of nondeterminism.

c© Chee-Keng Yap February 14, 2002

§1. Simple Turing Machines Lecture IV Page 2

q0

qA

NOTE: b = 0 or 1.

qt

q0#

qX

q1# q11

q#

q00

(0 → X, +1)

(1 → X, +1)

(b → b, +1)

(# → #, +1)

(# → #, +1)

(X → X, +1)

(X → X, +1)

(b → b, +1)

(0 → X,−1)

(1 → X,−1)

(X → X,−1)
(# → #,−1)

(b → b,−1)

(X → X, +1)(# → #, +1)

(X → X, +1)

(t → t, 0)

Figure 1: STM for {w#w : w ∈ {0, 1}∗}.

To understand the construction, the idea is to “cross out” the bits (b = 0, 1) that has been processed,
replacing them by an X . Assuming the input has the form u#v (uv ∈ {0, 1}∗), then at the beginning of the
ith stage, the tape contents is X iu′#X i−1v′ where u′, v′ are suffixes of u, v that remain to be crossed out.

Using Turing machines. We use M in one of three capacities: as an acceptor of a language L(M), as
a transducer to compute a partial function tM : Σ∗ → Σ∗, and as a generator of a language G(M). In
each case, we need additional conventions.

• To view M as a generator of language over Σt = Σ\{t}, we introduce a special output state qo ∈ Q.
The machine begins its computation on a blank tape. In the course of computation, the tape will
contain a finite number of non-blank non-empty words, separated from each other by one or more
blanks. Whenever M enters state qo, we declare that the non-blank word that is being scanned on
the tape is “generated”. If the symbol being scanned is a blank, then the empty word is generated.
The set of all generated words is denoted by G(M) ⊆ Σt. Note that the words in G(M) may be
generated more than once. Note that the state qo is not meant to be a terminal state; it is expected
to be (re)entered infinitely often, in order to generate an infinite language.

• For acceptors and transducers, we need an input convention. Input words have the form w ∈ Σ∗
t. We

assume that w[i] is placed at cell i (i = 1, . . . , |w|), and everywhere else, the cells are blank. The initial
head position is 1.

• Output convention. This depends on whether we view M as an acceptor of a language L(M) or
a transducer computing a function tM : Σ∗

t → Σ∗
t. For an acceptor, M accepts its input if some

computation path enters the final state qA. As a transducer, M on input w will output the non-blank
word tM (w) that is being scanned when the machine enters the final state. (In case the scanned symbol
is t, define tM (w) = ε.) Since M is nondeterministic, different paths can give different outputs. We
may declare tM (w) to be undefined when this happens, or if no paths give any output.

Computation. Now that we have an informal idea of how STM computes, we may formalize the compu-
tation process. Let M be in state q, with head position h ∈ Z and T : Z → Σ is the current tape contents.
We can represent this information using the notion of a configuration. First, we must assume that the work

c© Chee-Keng Yap February 14, 2002

§2. Recursively Enumerable and Recursive Languages Lecture IV Page 3

tape is blank everywhere except for finitely many exceptions. Choose the range [j..k] ⊆ Z such that (a)
T (i) = t for all i outside [j..k], and (b) j ≤ h ≤ k. This range can be made unique by specifying it to be
minimum subject to (a) and (b). Let u ∈ Σ∗ represent the contents of tape cells in the range [j..k], i.e.,
u[i] = T (j + i − 1) for i = 0, . . . , k − j, Also, let u = vw such that |v| = h − j. It follows that the currently
scanned symbol in w[1]. Note that this requires |w| ≥ 1. The current configuration is then represented by
(v, q, w) or, simply, vqw. Thus, the set of configurations can be taken to be

Σ∗ × Q × Σ+

If C, C′ are configurations, we define C `M C′ if the configuration C can move to the configuration C′ by
executing an instruction of M . Suppose the instruction being executed is (1), and C = vqw and C′ = v′q′w′.
There are three possibilities for the direction D:

CASE D = 0: Then v′ = v and w′ is the same as w except that w′[1] = a′.

CASE D = +1: Then v′ = va′. Let w = aw1. In case w1 = ε, then w′ = t. Otherwise, w′ = w1.

CASE D = −1: Assume w = aw1. In case v = ε, we have v′ = ε and w′ = ta′w1. Otherwise, let v = v1b
for some symbol b. Then v′ = v1 and w′ = ba′w1.

The reflexive, transitive closure of `M is denoted `∗
M . We drop the subscript “M” when it is understood.

The initial configuration on input w is simply q0w, denoted C0(w) (note that it does not depend on M).
An accepting configuration is one with state qA. We say M accepts w if C0(w) `∗

M C for some accepting
C. L(M) is the set of words accepted by M .

