
Chapter 22

Quantum Complexity

May 6, 2002
Quantum computation is an active topic of current research. It is fundamentally different from classical compu-

tation because different laws of physics are used. The idea of quantum computing was first suggested in the early
1980’s by Paul Benioff [3, 4, 5], a physicist from Argonne National Laboratory. Feynman [17] showed how to build a
classical computer based on quantum principles. Deutsch [14, 15] introduced the universal quantum computer and
quantum circuits. An comprehensive treatment of quantum computation including quantum information theory is
Nielsen and Chuang [21].

Related questions about the physics of information and computing date back earlier: since information is
physically represented, what does the laws of physics say about fundamental limits of computation? Rolf Landauer
(1927-1999) was interested in minimum energy computation. He noted (1961) that erasure of information is
necessarily a dissipative process – heat is lost from the computer into the environment. Thus, if we erase one bit
of information, the overall entropy increases by k ln 2. At temperature T , the work expended is kT ln 2. The
converse to this so-called “Landauer Principle” is that if we compute reversibly (with no erasure of information)
then no dissipation or power consumption is needed. In 1973, Bennett [7] showed that such computation is always
possible in theory (but it would be a very slow computation!). Reversible computation was further investigated by
Tofolli and Fredkin [24, 18]. Although reversible computing is based on classical laws of physics, it can be viewed
as a precursor to quantum computation. For a history of reversible computing, see [8].

Two developments in the early 1990s help to push quantum computing out of the curiosity stage. One was the
discovery of quantum algorithms that have major implications for cryptography. In 1994, Peter Shor at AT&T
Labs showed that the problems of integer factorization and discrete logarithm can be solved by quantum computers
with high probability in polynomial time [23]. As it is widely believed that both these problems are non-polynomial
time on classical computers, and the security of many cryptographic protocols depend on these assumptions, this
suggests a “killer app” for quantum computing. As a result, the subject holds real interest for agencies such as
DARPA and the National Security Agency. The other development is the experimental demonstration of techniques
that could be used to build quantum computers. A major challenge here is to isolate the quantum bits (qubits)
from environment (to keep the system “coherent”). Several competing technologies are being investigated. Seth
Lloyd (1993) showed that a quantum computer could be built from an array of coupled two-state quantum systems.
An implementation proposed by Chuan and Gershenfeld, and independently by Cory, Fahmy and Havel, is based
on spins in the nucleus of atoms. Such nuclear qubits are naturally isolated from the external world by its clouds
of electrons, and they may be assembled naturally as molecues. The technology for manipulating nuclear spins
is NMR (nuclear magnetic resonance), a well-developed technology routinely used in medicine. In August of
2000, a 5-qubit computer was announced by IBM corporation. The ion trap approach of Ignacio Cirac and Peter
Zoller [12] is based on confining cold ions along a line (“linear Paul trap”). The quantum state of each ion is a
superposition of its ground state |0〉 and some relatively long-lived excited state |1〉, representing the qubits (see
below). Laser beams directed at the individual ions can achieve the transitions within each ion but how can the
qubits interact in the quantum mechanical sense? Cirac and Zoller showed with proper tuning of the lasers, the
controlled XOR gate (see below) can be implemented with 5 laser pulses. Such devices have been constructed
[22, 20]. The speed of such a device depends on the frequency of the fundamental vibrational modes of the ions;
current technology can perhaps achieve 104 steps/second (see [2]). Even if current approaches do not lead realistic
quantum computers, they are nevertheless useful for demonstrating the principles of quantum computation [2].

Quantum computing also has implications for the fields of information theory, coding theory and cryptography.
See the survey [10]. It calls for new foundations for each of these areas. Among other things, one goal in this
chapter is to present Shor’s algorithm for factoring.

1

2 CHAPTER 22. QUANTUM COMPLEXITY

22.1 Quantum Computing

22.1.1 Quantum Bits

The basic unit of information in a classical computers is the bit, an entity that can assume exactly one of two
distinct values, denoted 0 and 1. The analogous quantum bit (or “qubit”) also has two special values (the
eigenvectors or pure quantum states) which we identify with the classical values 0 and 1. Following a standard
notation1 in physics these pure states or eigenstates are denoted |0〉 and |1〉, respectivly. In general, if Ψ is the
“name” of a quantum state, we write |Φ〉 to denote the state. What we choose for the name is not important. For
instance, physicists often use suggestive symbols such as | ↑〉, | ↓〉 for these states. However, the value of a qubit is
a quantum state of the form

c0|0〉 + c1|1〉 (1)

where c0, c1 ∈ C (complex numbers) satisfying |c0|2 + |c1|2 = 1. For instance, if c0 = 0, c1 = 1, then the quantum
state is just |1〉, a pure state. We say that the quantum state is a superposition of the pure states.

Mathematically, a pure state is just a basis vector in some chosen basis. Thus the states of a qubit lives in the
complex two-dimensional vector space in which all the vectors have unit length. We could discuss all our results
using only this mathematical model, but in the following we will suggest some physical intuitions and possible
interpretations of the mathematics.

The qubit can be realized by a variety of physical quantum systems. Any of these systems, in principle, can
be the basis for constructing quantum computers. For instance, an electron or other spin- 1

2 particle can have one
of two distinct spins, called spin-up and spin-down. Thus the state of a qubit can be encoded by the state of
an electron spin. Alternatively, the photon (light particle) is a massless, spin-1 particle that can have one of two
independent polarizations. Using a photon as a qubit, we can manipulate its state by rotating the polarization of
the photon.

How does a qubit relate to a classical bit? Measurement is an operation applicable to quantum states.
When the quantum state in (1) is measured, the quantum state “collapses” to |i〉 with probability |ci|2 where
i = 0, 1. Thus, unlike classical bits, which can be measured without affecting its value, any measurement of qubits
is potentially distructive. The classical analogue of the quantum state (1) is the random bit which assumes the
value of 0 with probability |c0|2 and assumes the value of 1 with probability |c1|2. But they are not equivalent:
using classical random bits, we cannot distinguish between c0|0〉+c1|1〉 and c0|0〉−c1|1〉. We describe some physical
experiments to clarify this.

N

S

electron path

detector

detector

magnet

magnet

Figure 22.1: Stern-Gerlach measuring device

The physical interpretation of measurement in spin models is illustrated in an apparatus known as a Stern-
Gerlach device. See Figure 22.1 for a 2-dimensional rendition. The apparatus comprises a pair of magnets that
surrounds the path of an electron, with two detector plates at the exit paths of the electron. When an electron
with an up- or down-spin passes through the apparatus, the path of the electron will deflect up or down, depending
on the spin. In general, an electron is in a supposition of up- and down-spins and it will deflect in either direction,
with a suitable probability. This device illustrates the idea that measurements are relative to a choice of basis: the
magnetic flux is conventionally said to flow in the horizontal direction, so that the electron deflects up or down. In
Figure 22.1, this up/down direction corresponds to the vertical paper direction But if we rotate the device about
the axis of the path, the results of measurement would be different: if we rotate it by 90◦, the same electron would
now deflect left or right with suitable probability. In Figure 22.1, left/right means into/out of the page. This
amounts to a new measurement basis. We normally have the freedom to choose a basis that is most convenient
for the application.

1This is the ket notation; there is a corresponding bra notation which has the form 〈y|. The pair |x〉 and 〈y| can be composed to
〈y|x〉 which can be viewed as the scalar product of two vectors. The “bra-ket notation” is from the physicist Dirac.

22.1. QUANTUM COMPUTING 3

Suppose we pass the up-spin electrons through a second Stern-Gerlach device where magnets are now rotated
by 90◦ to cause a left-right deflection. We will see that again, the left- and right-spin electrons are equally probable.
This fact might be surprising if we expect the up-spin electrons not to have any left- or right-spin components. But
perhaps electrons have independent spin components for up/down as well as left/right spins. But if we continue by
passing the left-spin electrons through a third Stern-Gerlach device with the up-down orientation as the first device,
we again see an equal probability of the electrons deflecting up or down. This is a surprise if we had expected to
see up-spins only, as only up-spin electrons were sent through the second device. To explain this, we postulate that
the pure states in the basis of the up/down measurement device are |up〉 and |down〉, respectively. But relative to
the left/right measurement, the pure states are |left〉 = (|up〉 + |down〉)/√2 and |right〉 = (|up〉 − |down〉)/√2.
Thus the electrons sent into the second device are in state |up〉, but in the measurement basis, this appears as
(|left〉+ |right〉)/√2, and thus they have equal probability of going left or right. The electrons sent into the third
device are in the state |left〉, but relative to the measurement basis of left/right, they have equal probabilities of
going left or right.

Superposition is different from the probabilistic phenomenon of being in one of several states with some prob-
ability. A series of experiments2 based on the Mach-Zehnder interferometer illustrate this. Refer to Figure 22.2.
In experiment A, we reflect a photon off a half-silvered mirror M1, we will detect the photon at detector 1 or 2
with 50% probability each. The classical explanation is that the photon has equal probability of taking either
path. The quantum mechanical explanation is that both paths are taken at once (superposition), but the detectors
cause a collapse of the state. But so far, we have no basis to prefer one explanation over the other (in fact, the
classical one should be preferred for its simplicity). But in experiment B, we place two fully silvered mirror at

M1

Detector 3

Detector 4

Detector 2

Detector 1
M1

(A) (B)

(C)

M1

Detector 3

Detector 4

P2

P1

M2

M2

Figure 22.2: Experiments A, B, C.

the positions of detectors 1 and 2, but arranged so that the two photon paths (P1, P2) recombine. We place a
second half-silvered mirror M2 at the point of recombination. We also place the detectors 3 and 4 to measure the
reflection or non-reflection from M2. It turns out, the photon reaches detector 3 with 100% probability and never
reach detector 4. This is impossible to explain classically. The quantum mechanical view accounts for this: the
photon must have travelled both paths P1 and P2, and when recombined, it is able to distinguish the two choices

2See “Un saut d’echelle pour les calculateurs”, by A. Barenco, A.Ekert, A. Sanpera and C.Machiavello, in La Recherche, Nov 1996.
Adapted article by Barenco may be found in http://www.qubit.org/intros/comp/comp.html. See also [13].

4 CHAPTER 22. QUANTUM COMPLEXITY

at M2 and only chose (by way of interference) the “correct path”. In experiment C, we confirm this explanation by
placing a barrier B in path P2 of the previous experiment. Now, we have 50% probability of detecting the photon
at detectors 3 and 4.

22.1.2 Quantum Words

Real world computers operate on fixed size sequence of bits, called a word. A word in modern computers is
typically 32 bits or 64 bits long. Similarly, a finite sequence of qubits will be called a quantum word (“quword”
for short). In the literature, a quword is also known as a “quantum register”. An array of n qubits is called a
n-quword.

Classically, transition from bits to words is trivial. But quantum words introduce a new situation with no
classical analogue. This is the phenomenon of quantum interference and phase information. This is already evident
for n = 2. Let A and B be the qubits in a 2-quword. If A is in the pure state |0〉 and B in |1〉, then the state
of the quword is written |0〉 ⊗ |1〉 (tensor product), or more compactly, |01〉 and sometimes |0〉|1〉. This looks like
Cartesian product, but tensor product is more than this. And hint that something else is going on is the following
basic property of tensors which we will use often: for any scalar α,

α(u1 ⊗ u2) = (αu1) ⊗ u2 = u1 ⊗ (αu2). (2)

If A,B are in the superposition of pure states x = 1√
2
(|0〉+ |1〉) and y = 1√

2
(|0〉− |1〉), respectively, then their joint

state is given by

|x〉 ⊗ |y〉 =
1
2
(|00〉 − |01〉 + |10〉 − |11〉).

Next supposed that the quword is in the state |ψ〉 = 1√
2
(|00〉+|11〉) (“Bell State”). These two qubits are “entangled”:

when you measure one of the qubits, then the other qubit would also collapse to the same value. Intuitively,
they are maximally entangled (or correlated); quantum information theory is the subject that shed light on this
phenomenon.

In general, an n-quword has 2n pure states of the form |b1 · · · bn〉 where bi ∈ {0, 1}. For instance, if n = 2,
then the possible pure states are |00〉, |01〉, |10〉, |11〉. Interpreting b1 · · · bn as a binary representation of a natural
number, the pure states can be denoted {|i〉 : i = 0, 1, . . . , 2n−1}. A quantum state is again a superposition of these
pure states, and can be represented by a unit length vector in c ∈ C2n

. Unit length means that
∑2n−1

i=0 |ci|2 = 1
where c = (c0, . . . , c2n−1). The quantum state corresponding to c is

∑2n−1
i=0 ci|i〉. Note that we have just established

2 conventions for writing pure states: |x〉 where x is either a binary string or a natural number. In practice, these
mutually exclusive conventions are use interchangeably when there is no confusion. For bit strings x, y representing
two disjoint quwords, the ket-notation admits the operation |x〉 ⊗ |y〉 = |xy〉. When x, y are superposition of states
for two disjoint quwords, |x〉 ⊗ |y〉 is obtained as a Cartesian product of the separate pure states.

Quwords offer a twist to the concept of measurement. Naturally, if |x〉 =
∑2n−1

i=0 ci|i〉 and it is measured, then
the state collapses to |i〉 with probability |ci|2 for each i. But we can also measure any individual qubit, or more
generally, any subset Y of qubits. If the set of n qubits isX , let Z = X\Y be the complementary set of qubits. Each
pure state |i〉 of X can be written as |y〉 ⊗ |z〉 where |y〉, |z〉 are pure states of Y and Z. Denote the Y -projection
of |i〉 by πY (|i〉), and thus

|i〉 = πY (|i〉) ⊗ πZ(|i〉).
Let PY (y) = {i = 0, . . . , 2n − 1 : πY (|i〉) = |y〉}. When we measure the Y -bits of a state |x〉, we will see each pure
state |y〉 of Y with probability p(y) :=

∑
i∈PY (y) |ci|2. After a measurement which revealed a particular |y〉 in Y ,

the state of the quword is given by ∑
i∈PY (y) : ci|i〉∑
i∈PY (y) |ci|2

.

Let us illustrate this for a 3-quword whose pure states are labeled |0〉, . . . , |7〉 as usual. If Y refer to the middle
bit, then PY (0) = {0, 1, 4, 5} and PY (1) = {2, 3, 6, 7}. Upon measuring the y-bit of state |x〉 =

∑7
i=0 ci|i〉,

we see the value of |0〉 with probability p(0) = |α0|2 + |α1|2 + |α4|2 + |α5|2. The new state of the quword is
(α0|0〉 + α1|1〉 + α4|4〉 + α5|5〉)/p(0). There is an analogous case where we see the value |1〉 for the Y -bit.

The general treatment of measurements is in terms of measurement operator, M = {Mi : i ∈ I} where each
Mi is an “outcome operator”, and I is the set of possible outcomes of the measurement M . The outcome operators
satisfy the equation ∑

i∈I
M∗
iMi = I. (3)

22.1. QUANTUM COMPUTING 5

The probability of outcome i ∈ I when M measures a state |x〉 is given by

p(i) := 〈x|M∗
iMi|x〉

and the corresponding collapsed state is
Mi|x〉

〈x|M∗
iMi|x〉 . =

Mi|x〉
p(i)

.

The Equation (3) simply ensures that ∑
i∈I

p(i) =
∑
i∈I

〈x|M∗
iMi|x〉 = 1.

22.1.3 Axiomatic Quantum Mechanics

The simplest approach to quantum mechanics is an axiomatic one. We postulate the basic entities, operators and
their properties, and investigate them mathematically. The physical interpretations follows, hopefully, with some
guidance. As seen above, quantum states are some kind of complex vectors. Following von Neumann, we can
postulate the space of quantum states as a suitable Hilbert space. See the appendix for additional mathematical
background.