Infinite Computations. The preceding definitions is a minimal set for defining STM computation. But
we must refine our notations to discuss what happens when a word is not accepted by C. In this case, there
are two distinct behaviors we want to capture. We call configuration C terminal. if there does not exist C′

such that C ` C′. We may assume that the accepting configuration is always terminal. A terminal but non-
accepting configuration has no executable instruction; it is said to be stuck. A computation sequence π
is a finite or ω-sequence of configurations of the form

π : C1 ` C2 ` C3 ` · · · .
We call π a computation path if, in addition, C1 is an initial configuration and either the sequence is infinite
or it is finite with the last configuration being terminal. We also want to view the entire computation tree
of M on input w. This tree, denoted TM (w), is rooted at C0(w) such that the set of computation paths of
M on w is precisely the set of maximal paths of the tree. A basic fact about this tree is that it has bounded
branching factor (this factor is at most the number of instructions in M). We say that M halts on w iff
this tree is finite; in the contrary case, we say it loops on w. The notations

M(w) ↓, M(w) ↑
are (respectively) used to indicate these two dispositions of M . (The fact that we introduce these special
notations signals their importance.) We say M rejects w in case M(w) ↓ but M does not accept w. Thus,
rejection has a stronger requirement than non-accepting. A halting STM M is one that halts on every
input. Equivalently, for every input w, M either accepts or rejects w.

§2. Recursively Enumerable and Recursive Languages

A language is said to be recursively enumerable (r.e.) if it is accepted by some STM. The class of all
r.e. languages is denoted RE . A language is recursive if it is accepted by some halting STM. The class of
all recursive languages is denoted REC .

c© Chee-Keng Yap February 14, 2002

§2. Recursively Enumerable and Recursive Languages Lecture IV Page 4

Suppose M accepts L. We also say that M recognizes or semi-decides L. If M happens to be halting,
we say M decides L. It is common to refer to r.e. languages and recursive languages as r.e. sets or recursive
sets. This arose from the context where these definitions were applied to subsets of N (see discussions below).

For our first result, we show that the non-determinism in STM is not essential as far as as the definitions
of RE and REC were concerned.

Theorem 1 For every STM M , there exists a STM M ′ such that M ′ is deterministic and L(M) = L(M ′).
Moreover, if M is halting, so is M ′.

Proof. We only sketch a proof: on any input w, M ′ will attempt to simulate every computation path of M
starting on w. It uses a breadth first search of the computation tree TM (w). At any stage of the simulation,
the tape of M ′ will hold a string of the form

#C1#C2# · · ·#Ci−1$Ci# · · ·#Cm

where Ci’s are configurations of M , separated by the special symbols # and $. There is only one copy $,
and if this precedes Ci, it signifies that Ci is currently being “expanded”. The configurations C1, . . . , Ci−1

are all at some level ` of the computation tree, while Ci, . . . , Cm are at level `− 1. To expand Ci, we simply
replace it by all those C′ such that Ci `M C′. To create space for this expansion, M ′ may have to move
all the Ci+1, . . . , Cm to the right. Sometimes, this expansion is really a contraction (for instance, if Ci is
terminal). After we expanded Ci, we will next work on Ci+1 (indicated by moving $ next to Ci+1). The
simulation accepts if any of the expanded configurations is accepting. It also rejects when there are no more
configurations left to be expanded (this means the computation tree is finite). Thus, if M is halting, so is
M ′. This concludes our sketch. Q.E.D.

It is clear from our definitions that
REC ⊆ RE .

A more interesting result is the following.

Corollary 2 The recursive languages are closed under complement: REC = co-REC .

Proof. It is a simple fact that for any class K, we have K = co-K iff K ⊆ co-K. Hence we only have to show
that if L is recursive, then co-L is recursive. Applying the previous theorem, let M be a halting deterministic
STM that decides L. We construct M that acts like M , except that M accepts iff M rejects. Q.E.D.

Theorem 3 The recursive languages are those r.e. languages whose complements are also r.e.. Thus,
REC = RE ∩ co-RE .

Proof. One direction is easy: if L ∈ REC then the previous lemma shows that co-L ∈ REC and hence
L ∈ co-REC and hence L ∈ REC ∩ co-REC ⊆ RE ∩ co-RE .