Let S be a complex vector space is endowed with an inner product 〈·, ·〉 : S × S → C. The space S can be
finite dimensional or infinite dimensional. Elements ϕ, ψ ∈ S of S are called states. The Dirac notation favored
by physicists will write “|ϕ〉” instead of a plain ϕ. Each ϕ defines a dual vector (see below) which in the Dirac
notation is written “〈varphi|” (the bra-notation). Consistent with this notation, the inner product 〈ψ, ϕ〉 may be
written “〈ψ|ϕ〉”, viewed as a product of the Dirac bra- and a ket-notation. We emphasize that these are stylistic
conventions.

Define the norm of ϕ ∈ S by ‖ϕ‖ :=
√〈ϕ|ϕ〉. A sequence {x0, x1, . . .} in S with respect to the norm ‖ · ‖ is

Cauchy if for every ε > 0 there exists n such that ‖xi−xj‖ < ε whenever i, j > n. We say S is complete relative
to this norm if every Cauchy sequence {x0, x1, . . .} in S with respect to the norm converges to an element of S.
The inner product satisfies the axioms:

1. (Positivity) 〈ψ|ψ〉 is real and non-negative for all ψ. Furthermore, it is strictly positive iff ψ 6= 0.

2. (Linearity) 〈ψ|aϕ1 + bϕ2〉 = a〈ψ|ϕ1〉 + b〈ψ|ϕ2〉.
3. (Skew Symmetry) 〈ψ|ϕ〉 = 〈ϕ|ψ〉∗.

If S satisfies the above properties, it is called a Hilbert space. Hilbert spaces has a natural topology induced by
the metric d(x, y) = ‖x− y‖. So the notion of continuity of a function f : S → C, etc, is meaningful.

Examples: Let S = `2(n) denote the vector space Cn where x, y ∈ Cn has inner product 〈x|y〉 =
∑n
i=1 x

∗
i yi,

xi, yi being the components of x, y, respectively. We can extend this to the infinite dimensional space S = `2(∞)
comprising vectors (xi)∞i=0 with

∑∞
i=1 |xi|2 < ∞. Another infinite dimensional space is L2(a, b) for reals a, b with

−∞ ≤ a < b ≤ ∞. This space comprises all f : (a, b) → C such that
∫ b
a
|f(t)|2dt is defined and <∞. The elements

in L2(a, b) are equivalence classes of functions that are almost-everywhere equal. Also 〈f |g〉 =
∫ b
a f

∗(t)g(t)dt.
For our purposes, it is sufficient to focus on the finite dimensional case. Then S may be identified with subsets

of Cn relative to some basis set e1, . . . , em for S. States of S have the form ψ =
∑m

i=1 ciei where
∑m

i=1 |ci|2 = 1.
We postulate the ability to “measure” states. When ψ is measured, it collapses to each ei with probability |ci|2.
To make the connection to classical computing, the ei’s are classical states.

Linear Functionals. A linear functional over S is a continuous linear function L : S → C. Linearity means
L(ax + by) = aL(x) + bL(y) for all x, y ∈ S and a, b ∈ C. For any x ∈ S, we can obtain a linear functional
Lx : S 7→ C where Lx(y) = 〈x|y〉. A basic result about Hilbert space is that all linear functionals are of this form.
Let S∗ be the space of all linear functionals over S. We make S∗ a vector space by defining aLx + bLy = Lax+by
for all x, y ∈ S and a, b ∈ C. This S∗ is also called the dual space of S. If a state y is written |y〉 and the linear
functional defined by x denoted 〈x|, then applying Lx to y yields 〈x|y〉.

Linear Operators. A linear operator of S is a linear function A : S → S. Linearity means A(ax + by) =
A(ax) +A(by). When S is finite dimensional, A can be represented by an n× n matrix. Hence the study of linear
operators in these cases reduces to the study of matrix transformations. See the appendix for more information.

6 CHAPTER 22. QUANTUM COMPLEXITY

Tensor Products. Given two finite dimensional Hilbert spaces S, T , we want to define a new Hilbert space S⊗T
called their tensor product. We could define this axiomatically, but it is easiest to define this in the concrete setting
of a n-vectors: if x ∈ C

m and y ∈ Cn, then their tensor product is x⊗y = (xiyj : i = 1, . . . ,m, j = 1, . . . , n) ∈ Cmn.
Note that when we write out x ⊗ y as a mn-vector, z = (z1, . . . , zmn), we must have some fixed convention for
identifying each component zk with some xiyj . That is, we need a bijection b : {1, . . . ,m}×{1, . . . , n} → {1, . . . ,mn}
so that zk = xiyj if b(i, j) = k. A standard bijection is b(i, j) = (i− 1)n+ j.

Thus, the property (2) above is easily verified. Also, we have

(x+ y) ⊗ z = xz ⊗ yz, z ⊗ (x+ y) = zx⊗ zy

Associativity of tensor products is clear. In terms of the state notation, we tend to write |xy〉 instead of |x〉 ⊗ |y〉.
If Hi (i = 1, . . . , k) are Hilbert spaces, so is H = H1 ⊗H2 ⊗ · · · ⊗Hk. Moreover, if Bi is an orthonormal basis for
Hi, then B1 ⊗B2 ⊗ · · · ⊗Bk is an orthonormal basis for H .

In the concrete setting of n-vectors, a linear transformation of S is represented by an m×m matrix A. If B is a
n× n matrix that represents a linear transformation of T , then we can define their tensor product A⊗B which
is a mn×mn matrix that is a linear transformation of S ⊗ T . With suitable conventions, A⊗B can be written

22.1.4 Reversible Circuits

The next topic we address is how quantum states are transformed. The short answer is “by unitary operators on
Hilbert spaces”. But before we go into such operators, we first treat the intermediate but important concept of
reversibility.

Classical states are transformed by Boolean gates. The analoguous quantum gate must act “unitarily”.
Recall3 that an m ×m matrix U with complex number entries is unitary if its inverse is given by its conjugate
transpose U−1 = U∗. A unitary transformation for n-qubit word is represented by a 2n× 2n unitary matrix. Since
unitary transformations are reversible, this is one motivation to first consider the intermediate concept of reversible
transformations. As noted in the introduction, the study of reversible computation actually predates quantum
computing. Another rational for introducing reversible logic in quantum computing is based on the fact that any
reversible computation can be simulation on a quantum computer with essentially the same complexity. So an upper
bound on the reversible complexity of a problem yields an upper bound of its quantum complexity. This is useful
because reversible computation, being classical, is easier to understand.

A circuit in classical Boolean circuit theory is a directed acyclic graph whose source nodes are called input
nodes and the rest are called gates. Gates are Boolean functions taken from some finite set (the basis). A basis
B is universal if all Boolean functions can be computed by a circuit based on B. The edges connecting nodes are
called “wires” or lines; each line carries a bit signal. Usually, there is no restriction on the fanout of inputs or gates.
In reversible circuits, extra fanouts are not allowed. A well-known universal basis is the set {AND,OR,NOT } (in
symbols, {∧,∨,¬}). Another universal basis is the singleton {NAND} where NAND(x, y) = ¬(x ∧ y).

A reversible function f : B
n → Bm is simply a 1 − 1 function. Thus n ≤ m. Often, we might as well assume

m = n, in which case f is a permutation of Bn. If f is not reversible, we can convert it to a related reversible
function f ′. The idea is simply to reproduce the input in the output. The function f ′ is

f ′ : B
n → B

m+n

where f ′(x) = (x, f(x)). Clearly, f is reducible to f ′ provided we assume that certain output lines can be ignored
(the n output lines containing x). If we want a permutation, we can also define

f ′′ : B
m+n → B

m+n

where f ′′(x, 0m) = (x, f(x)). Again, we can reduce f to f ′′ provided that we can fix certain input lines (setting the
last m lines to 0) and ignore certain output lines, as before. These 2 techniques (fixing input lines and ignoring
output lines) will be fundamental in the construction of quantum circuits.

The classical XOR gate is defined as follows: XOR(x, y) = 0 iff x = y. In infix notation, we write x ⊕ y for
XOR(x, y). It may be easier to understand XOR as addition modulo 2 (the symbol ⊕ is highly suggestive of this).
This gate is clearly non-reversible. A simple variation gives us the reversible exclusive-or (denoted T2(x, y))
with 2-inputs and 2-outputs where

T2(x, y) = (x, x ⊕ y).

This is also called the controlled-NOT gate as we can think of the first bit as a “control bit”, and the second bit
as “data bit”, which is negated or not, depending on the control bit. The diagramatic representation4 of this gate

3See the appendix.
4Feynman [17] introduced this notation, but with the ⊕ node is written as an “X”.

22.1. QUANTUM COMPUTING 7

is seen in Figure 22.3(a). There is a standard convention for reversible (and quantum) circuits seen in figure 22.3:
the lines are drawn horizontally and the implicit flow of data in the lines is from left to right.

y x⊕ y

(a) Reversible XOR(x, y)

x

y

z

x

y

z ⊕ xy

(b) Toffoli gate T (x, y, z)

x1

x2

u

x3

y

x1

x2

u

x3

y ⊕ x1x2x3

(d) T ′
4(x1, x2, x3, y, u)

x3

y

x3

y ⊕ x1x2x3

(c) T4(x1, x2, x3, y, 0)

x x

x1

x2

0

x1

x2

0

Figure 22.3: (a) Controlled XOR, T2(x, y), (b) Toffoli Gate, T (x, y, z), (c) Circuit for T4, (d) Alternative circuit
for T4

One use of the T2-gate is as a “copier”. If the gate y is prepared as 0, then the x ⊕ y-output line will contain
the input value of x:

(x, 0) 7→ T2(x, 0) = (x, x). (4)

Another application of the T2-gate is for exchanging any two bits. This is done by arranging three of these gates

x

y
x ⊕ y

x y

x ⊕ y

y

x

Figure 22.4: Exchange of x and y-bits.

in series, as in Figure 22.4 with the middle gate exchanging the roles of the control bit and data bit:

(x, y) 7→ (x, x ⊕ y) 7→ (y, x⊕ y) 7→ (y, x). (5)

It follows that any permutation of the input bits can be achieved using this gate, as any permutation can be
obtained as a product of transpositions (pairwise exchanges). Note that being able to permute bits does not mean
the T2-gate is universal: there are n! bit functions that permute bits of Bn but there are (2n)! permutations of the
set Bn. Indeed, it can be shown that the set of all 1-bit and 2-bit reversible gates is not universal (see Exercise).

We now consider a 3-bit input gate that is universal provided we can fix some input bits and ignore some output
bits. This is the Toffoli gate, a generalization of the controlled-NOT gate:

T (x, y, z) = (x, y, z ⊕ xy).

8 CHAPTER 22. QUANTUM COMPLEXITY

Note that T (T (x, y, z)) = (x, y, z), i.e., T is its own inverse. We can generalize this gate to the n-input Toffoli gate,

Tn(x1, x2, . . . , xn−1, y) = (x1, x2, . . . , xn−1, y
′)

where y′ = y ⊕ x1x2, . . . , xn−1. In other words, the last bit is complemented provided the first n − 1 bits are 1.
The Toffoli gate T = T3 and controlled XOR gate T2 are thus special cases. We construct T4 from T3 using the
circuit in Figure 22.3(c). Note that there is an extra line that is set to 0, and whose value is preserved (the role of
the third T -gate is to reset this bit to 0). In Figure 22.3(d), we use an extra gate and now the extra line can have
any initial value. It is easy to generalize these constructions to obtain Tn.

Next, suppose x, y ∈ Bn and their Hamming distance is 1. For each i, ith bit of x is denoted xi. We can use
Tn to compute the transposition x ↔ y as follows: if the ith bit of x and y are different (here i is unique since
their Hamming distance is 1), then we can use Tn to complement this bit iff the other bits are precisely the bits
in x (and hence y). This is easily done: for each j 6= i, if xj = yj = 0, then we complement the jth input before
it enters Tn, and complement the jth output bit again, just after it exits Tn. Now, negation is easily implemented
using NOT (z) = T (1, 1, z).

In general, when the Hamming distance between x and y is d ≥ 1, we simply use a composition of d transpositions
of the kind described in the previous paragraph. Finally, an arbitrary permutation of B

n is reduced to a composition
of transposition. This proves:

Theorem 1 All Boolean functions can be simulated on a reversible circuit based on the Toffoli gate T , provided
we can introduce additional input and output lines.

As we saw, the additional input lines can be arbitrary (but if we can preset its values, the size of the circuit can
be smaller).

22.1.5 Bennett’s Scheme for Reversible Computation

Bennett’s basic result [7] says that any computable function F (x) = y can be converted into a reversibly computable
function of the form F̃ (x) = (x, y). Moreover, if F is computing in time T then F̃ can be computed in time O(T).
We will prove this.

The basic idea is simply to keep a history of the computational steps in performing F . Begin with any machine
M that computes some function

M(inputn) = (outputm).

The subscript n,m tells us how many bits are in the input and output arguments. For the present discussion,
assume that M is actually a Boolean circuit. But it will be clear that the method is general.

We first replace M by a reversible circuit M1. For instance, if M uses only AND and OR gates only, we can
make them reversible by adding extra lines. This reversible circuit M1 can be further replaced by Toffoli gates if
desired. Also, each original input line in M must be duplicated, as many times as it is used in the Boolean circuit.
The additional input lines must be preset, and the additional output lines will in general contain garbage. Actually,
we can think of the garbage as a record of our computation. Let these extra lines be called recordk (there are k
lines). It is possible to stop at this point and say that we have achieved our objectives.

However, let us impose an additional requirement: all the extra k output lines must be reset to 0. This
requirement will be useful later, if we want to use implement our scheme by quantum computers later: resetting
recordk to 0 is needed to to avoid interference when we read the desired outputm. We proceed as follows: add
another m extra input lines preset to 0 – call these inputs zerosm. They will hold our eventual output. We proceed
to simulate M in a reversible manner using these extra input lines. When outputm is produced, we make an extra
copy of outputm in extra lines zerosm. Recall that we can copy values using the T2 gates, as in (4). Finally, we
run the reversible circuit M1 backwards, with outputm and the extra output lines as input! Eventually, these will
revert to inputn, zerok (where zerok is the original value of the recordk). Thus, we have computed the function

(inputn, zerosk, zerosm) 7→ (inputn, zerosk, outputm).

If we view the scratch space zerosk as internal to the machine, we have the desired function

F̃ : (inputn, zerosm) 7→ (inputn, outputm).

Shor noted that Lecerf [19] obtained a result similar to Bennett’s. Basically, any function which outputs a copy
of its input (in addition to other outputs) can be made reversible. Note that although time is not increased in this
scheme, space may be as bad as Ω(T). It is possible to improve the space utilization by trading it for increased
time [9].

Exercise

22.2. QUANTUM CIRCUITS 9

Exercise 22.1.1: (i) Prove that if A,B are linear transformations on S = Cm and T = Cn then A⊗B is a linear
transformation on S ⊗ T .
(ii) Prove the same result when the vectors in S, T are restricted to unit length.

Exercise 22.1.2: Consider reversible circuits to compute the following transformation: f : B2n → B2n where
f(x, y) = (x, y2) where 0 ≤ x, y < 2n are n-bit binary numbers and y2 is taken modulo 2n. Construct the
circuit explicitly for the case n = 3 using the family of Tn gates.