Conversely, let L ∈ RE ∩ co-RE . Then there are deterministic STM’s M and M ′ such that L = L(M)
and co-L = L(M ′). We construct a STM M ′′ that, on input w, simulates M on w and M ′ on w. The trick
is that we must not naively simulation either M or M ′ to completion, since we cannot be sure if either will
halt. But we know that for every input w, at least one of M or M ′ will halt: if w ∈ L then M will halt, and
if w 6∈ L then M ′ will halt. Hence we simulate one step of M and one step of M ′ alternately. As soon as

c© Chee-Keng Yap February 14, 2002

§2. Recursively Enumerable and Recursive Languages Lecture IV Page 5

either M or M ′ halts, we can accept or reject in the appropriate manner: we accept iff either M accepts or
M ′ rejects. Q.E.D.

Let us prove one more result, to relate the context free languages to our new classes.

Lemma 4 The class CFL of context free languages is a proper subset of REC.

Proof. We sketch the argument that CFL ⊆ REC . Assume that P is a pda and we need to construct a
halting STM M such that L(M) = L(P). On any input w, M first converts the tape contents into w# where
is a special symbol. In general, the tape contents has the form w′#v where w′ is a suffice of w (indicating
that P is currently reading w′[1] and v is the stack contents (the top of stack is the last symbol of v). Each
nondeterministic step of P is easily simulated by M (which is also nondeterministic). The simulation halts
when w′ = ε – thus M is halting. M will accept iff P accepts.

To see that CFL is in fact a proper subset of REC , we note that the language Ldup of duplicate words is
not context free. This can be seen by a simple application of the pumping lemma for context free languages.
However, the construction in figure 1 in our STM introduction shows that this language is in fact in REC .

Q.E.D.

Although nondeterminism was not essential in our definition of RE and REC , the preceding proof
illustrates its usefulness in some proofs.

Computability Dictionary. There are at least 3 independent sets of terminology in this area. The reader
should feel comfortable switching among them as convenient, because they represent different computational
viewpoints. The following table places the three terminology alongside each other for comparison.

MODEL PARTIAL COMPUTABILITY TOTAL COMPUTABILITY
1. Generator recursively enumerable set (r.e.) recursive set
2. Acceptor semidecidable or recognizable set decidable set
3. Transducer (partial) computable function total computable function

To further clarify this table, we delve into history. The subject of computability theory is “computational
problems”. The obvious form of a computational problem is the functional form. For instance, the problems
of multiplication or square-root correspond to the functions g(x, y) = xy and f(x) =

√
x, respectively.

To capture the essence of computability, and to avoid considerations of precision in the representation of
real numbers, computability theory is usually formulated as the study number theoretic functions, i.e.,
f : Nn → N for some n ≥ 1. By suitable encodings, we can even assume n = 1. So the square root function
must be re-formulated as f(x) = b√xc. Such are the functions mentioned in the last row of the table.

We can further restrict our number theoretic functions so that range has only two values (Yes/No, 0/1,
accept/reject). These are called2 decision problems. Such a function f : N → {0, 1} can be identified
with the set {n ∈ N : f(n) = 1}. Thus the characterization of computable functions is transformed into
the characterization of the “decidable subsets” of N. For any alphabet Σ, there are bijections between N

and Σ∗ and hence this is equivalent to studying decidable languages, which is our main viewpoint. The sets
mentioned in rows 1 and 2 can be interpreted as subsets of N or languages. Note that our “official definition”
of these concepts uses the terminology for generators, even though we mainly treat acceptors.

2This is the German word “Entscheidungsproblem” in Turing’s original paper [2].

c© Chee-Keng Yap February 14, 2002

§3. Diagonalization Lecture IV Page 6

The first aim of computability theory is to characterize the “computable” (number theoretic) functions.
It was quickly realized that “computable” can be refined into “partial computable” and “total computable”.
This accounts for the two columns (under “partial computability” and “total computability”). Likewise
“decidable” can be refined into “semi-decidable” or “total decidable”. Note that the presence of the qualifiers
(partial, semi-, total, etc) immediately places concept in the right column. The trouble is that when the
qualifier is omitted, we need some convention to tell us which column is meant.

What about other models of computation? The introduction noted that there are other models of
computability. So why did we choose Turing’s model? One answer is that Turing’s model is remarkably
flexible: when we study complexity theory later, we will see how it is easily modified to model various phe-
nomenon in complexity. Furthermore, Turing’s Thesis says that anything that is algorithmically computable
is computable by an algorithm is computable by Turing machines. This is called a thesis (not a theorem)
because the concept of “algorithmically computable” is informal. But given any reasonable interpretation,
we will find that the thesis holds up. The converse of this thesis is clear: whatever an “algorithmically
computable” means, the method used by a STM to accept a language or to compute a function qualifies as
algorithmic. This justifies equating the classes RE and REC with the concepts of semi-decidable and total
decidable sets.

§3. Diagonalization

We now ask: are there uncomputable functions? In terms of decision problems, are there non-r.e. lan-
guages? The answer is yes, but for a very fundamental reason that has almost nothing to do with computation
(or so it seems). It has more to do with counting and size.

If X is a set, |X | denotes its cardinality which is intuitively the number of its elements. This is clear
for finite sets, as |X | ∈ N. If X is infinite, we can simply say |X | = ∞. But we will want to refine this
classification for infinite sets. The official way is via a theory of cardinals, so that the function | · | assigns
a cardinal number |X | to each set X . Without launching into a development of this theory, we can
prove some basic facts via an axiomatic approach. Whatever we mean by “cardinal numbers”, we want the
following axioms to hold. Let X and Y be sets.

(A0) The cardinal numbers are totally ordered.

(A1) |X | ≤ |Y | iff there is an injection f : X → Y .

From these two principles, we can conclude that if there is a bijection h : X → Y then |X | = |Y |. We also
say X and Y are equivalent in this case. The converse is not so obvious, and is the subject of the celebrated
Bernstein-Schröder theorem next. The quickest proof uses a fixed-point approach (this proof appears, for
instance, in fixed-point semantics of of programming languages). The fixed-point principle is this:

Lemma 5 Suppose µ : 2X → 2X is monotone in the sense that A ⊆ B ⊆ X implies µ(A) ⊆ µ(B). Then
there exists a set A∗ ⊆ X such that µ(A∗) = A∗, called a fixed point of µ.

Proof. Call a subset A ⊆ X is “good” if A ⊆ µ(A). Define A∗ to be the union of all the good sets. To show
that A∗ is a fixed point, we first show one direction:

A∗ ⊆ µ(A∗). (2)

c© Chee-Keng Yap February 14, 2002

§3. Diagonalization Lecture IV Page 7

This amounts to saying that A∗ is good. If a ∈ A∗ then a ∈ A for some A ⊆ A∗ that satisfies A ⊆ µ(A).
This shows that a ∈ µ(A). But µ(A) ⊆ µ(A∗), by monotonicity. Thus a ∈ µ(A∗). In the other direction, we
make a general observation: if A is good, then µ(A) is also good. This is because the goodness of A implies
µ(A) ⊆ µ(µ(A)), by monotonicity. Since A∗ is good, µ(A∗) must be good. As A∗ is the union of all good
sets, this shows µ(A∗) ⊆ A∗. Q.E.D.

Y
X

f(A)

A

g

f

g

µ(A)

Figure 2: Injections f : X → Y and g : Y → X .

Theorem 6 (Bernstein-Schöder) If f : X → Y and g : Y → X are injections, then there exists a
bijection h : X → Y .

Proof. First define the function µ : 2X → 2X via

µ(A) = X \ g(Y \ f(A)).

This function is monotone because if A ⊆ B ⊆ X , then

f(A) ⊆ f(B)
Y \ f(A) ⊇ Y \ f(B)

g(Y \ f(A)) ⊇ g(Y \ f(B))
X \ g(Y \ f(A)) ⊆ X \ g(Y \ f(B))

The last inclusion amounts to µ(A) ⊆ µ(B). By the previous lemma, µ has a fixed point A∗. Then
A∗ = µ(A∗) = X \ g(Y \ f(A∗)). Writing B∗ := g(Y \ f(A∗)), it follows that (A∗, B∗) is a partition of X . We
now specify the bijection function h : X → Y as follows: h restricted to A∗ is f , and h restricted to B∗ is
g−1. To see that h is a bijection, it suffices note that (h(A∗), h(B∗)) = (f(A∗), Y \ f(A∗)) and hence forms
a partition of Y as well. Q.E.D.

Let the cardinal number of N be denoted ℵ0 (ℵ is the first Hebrew letter aleph). A set X is said to be
countable if there is an injection f : X → N. Equivalently, |X | ∈ N or |X | = ℵ0. So Cantor’s theorem
proves that there are uncountable sets. The countability definition gives us one extra number (namely ℵ0)
to count with. We can at least distinguish among some infinite sizes. So let us try out out new tool.

It is easy to construct bijections between N and the sets Z: For instance, if we list the elements of Z

as (0,−1, 1,−2, 2,−3, 3, . . .), then we see that this listing can be matched to the listing (0, 1, 2, 3, . . .) of N.
Formally, the bijection is given by

f(n) =
{

n/2 if n is even,
−(n + 1)/2 if n is odd. (3)

Hence |Z| = ℵ0. This simple example illustrates a curious phenomenon that is unique to infinite sets: the
property of having a bijection with a proper subset. Let us prove two more such results:

c© Chee-Keng Yap February 14, 2002

§3. Diagonalization Lecture IV Page 8

Lemma 7 The following sets have cardinality ℵ0:
(a) The set Σ∗ of words over any alphabet Σ,
(b) The set of all finite subsets of N.