Exercise 22.1.3: Why do we need the two extra bits when we want to convert f : Bn → Bm into a permutation?
For instance, let f ′′ : Bm+n → Bm+n where f ′′(x, 0m) = (x, f(x)). Can we complete this specification of f ′′

into an invertible function?

Exercise 22.1.4: Design a full adder using T2 and T3 gates. This circuit has 4 lines a, b, c, d where a, b, c are the
two input bits plus a carry-in bit, and d is set to 0. The output lines are a′, b′, c′, d′ where c′ is the sum and
d′ the carry-out. Consider a′, b′ to be garbage. Note: 4 gates suffices.

Exercise 22.1.5: Show by a direct argument that T3 cannot be constructed out of circuits involving T2 and other
two-input gates.

Exercise 22.1.6: We will be computing in Z2 (modulo 2) in the following.
(i) Enumerate the 6 invertible 2 × 2 matrices.
(ii) Show that all invertible 2-input functions are linear: (x, y) 7→ (x, y)M + (a, b) where M is an invertible
matrix from (i) and a, b are constants.
(iii) Show that any circuit composed of linear gates is linear.
(iv) Conclude that the set of reversible 2-inputs and 1-input gates is not universal.
(v) Give an nonlinear invertible function f : B

3 → B
3. Show that it is nonlinear as well as give an implemen-

tation of f by Toffoli gates.

Exercise 22.1.7:
(i) Show the recursive construction of Tn from T in which we use only one extra bit of scratch space. What
is the number of T -gates used? (ii) Show that with 3 scratch bits, initiallized to 0, we can construct Tn with
2n− 5 T -gates.

Exercise 22.1.8: Show that any 4-input circuit composed from T (x, y, z) must compute an even permutation of
B4. Conclude that such a circuit cannot compute T4.

End Exercise

22.2 Quantum Circuits

In quantum circuits, unlike classical circuits, we have qubits instead of bits on each wire or line. Next, we must
use quantum gates, which is a generalization of reversible gates. Each quantum gate is a unitary transformation
on a fixed number of qubits. These unitary transformations are chosen from some finite basis. At the end of the
computation, a measurement is made of some of the qubits. This “measurement at the end” is a canonical choice;
in practice, one may wish to make measurements throughout the computation. Quantum circuits were introduced
by David Deutsch in 1981.

A gate or function that manipulates n qubits is represented by a 2n × 2n unitary matrix. The following simple
unitary matrix H operates on 1 qubit:

H :=

[
1√
2

1√
2

1√
2

− 1√
2

]
=

1√
2

[
1 1
1 −1

]
. (6)

It is easy to check that the matrix5 H is unitary: H∗H = I. We identify H with the unitary transformation that
transforms the state |0〉 and |1〉 as follows:

H : |0〉 7→ 1√
2
|0〉 +

1√
2
|1〉

|1〉 7→ 1√
2
|0〉 − 1√

2
|1〉,

5The letter H refers to Hadamard. Usually, Hadamard matrices are non-singular matrices with entries with ±1 entries. Here we
need to scale the ±1 entries by the factor 1/

√
2.

10 CHAPTER 22. QUANTUM COMPLEXITY

In terms of matrix multiplication, |0〉 and |1〉 are viewed as the column vectors e0 = (1, 0)T and e1 = (0, 1)T ,
respectively, and the transformation is just matrix multiplication by H .

Recall that in the Stern-Gerlach device figure 22.1, we could change the basis of the measurement by just rotating
the apparatus along the axis of the electron path. If we rotate the apparatus by 90◦, then this is essentially the
same as using the basis H |0〉 and H |1〉.

We can generalize H to
Hn :=H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸

n

which is a 2n × 2n matrix. This is now a unitary operator on n-quwords. For instance,

H2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (7)

This transformation will be useful in various quantum algorithms, as it prepares all possible 2n states for a subse-
quent computation.

Convention: The operations of a 2n × 2n unitary matrix M on states of n-quwords uses a natural convention
which may be worth spelling out. The pure states are ordered lexicographically, in the order |0n〉, |0n−11〉, . . . , |1n〉
or equivalently,

|0〉, |1〉, |2〉, . . . , |2n − 1〉.
This ordering is used to label the rows and columns of M . For i = 0, . . . , 2n− 1, the elementary 2n-vector ei which
has 1 in the ith position and 0 elsewhere represents the pure state |i〉. The state s of the quword is therefore a
2n-vector of length 1. Then the transformation M operates on state s by matrix-vector multiplication, Ms For
instance,

Hn| 00 · · ·0︸ ︷︷ ︸
n

〉 =
1

2n/2

2n−1∑
i=0

|i〉.

22.2.1 The Unitary Matrices of Reversible Circuits

We had said that that reversible circuits are special cases of quantum circuits. This is actually easy to show, and
instructive. We use the fact that the Toffoli gate T (x, y, z) = T2(x, y, z) is universal for reversible circuits. We must
now interpret the gate T (x, y, z) as a unitary 8 × 8 matrix U3 operating on linear combinations of the pure states
|xyz〉 = |x〉 ⊗ |y〉 ⊗ |z〉. We have

U3(|x〉 ⊗ |y〉 ⊗ |z〉) = U3(|xyz〉) =


|xyz〉) if x = 0 or y = 0,
|111〉 if x = y = 1, z = 0,
|110〉 if x = y = z = 1.

With the usual labeling conventions, U3 becomes the following matrix

U3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(8)

It is easy to check that this is unitary. When we compose gates into circuits, we are building unitary matrices from
the unitary matrices represented by the individual gates in a natural way: For instance, if |x〉 = |x1x2x3〉 is the
state of 3 qubits that are being operated on by T3, and |y〉 = |x4 · · ·xn〉 is the state of the rest of the qubits, then
the overall unitary matrix corresponding to this transformation is the tensor product

V3 = U3 ⊗ I

22.2. QUANTUM CIRCUITS 11

where I is a 2n−3 × 2n−3 identity matrix. Such matrices V3 are permutation matrices, namely, each row and
each column has exactly one 1, with the rest of the entries 0. The universality of T3 implies that every permutation
matrix can written as a product of matrices such as V3 (we need to generalize V3 to allow any permutations of the
n qubits).

Although classically, U3 is meant to act on pure states, under the quantum interpretation, the vectors that U3

now acts on is now allowed to be any unit vector (supposition of pure states). Deutsch showed the existence of a
universal quantum gate D(x, y, z). It is a generalization of Toffoli’s gate: if x, y, z ∈ B then D(|x, y, z〉) = |x, y, z〉
if both x ∧ y 6= 1; otherwise D(x, y, z) = |x, y, U(z)〉 where U is a 2 × 2 unitary transformation.

22.2.2 Structure of 2 × 2 Unitary Matrices.

The following set of three 2 × 2 unitary matrices are the Pauli matrices:

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (9)

Sometimes they are also denoted σ1, σ2, σ3, respectively. Also, σ0 can be taken as the identity matrix. Our goal
now characterize all unitary 2 × 2 matrices. following Barenco et al [1].

Let U = [x|y] where x, y ∈ C
2 are column vectors. Suppose x = (reiθ, r′eiθ

′
)T where r, θ, r′, θ′ are real and

i =
√−1. Then |x|2 = 1 implies r2 + r′2 = 1 and hence we may write x = (cosαeiθ, sinαeiθ

′
)T for some real

α. Similarly, let y = (sinβeiψ, cosβeiψ
′
)T for some real β, ψ, ψ′. Next, x∗y = 0 implies cosαe−iθ sinβeiψ +

sinαe−iθ′ cosβeiψ
′
= 0, or in matrix notation,[

cos(ψ − θ) cos(ψ′ − θ′)
sin(ψ − θ) sin(ψ′ − θ′)

](
cosα sinβ
sinα cosβ

)
=
(

0
0

)
.

Thus the determinant of the 2 × 2 matrix vanishes,

cos(ψ − θ) sin(ψ′ − θ′) − sin(ψ − θ) cos(ψ′ − θ′) = 0.

Writing 2δ = θ′ − θ and 2δ′ = ψ′ − ψ, this gives sin(2δ′ − 2δ) = 0. Thus δ = δ′ and we have

x = ei(θ+δ)(cosαe−iδ, sinαeiδ)T , y = ei(ψ+δ)(sin βe−iδ, cosβeiδ)T .

In matrix notation, we may write U = ABC where A,B,C are the matrices

A =

[
e−iδ 0

0 eiδ

]
, B =

[
cosα sinβ
sinα cosβ

]
, C =

[
ei(θ+δ) 0

0 ei(ψ+δ)

]
.

Since A,C are unitary, it follows that B must be unitary. This means BB∗ = I and so cosα sinα+cosβ sinβ = 0.
This implies α = −β.

B =
[

cosα − sinα
sinα cosα

]
.

One more freedom can be restricted when we assume that U is special, i.e., det(U) = 1. Since det(A) = det(B) = 1,
we have det(C) = 1. This means ei(θ+ψ+2δ) = 1 or θ + δ = −(ψ + δ). By renaming θ + δ to θ and ψ + δ to ψ, we
obtain the result of Bloch:

Theorem 2 Every unitary matrix U ∈ C
2×2 has the form

U =

[
e−iδ 0

0 eiδ

] [
cosα − sinα
sinα cosα

] [
ei(θ) 0

0 ei(ψ)

]
.

If U is special, then ψ = −θ.

12 CHAPTER 22. QUANTUM COMPLEXITY

Toffoli-type quantum gates. Let U =
[
a0 b0
a1 b1

]
be any unitary matrix. Following [1], for any n ≥ 1, we

define the 2n × 2n matrix

Tn(U) =



1
1

. . .
1

a0 b0
a1 b1


.

This is clearly unitary. This generalizes the Tofolli gate Tn(x1, . . . , xn−1, y): Tn is just Tn(Uσ) where Uσ =
[

0 1
1 0

]
.

We can similarly describe the action of Tn on the pure state |x1 · · ·xn〉 as follows: Tn(U)(|x1 · · ·xn〉) = |y1 · · · yn〉
where yi = xi for i = 1, . . . , n− 1 and

yn =
{
xn if some xi = 0 for some i = 1, . . . , n− 1
ayn |x1 · · ·xn−10〉 + byn |x1 · · ·xn−11〉 if xi = 1 for all i = 1, . . . , n− 1

Thus the last qubit is transformed according to U iff the first n− 1 qubits are 1. For instance,

T (|10〉) = a0|10〉 + a1|11〉, T (|11〉) = b0|10〉 + b1|11〉.
The diagramatic representation of such gates is shown in figure 22.5.

xn−1

y

xn−1

y′

x1

x2

x1

x2

...
...

U

Figure 22.5: Toffoli-type quantum gates Tn(U).

REMARK: While we have noted that reduction of quantum circuits to reversible circuits is a useful procedure,
the results in this section also show quantum circuits are more powerful: for instance, there are no 2-input universal
reversible gate while there are universal 2-input quantum gates. Also, no work-bits are needed in quantum circuits,
in contrast to some reversible circuits.

22.2.3 No Cloning Theorem

Before we leave this topic of quantum circuits, we must prove a simple but fundamental result about unitary
transformations from Wootters and Zurek (1982). This result says that we cannot copy an unknown quantum state
perfectly. But first, recall the controlled XOR gate, T2(x, y). We have

T2(x, 0) = (x, x).

Thus, the bit x has been copied or cloned. The next result shows that this is impossible with a quantum gate.

Theorem 3 (No Cloning) Let H = H1 ⊗H1 be a Hilbert space where H1 is of dimension at least 2. There does
not exist a unitary transformation U such that for all x ∈ H1,

U(|x, 0〉) = |x, x〉
Proof. Let |x〉 6= |y〉 be two orthogonal states of H1. By way of contradiction, suppose U exists. Then U(|x, 0〉) =
|x, x〉 and U(|y, 0〉) = |y, y〉. If z = 1√

2
(|x〉 + |y〉), then

U(|z, 0〉) =
1√
2
(|x, x〉 + |y, y〉)

22.3. QUANTUM ALGORITHMS 13

by linearity of U . However, we note that

|z, z〉 = |z〉 ⊗ |z〉 =
1
2
(|x〉 + |y〉) × (|x〉 + |y〉) =

1
2
(|x, x〉 + |y, x〉 + |y, x〉 + |y, y〉).

This is contradiction because U(|z, 0〉) 6= |z, z〉. Q.E.D.

One consequence of this theorem is in quantum cryptography: it implies that secure quantum key generation
is possible. However, the no-cloning theorem says nothing about the possibility of good but imperfect copying.
Indeed such “weak copying” techniques have been proposed.

Exercise

Exercise 22.2.1: Consider the Pauli matrices σi (i = x, y, z or i = 1, 2, 3). Show
(i) σ2

i = I.
(ii) The eigenvalues of σi are ±1.
(iii) σi−1σi = iσi+1, where subscript addition is modulo 3.

Exercise 22.2.2: Consider the definition of eX as the series
∑
k≥0X

k. This definition can be extended to the

case where X is a square matrix. Prove that eiδσz =

[
eiδ 0
0 e−iδ

]
where σz =

[
1 0
0 −1

]
.

Exercise 22.2.3: A 2n × 2n unitary matrix U represents a classical gate iff it is 0/1 and every row and every
column has exactly one 1.

Exercise 22.2.4: Prove that T2(U) is universal for ”most” unitary 2 × 2 U .

End Exercise

22.3 Quantum Algorithms

There is a basic intuition that “quantum computers are inherently more powerful than classical computers”. This
can be formalized as questions about inclusion of complexity classes. Unfortunately, we are unlikely to resolve such
questions directly because it would imply the resolution of some well-known conjectures in classical complexity
theory. A more modest goal is to demonstrate individual problems that could be solved more efficiently using
quantum computers than with classical computers. Even here, most positive results must be qualified in the sense
that a quantum computer can solve a problem more efficiently than any known classical algorithm. We should
also remember that quantum algorithms are inherently probabilistic, and hence we should only compare them to
classical randomized algorithms.

But what kinds of problems can exploit the special capabilities of quantum computers? There is an obvious
candidate task where quantum computers can do more efficiently than classical computers: the simulation of
quantum computations! This was noted by Feynman. But what else? Let us note that the apparent advantage
of quantum computers is the ability to simultaneously maintain (exponentially) many possible states. Hence the
obvious way to exploit this is to evolve these states simultaneously. On the other hand, if we measure the quantum
system, we only get one of these states (possibly with exponentially small probability). So in order for useful
computation to be carried out, we need to have these states interfere in some controlled manner, to bias the
probabilities towards the desirable states. One view of quantum computation (see Cleve et al [13]) is that it is
basically an application of interferometry to multiparticle systems. This is so different from classical computers
that completely new computational techniques must be developed before we can exploit its power.

22.3.1 Deutsch’s Problem

Deutsch [14] gave a simple demonstration of the power of quantum computers over classical computers. Assume
we have a quantum black box B that computes the 2-qubit transformation

B : (x, y) 7→ B(x, y) = (x, y ⊕ f(x))

for some unknown function f : B
1 → B1. There are only 4 possibilities for f : constant 0 function (f(0) = f(1) = 0),

constant 1 function (f(0) = f(1) = 1), identity function (f(x) = x), or negation function (f(x) = 1−x). Deutsch’s

14 CHAPTER 22. QUANTUM COMPLEXITY

problem is to determine whether f(0) = f(1) (f is constant) or f(0) 6= f(1) (f is balanced). If this were a classical
tranformation, we would need to access the black box twice, with x = 0 and x = 1. But being quantum, we now
show a one-access solution.

Consider the unitary matrix H in (6). If we first prepare our input to be |0〉 ⊗ |1〉, then subject it to the
transformation H2 = H ⊗H (see (7)), we obtain

|x〉 ⊗ |y〉 :=
1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 − |1〉).

If we pass this through our black box, the overall state becomes

B(|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f(x)〉
= |x〉 ⊗ 1√

2
(|0 ⊕ f(x)〉 − |1 ⊕ f(x)〉)

= |x〉 ⊗ 1√
2
(−1)f(x)(|0〉 − |1〉)

= (−1)f(x)|x〉 ⊗ 1√
2
(|0〉 − |1〉)

= (−1)f(x)|x〉 ⊗ |y〉

The first qubit is quite interesting:

(−1)f(x)|x〉 =
1√
2
(−1)f(x)(|0〉 + |1〉)

=
1√
2
((−1)f(0)|0〉 + (−1)f(1)|1〉)

= (−1)f(0) 1√
2
(|0〉 + (−1)f(1)+f(0)|1〉)

=

{
(−1)f(0) 1√

2
(|0〉 + |1〉) if f(x) is constant

(−1)f(0) 1√
2
(|0〉 − |1〉) if f(x) is balanced

=
{

(−1)f(0)|x〉 if f(x) is constant
(−1)f(0)|y〉 if f(x) is balanced

Thus, if we measure this qubit using the basis (|x〉, |y〉), we obtain |x〉 with probability 1 if f(x) is constant, and
|y〉 with probability 1 if f(x) is balanced. Note that the (−1)f(0) is just phase information which does not affect
the probability. Alternatively, we can apply H to the first qubit again (recall that H−1 = H), the possible states
are |0〉 or |1〉 depending on the nature of f . Now we measure in the original basis. The quantum circuit to perform
this computation is shown in figure 22.6(a). We have just described the improved solution of Cleve et al [13].

Generalization. Deutsch and Jozsa [16] extended the above example to allow arbitrarily large input sizes. This
Deutsch-Jozsa problem is as follows. Suppose f : B

n → B is an unknown function, but it is either a constant
function (f(x) is always 0 or always 1) or it is balanced (the number of times f(x) = 0 is to 2n−1). We need to
decide whether f is constant or balanced. We are given a quantum blackbox Bn which takes a (n+ 1)-quword as
input and which applies the function f as follows:

Bn(|x1, . . . , xny〉) = |x1, . . . , xn〉 ⊗ |y ⊕ f(x1, . . . , xn)〉.

Using a deterministic algorithm, it seems that we need to make at least 2n−1 + 1 evaluations of Bn, in the worst
case. A randomized procedure can do better (Exercise). But we now show that a single call to the black-box is
sufficient using a quantum transformation.

The method is a straightforward generalization of the original solution. We prepare the input to be |0n1〉 and
apply Hn+1 = H ⊗ · · · ⊗H to this input. This produces the state(

1
2n/2

2n−1∑
x=0

|x〉
)

⊗ 1√
2
(|0〉 − |1〉). (10)

22.3. QUANTUM ALGORITHMS 15

H

|x〉

|y〉
B

measure
|x〉 |0〉 or |1〉

HH|0〉

|1〉

(a) Simple

(a) General case

|1〉

|0n〉 Hn

H

|x〉

|y〉
B

measure
|x〉 |0〉 or |1〉

H

Figure 22.6: Deutsch’s Problem: (a) simple case, (b) general case

Then we pass this state through Bn. Suppose y = 1√
2
(|0〉 − |1〉) and x = x1, . . . , xn is a pure state of the first n

bits. Then

Bn(|x1, . . . , xny〉) = |x〉 ⊗ 1√
2
(|f(x) ⊕ 0〉 − |f(x) ⊕ 1〉) = |x〉 ⊗ 1√

2
(−1)f(x)(|0〉 − |1〉).

Hence the overall state of the quword, after passing the state (10) through Bn, is(
1

2n/2

2n−1∑
x=0

(−1)f(x)|x〉
)

⊗ 1√
2
(|0〉 − |1〉)

Finally, apply Hn+1 again to get 1
2n/2

2n−1∑
x=0

 1
2n/2

2n−1∑
j=0

((−1)f(x)(−1)x·y|y〉)
⊗H(

1√
2
(|0〉 − |1〉))

But  1
2n/2

2n−1∑
x=0

 1
2n/2

2n−1∑
j=0

((−1)f(x)(−1)x·y|y〉)
⊗H(

1√
2
(|0〉 − |1〉))

If we now measure the first n qubits. if f is constant, then a measurement of the first n− 1 qubits will give |0n−1〉
with probability 1; if f is balanced, the same measurement would never give the state |0n−1〉.

22.3.2 Quantum Discrete Fourier Transform

We introduce the quantum analogue of the well-known Discrete Fourier Transform (DFT). The quantum version of
this (QFT) is obtained as a natural adaptation. We derive a quantum circuit for computing QFT. This algorithm
will be used later for integer factorization.

16 CHAPTER 22. QUANTUM COMPLEXITY

Let N ∈ N, and x = (x0, . . . , xN−1)T ∈ CN . We define the discrete Fourier transform of x to be DFT (x) =
Fx (a matrix vector product), where F is the following N ×N matrix

F = FN =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2

 (11)

and ω = ei2π/N . Note that F is symmetric. We now prove that F = FN is unitary. Two preliminary remarks are
useful: In general, the conjugate of eiθ is eiθ, and thus ω = e−i2π/N . Second, note that ω is an Nth root of unity
meaning that ωN = 1. But more is true: it is a primitive root of unity, meaning that ωn = 1 implies n is a
multiple of N . This amounts to showing that F ∗F = I, or the (i, j)th entry of F ∗F is 1 iff i = j:

(F ∗F)ij =
1
N

N−1∑
k=0

ωkiωkj

=
1
N

N−1∑
k=0

ω−kiωkj

=
1
N

N−1∑
k=0

ωk(j−i)

=
{

1 if i = j
0 else

The last equation is clearly true when i = j, since the sum is N in this case. When i 6= j, the sum
∑N−1

k=0 ωk(j−i)

vanishes because of the simple identity

(1 − x)
N−1∑
k=0

xk = 1 − xN . (12)

Plugging x = ωj−i, we conclude that the righthand side is 0 (since ω is aN -th root of unity). But 1−x = 1−ωj−i 6= 0
(since ω is a primitive N -th root of unity). This implies that the sum

∑N−1
k=0 xk must vanish.

Quantum Circuit for QFT. Since DFT (x) is a unitary transformation, we should be able to compute it with
a quantum circuit. The circuit turns out to be fairly simple, but to verify its correctness, we need some preparatory
development.

We now choose N = 2n. Previously, we wrote ω = ei2π/N ; now we slightly modify the notation and write
ω` = ei2π/2

`

for all ` ∈ N. For instance, ω0 = 1 and ω1 = eiπ = −1.
Let |x〉 =

∑N−1
k=0 xk|k〉. We define the quantum Fourier transform (QFT) as follows:

QFT (|x〉) = |y〉 =
N−1∑
k=0

yk|k〉 (13)

where

yk =
1√
N

N−1∑
j=0

xjω
jk
n . (14)

We give a simple form for |y〉 in case |x〉 = |j〉 is a pure state, where j = (j1, . . . , jn)2 in binary. Then (14) becomes

yk =
1√
N
ωjkn (15)

since xi = 1 if i = j, and xi = 0 otherwise. and so (13) becomes

QFT (|j〉) =
1√
N

N−1∑
k=0

ωjkn |k〉 (16)

22.3. QUANTUM ALGORITHMS 17

Lemma 4

QFT (|j1 · · · jn〉) =
1√
N

n⊗
`=1

(|0〉 + ωj` |1〉) (17)

=
1√
N

(|0〉 + ωj1|1〉) ⊗ (|0〉 + ωj2|1〉) ⊗ · · · ⊗ (|0〉 + ωjn|1〉) (18)

Proof. Write |j〉 = |j1, . . . , jn〉 = |j1〉 ⊗ · · · ⊗ |jn〉.

QFT (|j〉) =
1√
N

N−1∑
k=0

ωjkn |k〉, (from (13), (15))

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
∑
kn=0

ω
j(
∑N−1

i=0
ki2

n−i)
n |k1, . . . , kn〉, (rewriting the sum over k)

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
∑
kn=0

n⊗
`=1

ωjk`2
n−`

n |k`〉, (rewriting a tensor)

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
∑
kn=0

n⊗
`=1

ωjk`

` |k`〉, (by definition of ω`)

=
1√
N

(|0〉 + ωj1|1〉) ⊗ (|0〉 + ωj2|1〉) ⊗ · · · ⊗ (|0〉 + ωjn|1〉)

Note that this agrees with (18). Q.E.D.

We have two remarks:
1. The notation in (17), although essentially equivalent to (18), can be ambiguous unless we understand the
convention that a tensor product of the form ⊗n`=1 has to be taken in order of increasing `. This remark may
become clearer when we describe the quantum circuit to compute QFT.
2. The coefficient ωj` in this lemma needs to be decoded:

ωj` = ei2π2−`(
∑

n

i=1
ji2

n−i)

= ei2π(
∑

`

i=1
jn+i−`2

−i), (keeping only the fractional part of the exponent of ei2π.

= ei2π(0.jn+1−`jn+2−`···jn)

where the (0.jn+1−`jn+2−` · · · jn) is a binary rational. In other words, although the notation “ωj`” suggests that
this coefficient depends on j, it only depends on the last ` bits of j1, j2, . . . , jn. In the following, we shall write

ω(0.j1j2···j`) (19)

for ei2π(0.j1j2···j`).

One Stage of QFT Circuit. The QFT circuit will consist of n stages. It is sufficient to understand a single
stage of this process. In fact the first stage is representative of all the other stages, and is illustrated in Figure 22.7.

The first gate is represented by the standard H-matrix. This H-gate transforms a pure qubit state |j1〉 as
follows: H(|0〉) = (|0〉 + |1〉)/√2 if j1 = 0 and H(|1〉) = (|0〉 − |1〉)/√2 if j1 = 1. We summarize this by writing

H(|j1〉) =
1√
2
(|0〉 + ωj11 |1〉). (20)

Viewing the first H-gate as a transformation of all the qubits of |j〉, we obtain

H(|j〉) =
1√
2
(|0〉 + ωj11 |1〉) ⊗ |j2 · · · jn〉.

If n = 1, we are done. If n ≥ 2, we introduce n − 1 transformations of the following type. For ` ≥ 2, the
transformation Rk is a 2-qubit gate that achieves a “controlled rotation”, and is given by the matrix

1 0 0 0
0 ω` 0 0
0 0 1 0
0 0 0 1



18 CHAPTER 22. QUANTUM COMPLEXITY

Sn

(|0〉 + ωjn|1〉)/
√
N

|jn〉

|jn−1〉

|j2〉 |j2〉

|j3〉

|jn〉

|jn−1〉

|j3〉
...

|j1〉 RnRn−1R2 R3H

Figure 22.7: Stage One of the QFT circuit

In Figure 22.7, R2 is applied to the first and second qubits of |j1 · · · jn〉, where the second qubit j2 acts as the
control wire. Thus

R2(|00〉) = |00〉
R2(|01〉) = ω2|01〉
R2(|10〉) = |10〉
R2(|11〉) = |11〉

The output of H on lines 1 and 2 is 1√
2
(|0〉+ ωj11 |1〉) ⊗ |j2〉. Considering the case j2 = 0 and j2 = 1 separately, R2

yields:

R2((|0〉 + ω1|1〉) ⊗ |0〉) = (|0〉 + ω1|1〉) ⊗ |0〉,
= (|0〉 + ω(0.10)|1〉) ⊗ |0〉,

R2((|0〉 + ω1|1〉) ⊗ |1〉) = (|0〉 + ω2ω1|1〉) ⊗ |1〉,
= (|0〉 + ω(0.11)|1〉) ⊗ |1〉,

This proves that

R2(H(|j1j2〉)) =
1√
2
(|0〉 + ω(0.j1j2)|1〉) ⊗ |j2〉)

=
1√
2
(|0〉 + ωj1j22 |1〉) ⊗ |j2〉).

Continuing the same way, eachR`-gate simply transforms the factor (|0〉+ω0.j1j2···j`−1 |1〉) into (|0〉+ω0.j1j2···j`−1j` |1〉)
(by appending j` to the the binary fraction in the exponent). The final result is that line 1 has the value,

1√
2
(|0〉 + ω(0.j1j2···jn)|1〉).

By comparing this result to lemma 4, we see that this result should really appear in line n in the QFT circuit. But
we will postpone this transposition until the end. Lines 2 to n have their original values unchanged.

Putting together the stages. Let Sn be the circuit represented by stage 1. It is now clear that we can continue
this process on lines 2 to line n, but applying the circuit Sn−1 instead. as a result, line 2 will have the value
(|0〉+ωjn−1|1〉)/

√
2, Finally, line n is transformed by S1 which is just a single H-gate, yielding (|0〉+ωj1|1〉)/

√
2 on

this line. The resulting circuit is seen in Figure 22.8.
We are almost done, except the values in the output lines of Figure 22.8 are in reverse order (compare lemma 4).

But we know that transposing any two bits (quantum or classical) can be achieved by three T2 gates. We can
therefore introduce N/2 such gates to exchange the outputs of line i and line N − i − 1. This completes the
description of the QFT circuit.

22.3. QUANTUM ALGORITHMS 19

|j2〉

(|0〉 + ωjn|1〉)/
√

2

(|0〉 + ωj1|1〉)/
√

2

(|0〉 + ωj2|1〉)/
√

2

|j1〉

(|0〉 + ωjn−2|1〉)/
√

2|j3〉

|jn−1〉

|jn〉

...
...

Sn Sn−1 Sn−2 S2 S1

(|0〉 + ωjn−1|1〉)/
√

2

Figure 22.8: Quantum circuit for Reverse Fourier transform

Complexity Analysis. Since each stage uses Θ(n) gates, the overall number of gates is Θ(n2).
At this point, we should pause and consider what has been accomplished: we can compute QFT using O(n2)

quantum gates. This is exponentially smaller than any classical construction which surely need Ω(N) = Ω(2n)
gates. But exploiting this result is hardly obvious. For one thing, it is unclear how to physically prepare an
arbitrary quantum state |x〉. Even if we can do this, it is unclear how to extract the resulting values stored in
|y〉 = QFT (|x〉).

22.3.3 Phase Estimation Problem

The phase estimation problem is one of the most basic tasks we might want to carry out. Suppose U is a unitary
operator U , given as blackbox. This simply means that we can use it as a primitive gate in our quantum circuits.
Furthermore, we are given an eigenvector |v〉 of U . If the associated eigenvalue is ωφ = ei2πφ, then

U |v〉 = ωφ|v〉.

Call φ the phase angle, and we may assume 0 ≤ φ < 1. The problem of Phase Estimation is, given U and |v〉
and also n ∈ N and ε > 0, to compute an approximation of φ to n bits of precision, with probability of failure ≤ ε.
The approximation φ̃ has n bits of precision if |φ̃− φ| ≤ 2−n.

(|0〉 + ωφ−2|1〉)/
√

2

(|0〉 + ωφ−t+2|1〉)/
√

2

(|0〉 + ωφ−t+1|1〉)/
√

2

(|0〉 + ωφ0 |1〉)/
√

2

|0〉

|v〉|v〉

|0〉

(|0〉 + ωφ−1|1〉)/
√

2

|0〉

|0〉

...
...

|0〉

U2t−1
U2t−2

U22
U21

U20

H

H

H

H

H

Figure 22.9: Stage 1 of Phase Estimation

There are two stages in phase estimation. The first stage is illustrated in Figure 22.9. Note that there are two
registers (quwords):
(1) Register 1 comprise t qubits that are used to readout the final estimate of φ. At the end, we will measure this
register 1, and this value, interpreted as a binary rational 0.j1j2 · · · jt is regarded as the estimate of φ. The value

20 CHAPTER 22. QUANTUM COMPLEXITY

of t will be determined later, as it depends on the input parameters n and ε.
(2) Register 2 are used to carry the eigenvector |v〉.