Proof. (a) We can list all the words of Σ∗ in non-decreasing order of their lengths.
(b) Let N(k) denote all subsets of {0, 1, . . . , k}. We simply list all the elements of N(0), then N(1) \ N(0),
N(2) \ N(1), etc. Q.E.D.

Since we can view Q ⊆ 2N (each element of Q is just a pair of relatively prime numbers in N), we conclude
that |Q| = ℵ0 as well. At this point, the reader may have reason to worry that perhaps there are no other
infinite cardinal numbers besides ℵ0. The next theorem dispels this fear.

Theorem 8 (Cantor) For any set X, |X | <
∣∣2X

∣∣.

Proof. Clearly |X | ≤ ∣∣2X
∣∣. Suppose, by way of contradiction, f : X → 2X is a bijection. Let D = {x ∈

X : x 6∈ f(x)}. Hence there is y ∈ X such that f(y) = D. We ask the question: is y ∈ D? If y ∈ D, then
y ∈ f(y) and so by definition of D, y 6∈ D. Conversely, if y 6∈ D, then y 6∈ f(y) and so by definition of D,
y ∈ D. Since both possibilities lead to contradiction, we have achieved a contradiction. Q.E.D.

This shows that in lemma 7(b), the restriction to finite subsets of N is essential. It is a fact that∣∣2X
∣∣ = 2|X|. Hence, 2N has a cardinality 2ℵ0 which this theorem shows is different from ℵ0. The famous

continuum hypothesis says that there does not exist a cardinal number α such that ℵ0 < α < 2ℵ0 . Put
another way, if ℵ1 denotes the smallest cardinal number larger than ℵ0, the hypothesis asserts that ℵ1 = 2ℵ0 .

Cantor’s theorem uses a diagonalization argument. Why is this so-called? Imagine a semi-infinite
matrix indexed by X on the rows and 2X on the column. D is constructed by looking at the diagonal of the
matrix. Diagonalization turns out to be a very important technique in the theory of computability.

Cantor’s theorem shows that there exists uncountable sets. The set R of real numbers is a familiar set
that is uncountable: We only need to prove that the real numbers in the interval [0, 1] is uncountable. We
use the fact that each such numbers has an infinite binary expansion of the form 0.b1b2b3 · · ·. If [0, 1] is
countable, we can arrange them in an infinite list (x1, x2, x3, . . .). Consider a new number r whose decimal
expansion is given by 0.d1d2d3 · · · where dn is chosen to be different from the nth bit of xn. Note that
this number is different from any in the list, and this is a contradiction. This sketch is not yet complete:
the binary notation is non-unique. The binary strings 0.b1 · · · bn10ω and 0.b1 · · · bn01ω represents the same
number. One solution is to use a m-ary notation that uses the digits {0, 1, . . . , m − 1} for any m ≥ 4. For
instance, with quaternary numbers (m = 4), the numbers 0.t1t2 · · · tn−1tn3ω and 0.t1t2 · · · tn−1(tn + 1)0ω

are equal (here tn ∈ {0, 1, 2}). But in our construction of the number r, we only choose the digits 1 or 2 to
ensure that r has a unique representation.

Theorem 9 There is a non-r.e. language.

Proof. This theorem follows from two simple claims. and L the set of languages.
CLAIM A: The class of all languages L is uncountable.
CLAIM B: The family of all Turing machines M is countable.
Assuming these claims, and if every language were r.e., we obtain a contradiction. For, there is an injection
f : M → L where f(M) is just L(M). If the theorem were false, then f is a surjection. Then let g : L → M

c© Chee-Keng Yap February 14, 2002

§4. Universal Machines Lecture IV Page 9

be the injection defined such that g(L) ∈ f−1(L) (we need the axiom of choice here). But this g contradicts
contradicts the claims that asserts |L| > |M|.

Proof of CLAIM A: let L0 be the set of languages over 0/1. It suffices to show this set uncountable. But
clearly L0 is equivalent to 2N. By Cantor’s theorem, this set is uncountable.

Proof of CLAIM B: CLAIM A is not literally true. If the set of allowed symbols is uncountable, M is
trivially uncountable. We can do is this: restrict the states and tape alphabet of our Turing machines to be
finite subsets of N. Call this restricted class of machines M0 (the ”nice” TM’s). It is not hard to show that
M0 is now countable: let M0(n) comprise all the STM’s whose transition table uses the state or symbol n,
but no states or symbols larger than n. Then we first list all the machines in M0(0), then M0(1), etc. The
function f : L0 → M0 can be defined as before, yielding a contradiction. Q.E.D.