Consider the result of applying U2`

(` ≥ 0) to the output of H :

U2`

(|0〉 ⊗ |v〉) = |0〉 ⊗ |v〉
U2`

(|1〉 ⊗ |v〉) = ω2`φ|1〉 ⊗ |v〉
U2`

((|0〉 + |1〉) ⊗ |v〉) = (|0〉 + ω2`φ|1〉) ⊗ |v〉
= (|0〉 + ωφ−`|1〉) ⊗ |v〉

This justifies the output on Register 1 as specified in the lines of Figure 22.9.

Phase Two. We motivate the construction of the second phase. Suppose

φ = 0.φ1φ2 · · ·φt, φi ∈ {0, 1}.

Then we observe the output lines of Register 1 in Figure 22.9 is simply the outputs specified by Lemma 4. For
instance, line one’s output in Figure 22.9 is (|0〉 + ωφ−t+1|1〉)/

√
2, which is equal to (|0〉 + ω0.φt |1〉)/√2. Line one

of Lemma 4 has output (|0〉 + ωj1|1〉)/
√

2, which is equal to (|0〉 + ω0.jn |1〉)/√2. So the two outputs are the same
once we identify n with t and j1, . . . , jn with φ1, . . . , φt.

This means, if we apply the inverse QFT circuit of the previous section as our second phase, we would obtain
as output the pure state |φ1 · · ·φt〉. This inverse QFT is indeed our second phase, even when φ is not a binary
rational. But the proof that it yields a good estimate of φ in general is more subtle and will be taken up next.

Finally, the estimate of φ is obtained by measuring Register 1. This yields t bits which is interpreted as a binary
rational 0.b1b2 · · · bt (bi ∈ {0, 1}) and taken as the estimate of φ.

Error Analysis. Let φ < 1 be an arbitrary real. Suppose φ̃ = 0.φ1 · · ·φt is a binary rational such that

δ := |φ− φ̃| ≤ 2−t−1. (21)

Ideally, we would like our final measurement to yield |φ1, . . . , φt〉 = |2tφ̃〉 in Register 1. But short of this, our
current goal is to obtain pure state |j〉 = |j1, . . . , jt〉 such that

Pr{|φ− 0.j1, . . . , jt| < 2−n} ≥ 1 − ε. (22)

where n and ε are user specified parameters. We show how to choose t so that we obtain the guarantee (22).
The output of Phase 1 is

1
2t/2

(|0〉 + ωφ−t+1|1〉) ⊗ (|0〉 + ωφ−t+2|1〉) ⊗ · · · ⊗ (|0〉 + ωφ0 |1〉) =
1

2t/2

2t−1∑
`=0

ωφ`|`〉

The inverse QFT is basically the same as QFT, except that we replace ω by its conjugate ω When we apply the
inverse QFT, we get

QFT−1
(

1
2t/2

∑2t−1
`=0 ωφ`|`〉

)
= 1

2t/2

∑2t−1
`=0 ωφ`

∑2t−1
k=0 ω−`k

t |`〉 (by (15))

= 1
2t/2

∑2t−1
`=0

∑2t−1
k=0 (ωφ−`2

−t

)k|`〉.

The amplitude of |`〉 is therefore

α` :=
1

2t/2

2t−1∑
k=0

(ωφ−`2
−t

)k

=
1

2t/2
1 − (ωφ−`2

−t

)2
t

1 − ωφ−`2−t

22.3. QUANTUM ALGORITHMS 21

We use the fact that 2 ≥ |1 − eiθ| ≥ 2θ/π for |θ| ≤ π. Then |1 − ωx| = |1 − ei2pix| ≥ 4x when |x| ≤ 1/2. Hence

|α`| ≤ 2
2t(1 − ωφ−`2−t .

Writing β` for α
2tφ̃+`

, we have

|β`| ≤ 2

2t(1 − ωφ−φ̃−`2−t
=

2
2t(1 − ω±δ−`2−t ≤ 2

2t4|δ − `2−t| =
1

2t+1|δ − `2−t| .

Upon measurement of Register 1 at the end of the computation, suppose we obtain the state |j〉 = |j1, . . . , jm〉.
The estimate for φ is therefore j2−t. We want to upper bound the probability that |j2−t − φ̃| > 2−n (this is the
error probability because we want an n-bit approximation to φ). Writing ∆ = 2t−n, we get

Pr{|j − 2tφ̃| > 2t−n} =
∑

|`−2tφ̃|≥∆

|α`|2

=
∑
|`|≥∆

|β`|2

≤
∑
|`|≥∆

1
2t+1|δ − `2−t|2

=
1
2

∑
|`|≥∆

1
|2tδ − `|2

≤
∑
`≥∆

1
(`− 1)2

, (2tδ ≤ 1)

<
∑
`≥∆

1
(`− 1)(`− 2)

=
∑
`≥∆

(
1

(`− 1)
− 1

(`− 2)

)
<

1
∆ − 1

, (by telescoping)

We are almost there: recall that we want the probability of error to be at most ε > 0. Hence it is enough that
ε ≥ 1/(∆ − 1) = 1/(2t−n − 1). Thus t− n ≥ lg(1 + ε−1). Since n and ε are user inputs, we only need to choose

t = n+
⌈
lg(1 + ε−1)

⌉
. (23)

We are done with phase estimation.
To summarize: given a blackbox U and an eigenvector |v〉, and a precision bound of n and error bound of ε > 0,

if we construct the above 2-phase quantum circuit using the parameter t in Equation (23), then the measured value
0.j1 · · · jn in Register 1, is an n-bit approximation of φ with probability 1 − ε. Here, φ is given by U |v〉 = ωφ|v〉.

We can extend this technique to the case where an eigenvector |v〉 is not directly available, but we have a fixed
state |x〉 =

∑
i ci|vi〉 that is a superposition of eigenvectors |vi〉, each with a phase φi. When we measure Register

1, for each i, we obtain an estimate of φi with probability |ci|2 (and on measuring Register 2, we find out the |vi〉
whose phase we measured).

22.3.4 Integer Factoring Problem

We return to the main goal of integer factorization. The problem is easy to state: given an integer N > 2, to find
distinct primes pi and exponents ei ≥ 1 (i = 1, . . . ,m) such that

N =
m∏
i=1

pie
i, (24)

as guaranteed by the Fundamental Theorem of Arithmetic (see below). This problem can easily be solved in time
polynomial in N (see Exercise), but this is not considered a polynomial-time algorithm because the size of the input
is only n = blg(1 +N)c (tbe number of bits in the binary representation of N). The current record for integer
factorization takes time Θ((N log2N)1/3) using sophisticated number field sieve methods. Our goal is to describe
a quantum factoring algorithm that takes time Θ(log4N) = Θ(n4).

22 CHAPTER 22. QUANTUM COMPLEXITY

Some Number Theory. When we say “numbers” in Number Theory, it means a natural number n ∈ N. The
starting point of Number Theory is the divisibility relation on integers: we say m divides n, and write m|n, if
ma = n for some a ∈ Z. Also, let m∼| n denote the negation of divisibility. We say n ∈ Z is prime if it is divisible
by exactly two numbers. This definition excludes the numbers 0 (being divisible by all numbers) and 1 (being
divisible by one number). Hence 2 is the smallest prime number, and it also has the distinction of being the only
even prime. The Fundamental Theorem of Arithmetic says that every number n ≥ 2 has a unique representation
of the form

n =
m∏
i=1

pei

i , m ≥ 1 (25)

where p1 < p2 < · · · pm are distinct primes, and ei ≥ 1. We write x ≡ y(modn) if n|(x − y). We assume that
students are familiar with the concept of modulo n arithmetic: we may add and multiply modulo n. E.g.,
5+6 = 2(mod 9). Thus, the set Zn = {0, 1, . . . , n−1} is a ring under modulo n arithmetic. We shall write xmodn
for the unique value in Zn that is equivalent to x modulo n. E.g., 11mod9 = 2.

The greatest common divisor (GCD) of m,n is denoted GCD(m,n), and is the largest number that divides both
m and n. When m = n = 0, we define GCD(m,n) = 0; otherwise, it is clear that GCD(m,n) ≥ 1. If GCD(m,n) = 1,
we say m,n are coprime (or, m is coprime to n). We can compute GCD(m,n) in polynomial time, for instance,
using Euclid’s algorithm. Euclid’s algorithm is simple to describe: if n0 > n1 ≥ 1 are numbers, then we compute
GCD(n0, n1) be generating the following “Euclidean sequence”

(n0, n1, n2, . . . , nk−1, nk), k =≥ 1, (26)

where
ni+1 = ni−1 modni, i = 1, . . . , k − 1. (27)

The termination condition for the sequence is given by

nk−1 modnk = 0. (28)

It is easily seen from (27) that the following holds:

GCD(ni, ni+1) = GCD(ni−1, ni).

But nk = GCD(nk−1, nk), by the termination condition (28) Hence nk is equal to GCD(n0, n1). This proves the
correctness of Euclid’s algorithm. E.g., GCD(22, 15) = 1 follows from the Euclidean sequence

22, 15, 7, 1.

Again, GCD(22, 18) = 2 because (22, 14, 8, 6, 2) is an Euclidean sequence. We can extract a valuable piece of
information from the Euclidean algorithm: it is easy to verify by induction that in the Euclidean sequence (26),
there exists integers si, ti such that

ni+1 = sin0 + tin1, i = 1, . . . , k − 1.

In particular, there exists s, t ∈ Z such that GCD(m,n) = sm+ tn. Thus sm ≡ GCD(m,n)(modn). When m,n are
coprime, we conclude that sm ≡ 1(modn) and tn ≡ 1(modm). Thus s is the (multiplicative) inverse of m modulo
n, and similarly t is the inverse of n modulo n. We sometimes write s = m−1(modn). Summarizing: every element
m that is coprime to n has an inverse modulo n. It is easy to modify the Euclidean algorithm to compute sk, tk
as well (Exercise). This is usually called the Extended Euclidean algorithm. Thus we can compute multiplicative
inverses.

For n ∈ N, let
Z
∗
n = {i ∈ Zn : GCD(i, n) = 1}.

Since every element in Z∗
n has an inverse modulo n, and 1 is clearly the identity of multiplication modulo n, we

conclude: Z
∗
n is a group under multiplication modulo n. The size of this group is |Z∗

n| = φ(n) where φ(n) is Euler’s
totient function. Thus φ(n) is the number of distinct values in Zn that are coprime to n. For instance, if p is prime,
φ(p) = p−1 since Z∗

p = {1, 2, . . . , p−1}. We can easily generalize this to φ(pe) = pe−1(p−1) because the elements in
Zpe \Z∗

pe are precisely the multiples of p and there are pe−1 of these. Thus φ(pe) = pe−pe−1 = pe−1(p−1). Further,
if m,n are coprime, we can show (Exercise) that {xx′ : x ∈ Z∗

n, x
′ ∈ Z∗

m} = Z∗
mn. Hence φ(mn) = φ(m)φ(n).

This gives us a formula for φ(n) when we know the complete factorization of n, similar to (25). For instance,
φ(24) = φ(23)φ(3) = 8. The Fermat-Euler theorem says that for all x ∈ Z∗

n, xφ(n) = 1(modn). A power is a
number of the form me for some m, e ∈ N. When m is prime, then me is called a prime power.

22.3. QUANTUM ALGORITHMS 23

Reductions of the Factoring Problem. Henceforth, we simply say “factorization” for “integer factorization”.
We reduce the factorization problem to its computational “core”. Here, we say a problem P is reducible to another
problem Q if we can construct a polynomial time algorithm AP for P from any polynomial time algorithm AQ for
Q. Moreover, this reduction is randomized if AP is randomized (regardless of whether AQ is randomized or not).
In general we need randomized algorithms.

1. Reduction to Simple Factoring: First we may reduce the problem to finding any non-trivial factor M of
N . That is, find M such that M |N and 1 < M < N . Call this the simple factoring problem, as opposed
to the original version which we call the complete factoring problem, represented by (25). The complete
factoring problem is reduced to at most lgN simple factoring problem. This is because in (25), we have
N =

∏m
i=1 p

ei

i ≥∏m
i=1 2ei ≥ 2e where e =

∑m
i=1 ei. Hence e ≤ lgN .

2. Reduction to an Odd Non-power: Given an N , we want to detect if it is a power, and if so, completely
factor it, N = M e. This can easily be done in polynomial time (Exercise).

We can further assume N is odd. This is trivial, but the reader will rightfully wonder if this is a just an
adhoc decision: why only exclude multiples of 2? We could likewise exclude any multiples of 3 or 5, or any
number we like. The reason this decision is not adhoc is related to the next reduction.

3. Reduction to Finding a Squareroot of Unity modulo N . Call x a squareroot of unity (i.e., 1) modulo
N if x2 ≡ 1(modN). Clearly, x = 1 and x = N − 1 (usually denoted −1) are squareroots of 1 modulo N .
But these are the trivial squareroots of 1; we want nontrivial squareroots where 1 < x < N − 1. Armed
with such an x, we see that x2 − 1 = (x − 1)(x + 1) must be divisible by N . Hence, a prime factor p of N
must divide either x − 1 or x + 1. This means p divides either GCD(N, x − 1) or GCD(N, x + 1), i.e., either
GCD(N, x − 1) or GCD(N, x + 1) is a nontrivial factor of N .

4. Reduction to Order Finding. We can reduce finding non-trivial squareroots of unity to order finding.
For x ∈ Z

∗
n, the order of x modulo n (or, the n-order of x, or ordn(x)) is the smallest r ≥ 0 such

that xr = 1(modn). The order finding problem is to find r given x, n. By the Euler Fermat theorem,
xφ(n) ≡ 1(modn) and hence r ≤ φ(n). Indeed, r|φ(n) because if φ(n) = ar + b where 0 ≤ b < r, then
xb ≡ xb+ar = xφ(n) ≡ 1(modn), which is a contradition unless b = 0. The order finding problem is not known
to be solvable in polynomial time. The reduction to order finding is nontrivial and will be taken up below.

Squareroots of Unity. The above reduction prompts a closer examination of the squareroots of 1. Let x be a
squareroot of 1 modulo n. An obvious question is: when is x nontrivial? To answer this question, we must look
into the group structure of Z

∗
n.

1. The simplest kind of groups6 are the cyclic groups. By definition, a group Z is cyclic if there exists g ∈ Z (called
a generator) that generate the entire group by repeated multiplication: Z = {gi : i ∈ N}. It is known that Z∗

n is
cyclic if and only if n = 2, 4 or n = pm or 2pm where p is an odd prime and m ≥ 1.
2. If Z∗

n is cyclic then the only squareroots of 1 modulo n are the trivial ones. In proof, let g ∈ Z∗
n be a generator

of the cyclic group and let x = ge for some e (0 < e < φ(n)). Since g2e ≡ x2 ≡ 1(modn), we have φ(n)|2e and
so φ(n)/2 ≤ e. But φ(n)/2 < e is not possible because it would lead to the contradiction that x2e−φ(n) ≡ 1 and
1 ≤ 2e− φ(n) < φ(n). This proves our claim.
4. The number of generators in a cyclic group Z of size n is φ(n). To see this, let g be any generator of Z. We
claim that ge is also a generator whenever GCD(e, n) = 1. For, in this case, if r is the order of ge then gre = 1
implies n|re and hence n|r. We conclude that r = n. This concludes our proof because there are φ(n) choices for
e. As corollary, Z∗

qi
is φ(φ(qi)) = φ(pei−1

i (pi − 1)).
Example. Suppose n = 45 = 9 × 5. Then φ(n) = φ(9)φ(5) = 6 × 4 = 24. How, φ2(9) = φ2(5) = 2 and so Z∗

9

and Z∗
9 each has 2 generators each. We may check that 2 and 5 are the generators of Z∗

9 = {1, 2, 4, 5, 7, 8}, and 2
and 3 are generators of Z∗

5 = {1, 2, 3, 4}.

Group Structure of Multiplicative Group of n. We may now assume that n is an odd non-power. Then
n =

∏m
i=1 qi (m ≥ 2) where each qi is a prime power and the qi’s are coprime.

1. The group Z∗
n is thus isomorphic to

G = Z
∗
q1 × · · · × Z

∗
qm

because of the Chinese Remainder Theorem. Indeed the isomorphism is the natural one, h : Z∗
n → G where

h(x) = (x1, . . . , xn) and xi ≡ x(mod qi). Let h denote the inverse of h.
6We assume only the basic definition of groups.

24 CHAPTER 22. QUANTUM COMPLEXITY

2. The group operation ◦ in G is componentwise multiplication, modulo qi in the ith component. Thus, h(xy) =
h(x) ◦ h(y). Let us note that

h(1) = (1, 1, . . . , 1), h(−1) = (−1,−1, . . . ,−1).

Let h(x) = (x1, . . . , xm). Then for any r ≥ 0, h(xr) = (xr1, . . . , x
r
m), which we write simply as (x1, . . . , xm)r.

3. Let gi be a generator of Z∗
qi

, and xi = gei

i for some ei ≥ 0. CLAIM: If the n-order of x and xi (respectively) are r
and ri, then r is equal to ` := LCM(r1, . . . , rm). To see this, first note that φ(n)|r and φ(qi)|ri. Also, xri ≡ 1(modn)
implies xri ≡ 1(mod qi) and so ri|r. Thus r ≥ `. But x` ≡ 1(modn) implies r ≤ `. This proves our claim that r = `.
4. The fraction of elements in Z∗

n of odd order modulo n is most 2−m. From xr ≡ 1(modn), we conclude that
geir
i ≡ 1(mod qi) and so φ(qi)|eir. If ei is odd, then r must be even. Therefore, a necessary condition for r to be

odd is that every ei be even. The fraction of elements x in Z∗
n such that x 7→ (e1, . . . , em) with all ei even is exactly

1/2m.

Randomized Order Finding. We introduce a useful notation: for n ∈ N, let v(n) = v2(n) be the largest d ≥ 0
such that 2d|n. This function is not defined for n = 0. We can generalize this to any nonzero rational number n/m:
v(n/m) := v(n) − v(m), which can be negative or positive.
1. Now let Z

k
n :={i ∈ Zn : i > 0, v(i) = k} and fn(k) = |Zkn|/n. For instance, f16(k) = 1

2 ,
1
4 ,

1
8 ,

1
16 , 0 for

k = 0, 1, 2, 3, 4. We may easily verify, for all k ≥ 0:

fn(0) ≤ 1/2, with equality iff n even,∑
`≥1

fn(`) ≤ 1/2, with equality iff n odd.

fn(k + 1) ≤ fn(k)

fn(k) ≤ 1
2k + 1

fn(k) ≥ 1
3 · 2k , provided fn(k) > 0.

2. In our application, we are interested in the following fraction: let m,n, k ∈ N. Then define Zkm,n :={(d, e) ∈
Zm × Zn : d > 0, e > 0, v(d) − v(e) = k}, and fm,n(k) = |Zkm,n|/mn. Clearly,

fm,n(k) =
∑
`≥0

fm(k + `)fn(`) (29)

fm,n(k + 1) ≤ fm,n(k)

fm,n(k) ≤ 947
1800

< 5/9

We prove the last inequality: It is enough to show that fm,n(0) ≤ 947
1800 . From above, we know that fm(0) ≤ 1/2,

fm(1) ≤ 1/3, fm(2) ≤ 1/5 and fm(k) ≤ 2−k. Thus,

fm,n(0) =
∑
`≥0

fm(k + `)fn(`)

= fm(0)fn(0) + fm(1)fn(1) + fm(2)fn(2) +
∑
`≥3

2−`−1

=
1
4

+
1
9

+
1
25

+
1
8

=
947
1800

.

3. Let E = {x ∈ Z
∗
n : ordn(x) = even}. From the preceding, we know that |E| ≥ φ(n)(1 − 2−m). If x ∈ E and

ord(x) = r, let s(x) = xr/2 modn. Thus s(x) is a squareroot of unity. CLAIM: The fraction of elements in E such
that s(x) is a nontrivial squareroot of unity is at least 4/9. We know that s(x) 6= 1. Therefore it suffices to show
that for less than 5/9 of the elements x in E, s(x) = −1. If r is the order of x, and writing h(x) = (ge11 , . . . , g

em
m)

as before, showing s(x) = −1 amounts to showing

g
eir/2
i ≡ −1(mod qi)

22.3. QUANTUM ALGORITHMS 25

for all i. Now geir
i ≡ 1(mod qi) implies φ(qi)|eir, and so

v2(φ(qi)) ≤ v2(eir). (30)

If geir/2
i ≡ −1(mod qi) then φ(qi)∼| eir/2, and so

v2(φ(qi)) > v2(eir/2). (31)

From (30) and (31), we conclude ei ≥ 1 and v2(φ(qi)) = v2(eir) for all i. Since m ≥ 2,

v2(e1/e2) = v2(φ(q1)/φ(q2)).

The righthand side is a constant k. Without loss of generality, assume k ≥ 0. The fraction of (e1, e2) ∈
{1, . . . , φ(q1) − 1} × {1, . . . , φ(q2) − 1} such that v2(e1/e2) = v2(e1) − v2(e2) = k is less than 5/9, according
to (30).
4. With probability at least 1/3, a random element x ∈ Z∗

n have even order, with s(x) a nontrivial squareroot of
unity. Let A be the event that x has even order. Let B be the event that s(x) is a nontrivial squareroot of unity. The
claimed probability is equal to Pr(AB) = Pr(B|A) Pr(A). But above, we have shown that Pr(A) ≥ 1− 2−m ≥ 3/4,
and Pr(B|A) ≥ 4/9. Multiplying these probabilities gives our claim: (3/4)(4/9) = 1/3.
5. We have thus reduced the simple factorization problem to order finding: given N to be factored, we may assume
N is a non-power odd number. We randomly choose x ∈ ZN . We must check if x ∈ Z∗

N , by computing GCD(x,N).
If this GCD is not 1, we have in fact found a factor! Hence we may assume x ∈ Z∗

N and proceed to find its N -order
r. If N is composite, with probability more than 1/3, r would be even and s(x) = xr/2 a non-trivial squareroot of
1 modulo N . Thus with probability more than 1/3 we can factor N . In the contrary case, we can repeat this test
k ≥ 2 times. If we fail to factor N for k times, we declare N to be prime. What is the probability of error? Error
can only occur if N is composite and we declare it prime. But this happens only if we fail the test for k times.
This probability is at most (2/3)k, which can be as small as we like by making k large enough. For instance k = 4,
will ensure that failure probability of less than 20%. This proves:

Theorem 5 If there is a randomized polynomial time algorithm for order finding, then there is a randomized
polynomial time algorithm for integer factorization.

Example (contd). Continue with n = 45 = 9 × 5. Let r = LCM(φ(9), φ(5)) = 12. Consider x such that
h(x) = (2, 2). We have 26 ≡ 56 ≡ 1(mod 9) and also 26 ≡ 36 ≡ −1(mod5). Hence h(x6) = (1,−1). But
what is x6? Well, x6 ≡ 1(mod 9) means (x6 mod 45) ∈ {1, 10, 19, 28, 37}. Similarly, x6 ≡ −1(mod5) implies
(x6 mod 45) ∈ {4, 9, 14, 19, 24, 29, 34, 39, 44}. This means x6 = 19. Check: Modulo 45, we have 192 = (20 − 1)2 =
400 − 40 + 1 ≡ −50 + 5 + 1 ≡ 1. Thus y = 19 is a nontrivial square root of unity. Our reduction tells us that
GCD(45, y − 1) or GCD(45, y + 1) must be nontrivial. Indeed, GCD(45, y − 1) = 9 and GCD(45, 20) = 5.

The preceding development shows why assuming n is odd in our reduction of the factorization problem is not
an arbitrary decision: it ensures that each Z

∗
qi

is cyclic.

22.3.5 Quantum Order Finding

Let N = 2n be fixed. Given 3 ≤ m < N and x ∈ Z∗
m, we want to find the m-order of x. For instance, N = 16 = 24,

m = 15 and x = 7. Then the 15-order of x is r = 4. But how can we produce r from m,x using a quantum
algorithm? The trick is to define a unitary operator Um,x and an eigenvector |v〉 such that Um,x(|v〉) = ωf(r)|v〉
where f(r) is some easily inverted function of r. Then by phase estimation, we can approximate f(r) and then
invert f(r) to get r.
1. The unitary operator Um,x will act on the usual state space of n qubits, with the pure states |0〉, . . . , |N − 1〉.
This operator is completely described by its actions on the pure states

Um,x(|j〉) :=
{ |jxmodm〉 if j ∈ Zm

|j〉 else. (32)

Since x has an inverse modulo m, jx ≡ j′x(modm) implies j ≡ jxx−1 ≡ j′xx−1 ≡ j′(modm). Thus Um,x is a
permutation matrix, and á fortiori, a unitary matrix.
2. We next find eigenvectors of Um,x. For each s ∈ Zr, let

|vs〉 :=
1√
r

r−1∑
`=0

ω−s`/r|x`modm〉. (33)

26 CHAPTER 22. QUANTUM COMPLEXITY

Then

Um,x(|vs〉) =
1√
r

r−1∑
`=0

ω−s`/r|x1+`modm〉

=
1√
r
ωs/r

r−1∑
`=0

ω−s(1+`)/r|x1+` modm〉

= ωs/r|vs〉.

Thus, |vs〉 is an eigenvector of Um,x with phase φ = s/r. If we can estimate φ, and assuming we know s, we can
trivially recover r, provided s 6= 0. Unfortunately, we do not know how to prepare the state |vs〉 for any s. To
circumvent this problem, we use another observation: for any k,

1√
r

r−1∑
s=0

ωsk/r |vs〉 =
1√
r

r−1∑
s=0

ωsk/r
1√
r

r−1∑
`=0

ω−s`/r|x`modm〉

=
1
r

r−1∑
`=0

r−1∑
s=0

ω(k−`)s/r|x`modm〉

= |xk modm〉

where the last equation follows from the fact that (see (12))
∑r−1

s=0 ω
(k−`)s/r vanishes for ` 6= k, and otherwise

equals r.
3. To apply the previous result, we need the state |xk modm〉 for each k. Hence, we want to construct the
exponentiation transformation,

|k〉|y〉 7→ |k〉|xkymodm〉.
The circuit is shown in Figure 22.10, where U refers to Um,x.

|kn〉

|kn−1〉 |kn−1〉

|kn−2〉

|k2〉|k2〉
...

...

|k1〉|k1〉

|kn−2〉

|yxkmodm〉|y〉

|kn〉

U2t−1
U2t−2

U21

U20
U22

Figure 22.10: Exponentiation Circuit for |k〉]|y〉 7→ |k〉|xkymodm〉.

Note that this circuit is similar to the first stage of phase estimation. What we must remember, however, is
that the U2i

-gates must be implemented efficiently (polynomial in i, not in 2i). This uses the well-known successive
squaring trick of classical exponentiation. We leave this as an Exercise.
4. Putting it Together. Let us start with two quwords, each with n bits. Prepare them as follows:

|0〉 ⊗ |1〉.

Applying the Hadarmard transformation H on the first quword, we obtain

1√
N

N−1∑
k=0

|k〉 ⊗ |1〉.

22.3. QUANTUM ALGORITHMS 27

Next, apply the exponentiation operator above the two q-words to obtain

1√
N

N−1∑
k=0

|k〉 ⊗ |xk modm〉.

But this last result can also be expressed as

1√
N

N−1∑
k=0

(
|k〉 ⊗ 1√

r

r−1∑
s=0

ωsk/r |vs〉
)

=
1√
rN

r−1∑
s=0

(
N−1∑
k=0

|k〉 ⊗ ωsk/r|vs〉
)
.

The expression in the final pair of parentheses is similar to a Fourier transform, but with phase ωs/r. Indeed, we
can verify that by applying an inverse Fourier transform (in analogy to the second stage of phase estimation), we
will obtain estimates φ̃s = φ̃ for φ2 = s/r. Note that we obtain estimates φ̃s for each choice of s. When s = 0 or
GCD(s, r) > 1, the answer will not be correct, but otherwise, we are indifferent as to which s we obtain. Since at
least Cr/ ln(r) numbers less r are prime, the probability of obtaining an s that is coprime to r is at least C/ ln(r).
So if we repeat at least 2C/ ln(r) times, we have a strong change of obtaining a good s.
5. Final Touch. Once we have an estimate of s/r to sufficient accuracy, we use a well-known fact about rational
approximation: if |φ̃ − s/r| ≤ 1/(2r2), then we can recover s/r uniquely, using the simple continued fraction
algorithm. Of course, we do not know r, but only need at upper bound on r (e.g., N will do). This part of the
computation does not need any quantum power.

Exercise

Exercise 22.3.1: Let 0 < ε < 1. Give an randomized classical algorithm to solve the Deutsch-Jozsa problem with
probability of success of 1 − ε using O(log(1/ε)) calls to the blackbox. HINT: Let Ei (i = 0, 1) be the event
that f(x1, . . . , xn, 1) = i where x1, . . . , xn are random. What is the probability that E0 occurs in k trials?

Exercise 22.3.2: Give a simple upper bound on the number of classical gates to compute DFT (assuming each
gate can perform a single complexity arithmetic operation in constant time).

Exercise 22.3.3: We want to estimate the phase φ1 of an eigenvector |v1〉 of a blackbox unitary operator U .
We outlined a method to estimate φ1 when we can only prepare a state |x〉 that contains |v1〉 as one of its
components. Compute the probability of correct measurements of φ1, and discuss its impact on complexity.

Exercise 22.3.4: Describe an algorithm for the complete factorization of an integer N ∈ N that runs in time
polynomial in N .

Exercise 22.3.5: Describe a polynomial time algorithm which, given N ∈ N, either detects that N is not a power
or else completely factorize N , i.e., finds M, e ∈ N such that N = Me. HINT: how would you detect if N is
a square, N = M2?

Exercise 22.3.6: (Extended Euclidean Algorithm) Modify the Euclidean algorithm to compute s, t, d for any input
numbers m,n, such that d = GCD(m,n) and d = sm+ tn.

Exercise 22.3.7: If n is an odd non-power, then Z∗
n is non-cyclic.

Exercise 22.3.8: Let x ∈ Z∗
n and n = q1 · · · qm (m ≥ 2) where the qi’s are prime powers, and coprime to each

other. Assume h(x) = (g1, . . . , gm) where each gi is a generator of Z∗
qi

. Characterize the conditions where
x` ≡ −1(modn) where 2` = LCM(φ(q1), . . . , φ(qm)).

Exercise 22.3.9: Recently, it was announced that a quantum computer was able to factor the number 15. Deduce
what probably happened – what was, and what was not done by the quantum computer.