Universal Assumptions. The proof of the preceding theorem motivates the following convention. Hence-
forth, we make two universal3 assumptions: Let Σ∞ and Q∞ be two disjoint infinite sets.

(α) Σ∞ contains all alphabets of our languages. The blank symbol t ∈ Σ∞ is special, and belongs to no
alphabet.

(β) Q∞ contains all the states of our Turing machines. The states q0, qA ∈ Q∞ are special, representing the
start and accepting states of all Turing machines.

The main advantage of these assumptions is that we can now assert that the family M of all STM’s
is countable. The practical advantage is that we save verbiage in discussing Turing machines. Instead of a
6-tuple, a STM M is now simply a finite set δM of the form

δM ⊆ Q∞ × Σ∞ × {−1, 0, +1}× Q∞ × Σ∞.

That is, we need not explicitly specify the state set Q and alphabet Σ as these can be directly deduced from
δM . Similarly, the start q0 and accept qA states need not be specified as they are universally chosen.

§4. Universal Machines

We introduce the universal Turing machine (UTM). A UTM is similar to a Simple Turing machine
U but it has two tapes. One tape has the same properties as the tape of the STM, and is called the work
tape. The other tape is called the index tape. There are corresponding work head and index head
that is scanning a cell on the respective tapes. The index tape is a read only tape (writing not allowed)
and its alphabet is restricted to {0, 1,t}. The input to the UTM is a pair 〈i, x〉 of words where i ∈ {0, 1}∗.
Intuitively, i is the number of a STM. The transition table δU of U is a finite set

δU ⊆ Q∞ × Σ∞ × {0, 1,t} × Q∞ × Σ∞ × {−1, 0, 1}2.

A typical instruction of δU is
(q, a, b → q′, a′, D1, D2)

with precondition that the machine is in state q, scanning a on the work tape, and scanning b on the index
tape. Upon executing the instruction, the new state is q′, a is changed to a′ and the work head and index head
moves in directions D1, D2 (respectively). The machine begins in the initial state q0 and accepts its input if
there exists a computation path that leads to the accept state qA. As usual, L(U) = {〈i, x〉 : U accepts 〈i, x〉}.

3The assumptions are also “universal” in a technical sense related to the concept of universal Turing machines.

c© Chee-Keng Yap February 14, 2002

§5. Decision Problems Lecture IV Page 10

Note that L(U) is no longer a language, but a binary relation. We may interpret the index i as a dyadic
number and thus regard L(U) as a subset of N×Σ∗ for some Σ∗. Define the language class K(U) :={Li(U) :
i ∈ N} where Li(U) :={w ∈ Σ∗ : 〈i, w〉 ∈ L(U)}, We say U accepts the class K(U) of languages. It is
important to note that K(U) is a collection of languages over some fixed alphabet Σ ⊆ Σ∞. Write K|Σ to
denote the restriction of a class K to those languages over Σ. Thus K(U) = K(U)|Σ for some Σ. Typically,
Σ = {0, 1} in this notation.

Most of the definitions for STM is transferred naturally to the new setting. Thus it is clear what we
mean by a deterministic UTM. We write write U(i, w) ↑ or U(i, w) ↓ depending on whether U loops or halts
on 〈i, w〉.

Theorem 10 (Universal TM) Fix any alphabet Σ ⊆ Σ∞. There is a universal Turing machine U such
K(U) = RE |Σ. Furthermore:

• U is deterministic and does not write on its index tape.

• Let M be the family of STM’s over input alphabet Σ. There is an index function ι : M → N such that
for all M ∈ M and w ∈ Σ∗, U(ι(M), w) = M(w). and Lι(M)(U) = L(M).

Proof. The function ι : M → N encodes each STM M as a dyadic number4 ι(M) = i. In case i is not the
encoding of an STM, we can simply ignore what U actually accepts (but we know it is some r.e. language).
Alternatively, if our encoding allows it, we can detect when i is not a legitimate encoding and immediately
reject the input. We can choose an encoding that allows one to read off the set of instructions of Mi in a
straightforward manner (Exercise).

On input 〈i, w〉 machine U simulates the machine f−1(i) on w, deterministically. To do this, it stores a
list of configuration of f−1(i) on its work tape. This follows the proof of theorem 1. The U behaves as in
that proof, except that to carry out an expansion of a configuration, it must use the index tape to look up
the next executable instructions. Since U is simulation Mi, Q.E.D.

From now on, let U (2) denote the universal Turing machine guaranteed by this theorem, with Σ = {0, 1}.
For M ∈ M, if ι(M) = i, we shall write

U
(2)
i ∼ M.

§5. Decision Problems

If L is any language, the computational problem of designing an algorithm to accept L is called the
decision problem for L. We introduce several decision problems related to STMs. Among them we will
find non-r.e. languages that are considered “natural”, unlike the artificial (non-explicit) ones obtained by
cardinality arguments. All these problems will exploit the existence of universal machines.

Three Decision Problems. Let U (2) be the UTM in the theorem 10, with Σ = {0, 1}. Define the
languages

W2 = {i#w : i, w ∈ {0, 1}∗, 〈v, w〉 ∈ L(U (2))}. (4)
4Binary numbers are non unique: e.g., 011 and 11 both represent the number 3. A dyadic number is rather similar to

binary numbers, but they are unique. If w = bnbn−1 · · · b1b0 (bi ∈ {0, 1}), then, as a dyadic number w, represents the integer
#(w) =

∑n

i=0
(bi + 1)2i. Thus, #(ε) = 0 and #(01) = 4. One checks that this function # : {0, 1}∗ → N is a bijection.

Sometimes, instead of the alphabet {0, 1}, one uses {1, 2} for dyadic notation. We prefer to stick to {0, 1} to avoid the
unfamiliar appearance of strings such as 12112.

c© Chee-Keng Yap February 14, 2002

§6. Decision Problems Lecture IV Page 11

D2 = {w ∈ {0, 1}∗ : 〈w, w〉 ∈ L(U (2))}. (5)
H2 = {w ∈ {0, 1}∗ : U (2)(〈w, w〉) ↓}. (6)

(7)

The decision problems for W2, D2, H2 are called (respectively) the word problem, the diagonal problem
and the halting problem for U (2).

Theorem 11 W2, D2, H2 ∈ RE.

Proof. First we show W2 ∈ RE . This amounts to constructing a STM M2 that emulates U (2). On input i#w,
M2 simulates the actions of U (2) on input 〈i, w〉 in a step-by-step manner. M will accept iff U (2) accepts.
Thus L(M2) = W2. Similarly, D2 and H2 can be shown to be in RE be simple variations of this simulation.

Q.E.D.

Theorem 12 W2, D2, H2 6∈ REC.

Proof. Suppose W2 is decided by a deterministic halting STM M . We construct another halting STM M ′

such that M ′ does the opposite of M :

M ′ on input i:
1. M ′ runs M on i#i. 2. M ′ accepts iff M ′ rejects.

Note that M ′ is halting since M is halting. Since M ′ can clearly be constructed from M , we conclude that
M ′ ∼ U

(2)
j for some j. Now consider what happens when M ′ is given the input j. (a) If M ′ accepts j, it

must be because M rejects j#j. By definition of M , this means U (2)(j, j) rejects. But this means M ′ rejects
j, contradiction. (b) If M ′ rejects j, it must be because M accepts j#j. By definition of M , this means
U (2)(j, j) accepts. But this means M ′ accepts j, contradiction.

Q.E.D.

Theorem 13 co-W2, co-D2, co-H2 are not r.e..

Proof. We use the fact that REC = RE ∩ co-RE . If co-W2 ∈ RE , then W2 would be recursive, contradicting
the previous theorem. The other two cases are similar. Q.E.D.

Rice’s Theorem. There is general method to show undecidable problems. Let K be any class of languages.
Relative to U (2), we define the language

L(K) :={i ∈ {0, 1}∗ : Li(U) ∈ K}.

Theorem 14 (Rice) If K 6= ∅ is a proper subset of RE, the L(K) is not recursive.

c© Chee-Keng Yap February 14, 2002

§6. Cardinal and Ordinal numbers Lecture IV Page 12

Proof.

Q.E.D.

§6. NOTES on Cardinal and Ordinal numbers

How do we compare the “sizes” of sets X and Y ? When X and Y are finite sets, we can list all the
elements of X and Y in some “listing order” (x0, x1, . . .) and (y0, y1, . . .) and to match them up x0 ↔ y0,
x1 ↔ y1, etc. The list that runs out of elements first has smaller size; if both list runs out of elements
simultaneously, we say that they have the same “size”. This “matching principle” is clearly valid in the
finite case, as the outcome is independent of the listing order we choose. For infinite sets, this matching
principle calls for refinement. For instance, the listing orders that show |N| = |Z| (see (3)) must be carefully
chosen or it may not work.