Exercise 22.3.10: Let q be a prime power and d = v2(φ(q)). Then exactly half of the elements in Z∗
q has q-order

that is divisible by 2d.

End Exercise

28 CHAPTER 22. QUANTUM COMPLEXITY

22.4 Quantum Turing Machines

A circuit computes a finite function. We now address general computational models that takes inputs of arbitrarily
large size. In complexity theory, we can take one of two paths. One way is to define a general computing model
such as Turing machines. Another way is to start from circuits, and to define7 a “uniform circuit family”. These
two approaches can also be taken to define a more general computational model for quantum computing. A basic
result here is the existence of a universal Turing machine. Deutsch [14] proved the analogous result for quantum
computers. Bernstein and Vazirani [11] describes a similar model, usually known as the quantum Turing machine
(QTM). Benioff [6] has argued for a different basis for such models.

Need to give the results of Yao??

22.5 Quantum Choices

We can now generalize our choice model to incorporate quantum complexity as follows. Let δ be a transition table
for a Turing machine as usual. We need to define functions γ for each state q in δ and provide an acceptance rule.

Some of the justification of our procedure has been pointed out by Lance Fortnow in his paper “A Theoreticians
View of Quantum Computing”.

For each state q, γ(q) will be a unitary ???

APPENDIX: Review of Linear Algebra

We review of some facts from linear algebra needed in quantum computing. We work exclusively with finite-
dimensional linear spaces over the complex field C. The (complex) conjugate z of a complex number z ∈ C is
denoted z = x − iy where z = x+ iy with x, y ∈ R and i =

√−1. We will shortly see that the complex conjugate
of z can also be denoted z∗, and this form is common in quantum physics. The absolute value |z| of z is equal
to

√
zz =

√
x2 + y2. Complex numbers with absolute value 1 are called complex signs, a generalization of the

real signs ±1. If |z| ≤ 1, we call z a (probability) amplitude. A complex sign z can be written in the form eiθ for
some real θ. The value θ is also called the phase.

A matrix A ∈ Cm×n is viewed as a transformation tA : Cn → Cm, where tA(x) = Ax (a matrix-vector
multiplication). Thus, range(A) is simply {Ax : x ∈ Cn} ⊆ Cm. Let us assume m = n unless otherwise noted.
The (i, j)-th entry of a matrix A is denoted (A)ij . The transpose AT and conjugate A of a matrix A is given by
(AT)ij = (A)ji and (A)ij = (A)ij , respectively. Then the conjugate transpose A∗ is given by A∗ = AT = A

T
.

Note that (AB)T = BTAT and (AB)∗ = B∗A∗. A matrix A ∈ Cn×n is Hermitian if A∗ = A, unitary if A∗A = I
(identity), and orthogonal if ATA = I. So if A is unitary then A−1 = A∗, A∗A = AA∗. Hermitian matrices are
also known as “self-adjoint” matrices (as A∗ is sometimes called the “adjoint” of A). In case A is a 1×1 matrix, A∗

is just another way of writing complex conjugation, since A∗ = A. Unitary matrices are fundamental in quantum
computing. For a unitary U , it is clear that det(U) = 1 and hence its eigenvalues λi are complex signs, |λi| = 1.

A matrix A is normal if A∗A = AA∗. Note that unitary matrices, Hermitian matrices, skew-Hermitian matrices
(A∗ = −A) are all normal. In quantum mechanics, Hermitian and unitary matrices are of paramount importance.

Orthogonalization and QR-Factorization. A useful tool for investigating the structure of linear spaces is
based on a certain factorization of matrices. Let A = [a1|a2| · · · |am] ∈ Cn×m where ai is the ith column. Let
Si ⊆ Cn be the subspace spanned by the first i columns.

Assume A has rank m (so m ≤ n). Let the sequence (q1, . . . , qm) of vectors form an orthonormal basis for
Sm ⊆ Cn. If we form the matrix

Q :=[q1|q2| · · · |qm],

then there is some m×m matrix R such that
A = QR. (34)

The ith column ri of R represents the vector ai relative to the basis (q1, . . . , qm). Let us call (q1, . . . , qm) (or Q) a
Gram-Schmidt basis for A if for each i = 1, . . . ,m, the prefix (q1, . . . , qi) forms an ordered basis for Si. In this
case, the matrix R is upper triangular in (34). The well-known Gram-Schmid orthogonalization procedure that
compute such a basis Q from any A.

7There is a bit of circularity in the conventional definition of “uniformity” via some Turing machine (say). We can avoid this problem
by using some logical circuit description language, say.

22.5. QUANTUM CHOICES 29

The factorization (34) of A is known as a reduced QR-factorization when Q is an Gram-Schmidt basis of
A. Each vector qi in this basis is unique up to some scalar multiple of modulus 1. Equivalently, we say qi is
determined up to “complex signs”. To make the factorization unique, we choose the complex signs to make the
diagonal elements of R real and non-negative. The full QR-factorization of A is the following variant,

A = Q̂R̂ (35)

where Q̂ is n× n and R̂ is n×m. It is obtained from (34) by augmenting Q and R: the matrix Q̂ is obtained by
appending n−m additional columns so that the columns of Q̂ form an orthonormal basis for C

n; the matrix R̂ is
obtained by appending n−m additional rows of 0’s. Note that when m = n, the full QR-factorization is just the
reduced QR-factorization. Since Q̂∗Q̂ = I, the matrix Q is unitary in the full QR-factorization.

So far, we have assumed that A has rankm. Supposem,n are arbitrary and A has has rank k (so k ≤ min{m,n}.
We first apply a permutation P to the columns of A so that the first k columns are linearly independent. Then we
have AP = QR where Q ∈ C

n×n is unitary, R ∈ C
n×m is upper triangular, and the first k columns of Q forms a

orthonormal basis for Sm,

Eigenvalues and Eigenvectors. A non-zero vector x ∈ C
n is called an eigenvector of A if Ax = λx for some

λ ∈ C. In this case, we call λ an eigenvalue of A that is associated with the eigenvector x. Note that while
eigenvectors must be non-zero, we have no such restriction on eigenvalues. In particular, A is singular iff λ = 0
is an eigenvalue: Ax = 0x = 0 (x 6= 0) iff A is singular. The set of eigenvalues of A, denoted Λ(A), is called the
spectrum of A. The characteristic polynomial of A is pA(z) = det(zI −A).

For example, if A =
[
a b
c d

]
then pA(z) = det

[
z − a b
c z − d

]
= (z−a)(z−d)− bc = z2− (a+d)z+ad− bc.

If

A =


0 1

0 1
. . .

0 1
−a0 −a1 · · · −an−2 −an−1


then pA(z) = zn +

∑n−1
i=0 aiz

i.
In general, it is easily seen that p(z) is monic of degree n with the constant term equal to det(A) and the

coefficient of zn−1 equal to −trace(A) = −∑n
i=1 aii. Also, λ ∈ Λ(A) iff λ is a zero of pA(z). [In proof, Ax = λx

iff (λI − A)x = 0 iff λI − A is singular iff det(λI − A) = 0.] The multiplicity of λ as a root of pA(z) is called the
algebraic multiplicity of λ. It follows that the cardinality of Λ(A) is between 1 and n. If A can be written as a
block matrix of the form

A =
[
B C
0 D

]
where B and D are square blocks, then

pA(z) = pB(z)pD(z). (36)

This is equivalent to det(zI−A) = det(zI−B) det(zI−D). In proof, we only have to show that any of the n! terms
of the determinant det(zI−A) that involves an entry of C is zero. Suppose B is k×k and the term t =

∏n
i=1 ai,j(i)

contains an entry ai0,j(i0) of C. Then the i0th row of B does not contribute to t. If B contributes ` entries to t,
this implies ` ≤ k − 1. So for some 1 ≤ c ≤ k, the c-th column of B does not contribute to t. Consider the index
i1 where j(i1) = c: clearly, the factor ai1,j(i1) of t is 0 and so t = 0, concluding our proof. As corollary, we have
Λ(A) = Λ(B) ∪ Λ(D).

Invariant subspaces. A subspace E ⊆ C
n is A-invariant if AE = {Ax : x ∈ E} is contained in E. If E = {0}

then it is clearly A-invariant. We call this the trivial case. If λ ∈ Λ(A), the set Eλ = {x ∈ Cn : Ax = λx} is easily
seen to be a non-trivial A-invariant subspace; we call Eλ the eigenspace of A associated with λ. In particular,
the eigenspace of A associated with λ = 0 is the nullspace of A. If λ 6= λ′ then clearly Eλ ∩ Eλ′ = {0}. Further,
x ∈ Eλ and y ∈ Eλ′ are linearly dependent: for, if c = ax + by = 0 for some a, b ∈ C then Ac = λax + λ′by = 0,
which easily implies a = b = 0. In Eλ, transformation by A amounts to scaling by a factor of λ. The dimension of
Eλ is called the geometric multiplicity of λ. We will show below that the geometric multiplicity of λ is at most
the algebraic multiplicity.

30 CHAPTER 22. QUANTUM COMPLEXITY

Similarity. Invariant subspaces are intimately connected to the notion of “similarity”. Two matricesA,B ∈ Cn×n

are similar if A = XBX−1 for some non-singular matrix X . In case X is unitary, X∗X = I, we say A and B are
unitarily similar: A = XBX∗. Similar matrices A,B have the same characteristic polynomial since

det(zI −X−1BX) = det(X−1(zI −B)X) = det(X−1) det(zI −B) det(X) = det(zI −B).

Thus similar matrices have the same spectrum,

Λ(A) = Λ(B), (37)

with the same algebraic multiplicities. Next,

Ax = λx⇔ X−1BXx = λx⇔ B(Xx) = λ(Xx). (38)

This shows that the eigenspace Eλ of A with λ and the eigenspace E′
λ of B are related as follows: Eλ = XE′

λ. It
follows that λ has the same geometric multiplicity relative to A and B.

Defective Matrices. Geometric multiplicity can be different from algebraic multiplicity. An eigenvalue λ is
defective if its geometric multiplicity is different from its algebraic multiplicity. A matrix is defective if any of
its eigenvalue is defective. For instance, if

A =
[
λ 0
0 λ

]
, A′ =

[
λ 1
0 λ

]
, (λ 6= 0) (39)

then Λ(A) = Λ(A′) = {λ} and the algebraic multiplicity of λ is 2 for both A and A′. Let Eλ and E′
λ be the

eigenspaces associated with λ for A and A′, respectively. Clearly, Eλ = C2 so that the geometric multiplicity of λ
relative to A is 2. But if x = (a, b)T ∈ E′

λ then A′x = λx. This means λx = (λa+ b, λb)T , and thus b = 0. So E′
λ

has dimension 1, not 2. Hence λ is defective for A′.

Lemma 6 For all A, the geometric multiplicity of any λ ∈ Λ(A) is at most the algebraic multiplicity of λ.

Proof. To see this, suppose λ has geometric multiplicity m and x1, . . . , xm are m linearly independent eigenvectors
all associated with λ. We may assume that the xi’s are unit vectors (x∗i xi = 1). Let X = [x1|x2| · · · |xm| · · · |xn]
where the columns xm+1, . . . , xn are additional unit vectors that span the complement of the eigenspaceEλ. ThusX
is unitary (X∗X = I) and X−1 = X∗. So AX = [λx1| · · · |λxm|x′m+1| · · · |x′n], where x′j = Axj for j = m+1, . . . , n.
Then

B = X∗AX =
[
λI C
0 D

]
for some C and D. This shows that the characteristic polynomial of B is divisible by (z−λ)m, and so the algebraic
multiplicity of B is at least m. Since A and B are similar, the algebraic multiplicities λ in A and B are equal.

Q.E.D.

Diagonalizability. The diagonal matrix whose (i, i)th element is di (for i = 1, . . . , n) is denotedD = diag(d1, . . . , dn).
A matrix is diagonalizable if it is similar to a diagonal matrix. To see why this concept is useful, suppose A is
diagonalizable:

A = XDX−1, D = diag(d1, . . . , dn) (40)

for some X . Then observe that the columns of X are eigenvectors for A. To see this, we have AX = XD and
hence Axi = dixi where xi is the ith column of X . Furthermore, this set of eigenvectors is complete, i.e., they
span the whole space.

We restate this observation as a theorem. Let ei denote the ith elementary vector, with 1 in the ith position
and 0 elsewhere. Thus xi = Xei. and di = Dei.

Theorem 7 If A = XDX−1 where D is a n × n diagonal matrix, then the set {Xe1, . . . , Xen} is a complete set
of eigenvectors of A. Moreover, Dei is the associated eigenvalue of Xei.

It follows that a diagonal matrix D = diag(d1, . . . , dn) is always non-defective. To see this, note that the
characteristic polynomial of D is

∏n
i=1(x − di) and so each λ ∈ {d1, . . . , dn} is an eigenvalue of D and it appears

in D as many times as its algebraic multiplicity. Since similarity transformations preserve eigenvalues and their
multiplicities, we conclude:

Theorem 8 A matrix A is diagonalizable iff it is non-defective.

For instance, the matrix A′ in (39) is not diagonalizable.

22.5. QUANTUM CHOICES 31

Unitary Similarity and Schur Form. Canonical form for matrices that are equivalent under various notions
of equivalence is an extremely powerful tool in linear algebra. We will consider matrices that are equivalent under
unitary similarity transformations: A ≡ B iff A = UBU∗ for some unitary U . Unitary operators are basically
isomorphisms of the inner product space: if y = Ux then y∗y = (Ux)∗(Ux) = x∗(U∗U)x = x∗x.

The invariant subspace relationship can be captured by a matrix equation: let X be a n×m matrix whose m
columns span some A-invariant subspace E. Then

AX = XB (41)

where B ∈ C
m×m. Conversely, every such equation (41) shows that the space spanned by the columns of X is

A-invariant.
Next, assume that E ⊆ Eλ for some eigenvalue λ. Then B has the form λI in (41). Let X = QR be a full

QR-factorization of X (see (35)) where

R =
[
T
0

]
for some upper triangular T ∈ C

m×m. To say that a matrix A is upper triangular means that (A)ij = 0 for j > i.
Thus (41) becomes AQR = QRB, or Q∗AQR = RB. Since RB = λR, we have

(Q∗AQ)R = λR. (42)

Let us write

Q∗AQ =
[
C D
E F

]
where C ∈ Cm×m and F ∈ C(n−m)×(n−m). Then the block version of (42) implies ET = 0. Since T is non-singular,
this means E = 0:

Q∗AQ =
[
C D
0 F

]
. (43)

By repeated application of this transformation of A, we obtain the Schur Decomposition of a matrix:

Theorem 9 (Schur Decomposition) Every matrix A is unitarily similar to a upper diagonal matrix T .

Proof. We use induction on n where A ∈ C
n×n. The result is trivial for n = 1. So assume n =≥ 2 and let Ax = λx

for some eigenvector x 6= 0. Then using (43) with m = 1, there is a unitary Q such that

Q∗AQ =
[
c yT

0 F

]
for some c ∈ C, some vector y and square matrix F . By induction, there is unitary V such that V ∗FV is upper
triangular. If

U =
[

1 0
0 V

]
then T = U∗(Q∗AQ)U is upper triangular. As QU is unitary, this shows that A is unitarily similar to T . Q.E.D.

Unitary Diagonalizability. We have introduced two concepts: unitary similarity and diagonalizability. Com-
bining them, we say a matrix A is unitarily diagonalizable iff it has the form

A = UΛU∗

for some unitary U and Λ = diag(λ1, . . . , λn).
Clearly, unitarily diagonalizability implies diagonalizability. We show the converse as well: let A be diagonaliz-

able, so A = XΛX−1 for some X . Here X is not necessarily unitary. By theorem 7, the columns {Xe1, . . . , Xen}
of X forms a complete set of eigenvectors for A. In order for X to be unitary, we need the eigenvectors to be
normalized, i.e., (Xei)∗(Xei) = 1. Let wi :=

√
(Xei)∗(Xei) and ui :=(Xei)/wi. Next define the matrices U and

W via
X = U ·W = [u1|u2| · · · |un] · diag(w1, . . . , wn).

Clearly, U is unitary and we have X−1 = W−1U−1 = W−1U∗. Of course, W−1 = diag(1/w1, . . . , 1/wn). We then
have A = (UW)ΛW−1U∗ = UΛU∗. So A is unitarily diagonalizable. In other words: a matrix is diagonalizable iff
it is unitarily diagonalizable.

Recall that a matrix A is normal if A∗A = AA∗. We note a useful lemma.

32 CHAPTER 22. QUANTUM COMPLEXITY

Lemma 10 If A is upper diagonal, then A is normal iff A is diagonal.

Proof. One direction is easy: if A is diagonal, then clearly A∗A = AA∗. Conversely, suppose A∗A = AA∗. We
claim that A must be diagonal. Let c be the first column of A and r be the first row of A. Then top-left corner
entry of A∗A is c∗c, and the corresponding entry of AA∗ is r∗r. Thus A is normal implies c∗c = r∗r. But the first
entry in c and in r are equal to some α ∈ C, and c∗c = |α|2. Hence r∗r = |α|2, which implies that all the remaining
entries in r are zero. Continuing in this fashion, we argue that all the off-diagonal entries in the ith row must be
zero. Q.E.D.

Theorem 11 A matrix is normal iff it is diagonalizable.

Proof. Let A = UTU∗ be the Schur decomposition of A given by the previous theorem. Since AA∗ = (UT)(T ∗U∗)
and A∗A = (UT ∗)(TU∗), we have

AA∗ = A∗A⇔ T ∗T = TT ∗.

Thus A is normal iff T is normal. But we had just shown that T is normal iff T is diagonal. Thus A is normal iff
T is diagonal. But T is diagonal means A is diagonalizable. Q.E.D.

As a corollary, we have

• Unitary and Hermitian matrices are diagonalizable. This is because such matrices are normal. It follows that
such matrices have complete sets of eigenvectors.

• A matrix is non-defective iff it is normal. This follows from theorems 11 and 8.

A projection operator P is characterized by the equation P 2 = P . For any unit length vector x, the matrix
xx∗ is a projection operator since (xx∗)(xx∗) = x(x∗x)x∗ = xx∗. Note that xx∗ is Hermitian, since (xx∗)∗ = xx∗.
For any y, (xx∗)y = (x∗y)x = αx where α = x∗y is a scalar. Thus the range of the projection (xx∗) is the linear
subspace spanned by x. Generalizing this, if {xi : i = 1, . . . , k} is a set of orthonormal vectors, then P =

∑k
i=1 xix

T
i

is a projection operator.

Hermitian Matrices and Real Numbers. We show a remarkable family analogies between Hermitian matrices
and real numbers. A matrix A is positive semidefinite (resp., positive definite) if x∗Ax ≥ 0 (resp., x∗Ax > 0)
for all nonzero vector x. Analogous definitions can be given by replacing “positive” by “negative”.

Theorem 12 Let H be Hermitian.
(i) All its eigenvalues are real.
(ii) H is positive definite iff all its eigenvalues are positive.
(iii) H is positive semidefinite iff all its eigenvalues are non-negative.

Proof. Let H = UΛU∗ for some unitary U and diagonal Λ.
(i) By the normality of H , we have H = H∗ = UΛ∗U∗. Hence Λ = Λ∗, i.e., Λ is real.
(ii) Let the columns of U be x1, . . . , xn. Each xi is an eigenvector ofH with associated eigenvalue λi. Since x∗iHxi =
λi|xi|2, the positive definiteness of H implies λi > 0. Conversely, if each λi > 0 we can show that H is positive
definite: any non-zero vector x ∈ C can be expressed as

∑n
i=1 cixi (ci ∈ C). Then x∗Hx =

∑n
i=1 λi|ci|2|xi|2 > 0

(iii) The proof is similar to (ii). Q.E.D.

Analogy between Hermitian Matrices and Real Numbers. The above connection between Hermitian
matrices with real numbers goes much deeper. The special role of real numbers in the complex field C is mirrored
in many ways by the Hermitian matrices in the context of complex matrices. This analogy can be extended as
follows:

real number ↔ Hermitian
pure complex number ↔ anti-Hermitian
complex sign, |z| = 1 ↔ unitary

positive real ↔ positive definite Hermitian
non-negative real ↔ positive semidefinite Hermitian

In the following, z is a complex number. The complex conjugate of z = x + iy is z = x − iy. We point out the
matrix analogues of the following properties:

22.5. QUANTUM CHOICES 33

1. z is real iff z = z; z is pure complex iff z = −z.
2. z is real iff iz is pure complex; z is pure complex iff iz is real.

3. z + z is real and z − z is pure complex.

4. zz = zz is real.

5. z can be uniquely written as z = x+ iy where x, y are real.

6. z can be uniquely written as z = x+ w where w is real and w is pure complex.

7. A real number r is non-negative iff there is a real number s such that r = s2.

8. A z has the polar form, z = rs where r is non-negative real, and s is a complex sign, |s| = 1. This form is
unique if z is non-zero.

9. A complex sign s can be uniquely written as s = eiθ for some real θ.

In the following, let A ∈ Cn×n.

1. A is Hermitian iff A = A∗; A is anti-Hermitian iff A∗ = −A.
Thus, the matrix analogue of complex conjugation, z 7→ z, is conjugate transpose, A 7→ A∗.

2. A is Hermitian iff iA is anti-Hermitian; A is anti-Hermitian iff iA is Hermitian.

3. A+A∗ is Hermitian and A−A∗ is anti-Hermitian.

4. A∗A and AA∗ are both Hermitian.

5. A can be uniquely written as G+ iH where G,H are Hermitian.

6. A can be uniquely written as A = G+ F where G is Hermitian and F is anti-Hermitian.
This is just a restatement of the previous property.

7. A Hermition matrix H is positive semidefinite iff H = G∗G for some positive semidefinite G.

8. A has two polar forms, A = HU and A = U ′H ′, where H,H ′ are positive semidefinite Hermitian, and U,U ′

are unitary. If A is non-singular, then these polar forms are unique.

9. A unitary A can be uniquely written as eiH for some Hermitian H .

Let us prove the non-obvious cases of the properties.
Property 5: Let G = (A + A∗)/2 and H = (A − A∗)/2i. Then clearly A = G + iH and from the preced-
ing, we conclude that G and H are Hermitian. Conversely, if A = G + iH for some Hermitian G and H , then
A∗ = G∗ + (iH)∗ = G∗ − iH∗ = G− iH . It follows that G = (A+A∗)/2 and H = (A−A∗)/2i.
Property 7: If A is positive semidefinite, we know that A = UΛU∗ for some unitary U and diagonal Λ =
diag(λ1, . . . , λn), where λi > 0. If B = Udiag(

√
λ1, . . . ,diag

√
λnU

∗, then BB∗ = A.
Property 8:
Property 9:

Jordan Form. The ultimate canonical form under general similarity transformation is the Jordan form.

Hilbert Space. Let S be a complex vector space (or linear space), endowed with an inner product 〈x, y〉 ∈ C

such that for all x, y, z ∈ S and a ∈ C,

• (linearity) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉
• (homogeneity) 〈x, ay〉 = a〈x, y〉, a ∈ CC.

• (skew symmetry) 〈x, y〉 = 〈y, x〉
• (positivity) 〈x, x〉 is real and 〈x, x〉 ≥ 0 with equality iff x = 0

34 CHAPTER 22. QUANTUM COMPLEXITY

There is an asymmetry in the two arguments of the inner product: it follows from the above axioms that

〈ax, y〉 = 〈y, ax〉 = a〈y, x〉 = a〈x, y〉.
How does such inner products arise? Suppose H is a matrix and we define 〈x, y〉 to be x∗Hy. Linearity and

homogeneity are obvious: x∗H(y + z) = (x∗Hy) + (x∗Hz) and x∗H(ay) = a(x∗Hy). If H is Hermitian then skew
symmetry holds: 〈y, x〉 = (y∗Hx)∗ = x∗H∗y = x∗Hy = 〈x, y〉. It follows from theorem 12 that if H is positive
definite then positivity also holds. The simplest case is to choose H to be the identity matrix I.

The norm ‖x‖ of x ∈ S is defined to be
√〈x, x〉. An infinite sequence x = (x1, x2, . . . , xk, . . .) is Cauchy if

for every ε > 0 there is some k such that for all i, j ≥ k, ‖xi − xj‖ < ε. The limit of x is the element x0 ∈ S such
that ‖xk − x0‖ → 0 as k → ∞ (clearly, x0 is unique). The space S is complete if every Cauchy sequence has a
limit. A Hilbert space is a complex vector space S with an inner product and norm as defined, and which is
complete. The literature sometimes require Hilbert space to be infinite dimensional; for our limited purposes, we
will actually assume S is finite dimensional. The infinite dimensional setting is somewhat more complicated. For
instance, in the finite dimensional setting, if an operator A satisfies A∗A = I (i.e., it is unitary), then AA∗ = A∗A.
This property may fail in the infinite dimensional setting.

Duality. For each x ∈ S we obtain a linear function fx : S → C where fx(y) = 〈x|y〉:
fx(cy) = cfx(y), fx(y + z) = fx(y) + fx(z).

The function fx is also continuous where the underlying topology on S is given by the metric d(x, y) = ‖x − y‖.
Conversely, if φ : S → C is linear and continuous, there exists y ∈ S such that φ = fy. This duality between
elements of S and continuous linear functions on S gives rise to the |x〉 (this is just x) and 〈y| notation (this is fy).
Moreover, 〈y||x〉 = fy(x) = 〈y, x〉.

Exercise

Exercise 22.5.1: Show that det(AB) = det(A) det(B).

Exercise 22.5.2: Show if AB = I then BA = I and B is unique. HINT: let the (i, j)-cofactor of A be (−1)i+j

times the determinant of the matrix A with the ith row and jth column deleted. Consider the matrix C
whose (i, j)th entry is the (j, i)-cofactor. How close is C to the inverse of A? Show that AC = CA.

Exercise 22.5.3: Show a positive definite matrix that is not Hermitian.

Exercise 22.5.4: Let Cij denote the (i, j)-cofactor of A, defined to be (−1)i+j times the determinant of A after
the i-th row and j-th column is deleted. Assume the following fact: for all i, det(A) =

∑n
j=1 aijCij where

aij = (A)ij .
(i) Prove that if det(A) 6= 0 then there existsB such thatAB = BA = I. HINT: Consider the “adjoint” adj(A)
of a matrix A where the (i, j)-th entry of adj(A) is the (j, i)-cofactor Cji (note the transposed subscripts).
(ii) Assume AB = BA = I. Suppose AB′ = I or B′A = I for some other B′. Prove that B = B′. [From (i)
and (ii), we conclude that inverses are defined and unique whenever detA 6= 0.

Exercise 22.5.5: Consider n× n matrices with complex entries which are either orthogonal or unitary.
(i) If n = 1, what do these matrices look like?
(ii) If n = 2, what do these matrices look like?

Exercise 22.5.6: Let λ1, . . . , λk be distinct eigenvalues of A and for i = 1, . . . , k, Bi is a set of linearly independent
vectors of the invariant subspace Eλi . Then the set B = ∪ki=1Bi is linearly independent.

Exercise 22.5.7: (SVD) The singular value decomposition (SVD) of an m × n matrix A is A = UΣV where
U ∈ Cm×m and V ∈ Cn×n are both unitary, and Σ is diagonal. The diagonal entries of Σ are called the
singular values of A. Show that every A has a SVD. Further, up to complex signs and ordering of the
singular values in Σ, the columns of U and rows of V are unique.

Exercise 22.5.8: A polynomial q(z) is a minimal polynomial for a matrix A if q(A) = 0 and q has minimal
degree.
(i) Show that q(z) divides the characteristic polynomial of A.
(ii) Characterize the matrices A ∈ C

n×n such that the minimal polynomial of A is zn

End Exercise

Bibliography

[1] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Wein-
furter. Elementary gates for quantum computation. Phys. Rev. A, 52(5):3457–3467, 1995.

[2] D. Beckman, A. N. Chari, S. Devabhakturi, and J. Preskill. Efficient networks for quantum factoring. Phy.
Rev. A, 54(2):1034–1063, 1996.

[3] P. Benioff. The computer as a physical system: A macroscopic quantum mechanical Hamiltonian model of
computers as represented by Turing machines. J. Stat. Phys., 22(5):563–590, 1980.

[4] P. Benioff. Quantum mechanical Hamiltonian models of Turing machines. J. Statist. Phys., 29:515–546, 1982.

[5] P. Benioff. Quantum mechanical Hamiltonian models of Turing machines that dissipate no energy. Phys.
Review Letters, 48:1581–1585, 1982.

[6] P. Benioff. Quantum ballistic evolution in quantum mechanics: Applications to quantum computers. Phy.
Rev. A, 54(2):1106–1123, 1996.

[7] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Develop., 17:525ff, 1973.

[8] C. H. Bennett. Notes on the history of reversible computation. IBM J. Research and Develop., 32:16–23, 1988.

[9] C. H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Computing, 18:766–776, 1989.

[10] C. H. Bennett and P. W. Shor. Quantum information theory. IEEE Trans. Info. Theory, 44:2724–2742, 1998.

[11] E. Bernstein and U. Vazirani. Quantum complexity theory. Proc. ACM Symposium on Theory of Computing,
25:11–20, 1993.

[12] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical Review Letters, 74(20):4091ff,
1995.

[13] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proc. Royal Soc. London,
A, 454:339–354, 1998.

[14] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Royal
Soc. London, A, 400(97–117), 1985.

[15] D. Deutsch. Quantum computational networks. Proc. Royal Soc. London, A, 439:553–558, 1992.

[16] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Royal Soc. London, A,
439(553–558), 1992.

[17] R. P. Feynman. Quantum mechanical computers. Foundations of Physics, 16(6):507–531, 1986. Reprinted
from Opt.New Vol.11, 11(1985).

[18] E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theor. Phys., 21:219–253, 1982.

[19] Y. Lecerf. Machines de Turing réversibles. récursive insolubilté en n ∈ N de l’équation u = θnu, oú θ est un
isomorphisme de codes. C. R. Acad. Fran caise Sci., 257:2597–2600, 1963.

[20] C. Monroe, D. Meekhof, B. King, W. Itano, and D.J.Wineland. Demonstration of a universal quantum logic
gate. Physical Review Letters, 75:4714ff, 1995.

35

36 BIBLIOGRAPHY

[21] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University
Press, 2000.

[22] M. Raizen, J. Gilligan, J. Bengquist, W. Itano, and D. Wineland. Ionic crystals in a linear paul trap. Phy.
Rev. A, 45:6493ff, 1992.

[23] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-
puter. SIAM J. Computing, 26(5):1484–1509, 1997.

[24] T. Toffoli. Reversible computing. In J. de Bakker and J. van Leeuwen, editors, Proc. 7th Int. Colloquium on
Automata, Languages and Programming, pages 632–644, New York, 1980. Springer. Lecture Notes in Computer
Science, vol.84.