The concept of listing order generalizes to the concept of ordinal numbers. To get a matching principle
that is independent of listing order, we need the concept of cardinal numbers. Informally, the relationship
between these two concepts is seen in English where the “cardinal numbers” zero, one, two, etc., are used
to count, while the “ordinal numbers” zeroth, first, second, etc., are used to order or rank. The theory
of cardinals will be built on ordinal theory.

Define an ordinal to be a well-ordered set α such that for every x ∈ α, the set s(x) = {y ∈ α : y < x}
also belongs to α. The set s(x) is called an initial segment of α. Any two ordinal numbers α, β can
be compared. This follows from general considerations about well-ordered sets. Two partially ordered sets
(A,≤), (A′,≤′) are similar if exists a bijection h : A → A′ that is order preserving (i.e., a ≤ b implies
h(a) ≤′ h(b). If A, A′ are well ordered, then we write A ≺ A′ if A is similar to an initial segment of A′. This
is clearly a transitive relation. For well ordered sets A and A′, exactly one of the following holds:

A ∼ A′, A ≺ A′, A′ ≺ A.

See for example [1, p. 73]. This is the total ordering we use for ordinal numbers.

To view the natural numbers n ∈ N as ordinals, we must interpret them as sets using the following device:
if n = 0, then n is the empty set; otherwise n is the set {0, 1, . . . , n − 1}. Thus

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}},

Now we may verify that the set N is itself an ordinal number! This ordinal number is denoted ω. This is
the first infinite ordinal. Given any ordinal α, we can define its successor α+, which is the ordinal α∪{α},
For instance, ω+ = N ∪ {N}. Moreover, the operations of addition, multiplication and exponentiation can
be defined. But be prepared for surprises: the ordinals 1 + ω and ω + 1 may be represented as

1 + ω = {0′, 0, 1, 2, 3, . . .} ω + 1 = {0, 1, 2, 3, . . . , ω},

and this yields the unintuitive result, 1 + ω = ω < ω + 1. Similarly, 2ω = {0′, 0, 1′, 1, 2′, 2, 3′, . . .} and
ω2 = {0′, 1′, 2′, . . . , 0, 1, 2′, . . .}, and thus 2ω = ω < ω2.

Since distinct ordinal numbers can have the same cardinality (i.e., equivalent), we define a cardinal
number to be smallest ordinal number among its equivalence class. Thus ω is a cardinal number and is in
fact what we denoted by ℵ0 before. But ω + 1 and 2ω are not cardinal numbers as they are equivalent to ω.
Cardinal comparison is induced from ordinal comparison. Again, cardinal arithmetic can be defined.

c© Chee-Keng Yap February 14, 2002

§6. Cardinal and Ordinal numbers Lecture IV Page 13

BACKGROUND NOTES

The proofs that W2, D2, H2 are not recursive is basically a diagonal argument. This is also the
method by which one proves Gödel’s famous incompleteness theorem: that there exists a true state-
ment of number theory that cannot be proven. What is needed, and this is Gödel’s remarkable
achievement, is a way to encode provability and statements of number theory within number theory it-
self. Provability is akin to computability. Diagonal arguments appear at the foundation of set the-
ory as paradoxes (contradictions). These paradoxes typically has some self-referential element. For
instance: In a certain village, there are many barbers. But there is one barber who shaves
any barber who does not shave himself. Who shaves this barber? Pondering the two possibilities,
one is led to the conclusion that this barber does not exist. In the set theoretic paradoxes, we can similarly
define sets that do not exist. This led to efforts to axiomatize set theory, basically to carefully prescribed
circumstances under which new sets can be legitimately formed. Happily, all the operations we make in
these notes are admissible (power set is admissible for instance).

Exercises

Exercise 6.1: For any alphabet Σ 6= ∅, construct a bijection between Σ∗ and N and prove that it is indeed
a bijection. ♦

Exercise 6.2: Prove that if A is r.e. but not recursive, then it contains an infinite subset that is recursive.
♦

Exercise 6.3: Fix the proof that the reals in [0, 1] is uncountable, but remain in binary notation. Alterna-
tively, you can use dyadic notation. ♦

Exercise 6.4: (i) Show that L is r.e. iff L is generated by some deterministic STM.
(ii) Show that L is recursive iff L is generated by some deterministic STM in lexicographic order.

♦

End Exercises

END OF LECTURE

References

[1] P. R. Halmos. Naive Set Theory. Van Nostrand Reinhold Company, New York, 1960.

[2] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London
Math. Soc., 2(42 and 43):230–265 and 544–546, 1936.

c© Chee-Keng Yap February 14, 2002

