
19.4. SOME APPLICATIONS 9

Exercise 19.3.2: Let A ⊆ N be any set. Let χA = b0b1b2 · · · be the ω-string such that bi = 1 iff i ∈. Write
χA[i : j] for bibi+1 · · · bj , and χA[j] for χA[0 : j].
(i) For all recursive A, there exists a constant c = c(A) such that K ′(χA[n]) ≤ c.
(ii) For all r.e. A, there is a constant c = c(A) such that K ′(χA[n]) ≤ `(n) + c.

End Exercise

19.4 Some Applications

Kolmogorov Complexity has many applications, typically in lower bound proofs. For instance, in showing the
existence of “random” or “hard” instances in a suitable class. Such arguments amounts to a sophisticated form
of counting, and are especially amenable in the Kolmogorov Complexity framework. The advantage of such a
framework is often conciseness (since the basic facts of Kolmogorov Complexity can be taken as given). Having a
single framework to approach a variety of problems also a source of satisfaction.

In such applications, we will be handling general objects (Turing machines, graphs, crossing sequences, etc) as
arguments to our Kolmogorov Complexity function K(x|y). For instance, if G is a graph we must assume some
encoding of G as a number denoted 〈G〉. Instead of writing K(〈G〉), we will freely write K(G). In general, for
any kind of object X there is an implicit encoding 〈X〉. We may need to handle a seqeuence X1, X2, . . . , Xm

of objects, and thus need an encoding 〈X1, . . . , Xm〉. Instead of writing K(〈X〉|〈X1, . . . , Xm〉), we simply write
K(X |X1, . . . , Xm). Furthermore, we will write `(X), `(X1, . . . , Xm) for the length of these encodings. Another
notational device is to write (X |Y) (read ”X given Y ” instead of 〈X,Y 〉. This is useful for the conditioning
interpretation of arguments.

19.4.1 Crossing Sequences

We revisit the crossing sequence arguments in Chapter 2, Section 10. Throughout the following discussion, let M
be a nondeterministic multitape Turing machine accepting the binary palindromes, Lpal = {x ∈ {0, 1}∗ : x = xR}.
Let M accept in time-space (t, s). In Chapter 2, it was shown that

t(n)s(n) = Ω(n2).

We now give a proof based on Kolmogorov Complexity, but assuming that M is a deterministic machine.
Recall that a storage configuration Cj is like a configuration except that the input tape contents and input

head position are omitted. If a configuration is 〈q, wi, ni〉ki=0, then the corresponding storage configuration is just
〈q, wi, ni〉ki=1. If π is an accepting computation path of M on an input x of length n, and i = 0, . . . , n, then an
i-crossing sequence relative to π is S = (C1, . . . , Cm) where Cj (j = 1, . . . ,m) is the storage configuration
in π when the input head of M crosses from cell i to cell i + 1 for the (j + 1)/2-th time (assuming odd j) or
from cell i+ 1 to cell i for the (j/2)-th time (assuming even j). Each Cj can be represented by a string of length
O(lg |Q| + s(3n)) = OM (s(3n)), where Q is the state set of M . Since |S| = m, we have

`(S) = O(ms(n)). (13)

We may also assume that M always returns its input head to position 0 before accepting, and this means that we
only need consider crossing sequence of even length m = |S|.

Lemma 10 For any y, there exists There exists x of length n such that for all i = dn/3e , . . . , n, K(xi|y) ≥
n/3 − 4`(n). Here xi is prefix of x of length i.

Proof. By incompressibility (Theorem 6), there exists x of length n such that K(x|〈M,n〉) ≥ n. Let U be the
reference machine for K. Consider a TM N which, given (〈w, z〉|y), outputs U(z|y)w. So, if z is a U -program for
xi given y, and xiw = x then 〈w, z〉 is N -program for x given y. Since `(〈w, z〉) ≤ `(z) + `(w) + 2`(`(w)) + 1 and
`(w) = n− i, we obtain

KN(x|y) ≤ K(xi|y) + (n− i) + 2`(n− i) + 1 ≤ K(xi|y) + n/3 + 3`(n)

provided `(n) ≥ 1. By invariance,

n ≤ K(x|y) ≤ KN (x|y) + C ≤ K(xi|y) + 2n/3 + 4`(n)

10 CHAPTER 19. KOLMOGOROV COMPLEXITY

provided `(n) ≥ C. Thus K(xi|y) ≥ n/3 − 4`(n), as claimed. Note that C depends on N and K, but not on
M,n, y, x. Q.E.D.

We give two related definitions:
(A) A sequence S of storage configurations is called an (M, i)-sequence if there exists an accepting computation
path π of M on some x where |x| ≥ 2i, and S is an i-crossing sequence relative to π. Furthermore, the prefix xi of
x of length |xi| = i is called a witness for S.
(B) If S is any sequence of storage configurations and w a word, we say (w, S) is compatible iff the following
Turing machine N accepts (w, S). On input (〈w, S〉|〈M〉), N will simulate M on input w “modulo S”. This means
that, as long as the input head of M does read past the end of w, the simulation is normal. Let S = (C1, . . . , Cm),
m even. Immediately after the jth time (j = 1, 2, . . . ,m/2) when M moves its input head from position |w| = i to
position i + 1, N will check to see if the current storage configuration of M is equal to C2j−1. If not, N rejects.
Otherwise, N replaces the current storage configuration with C2j , and continues its simulation with input head at
position i. After Cm has been installed in this manner, N accepts 〈w, S〉 iff M goes on to accept its input without
ever crossing to cell i+ 1 again.

Lemma 11 Let S be an (M, i)-sequence.
(i) There is a unique w of length i such that (w, S) is compatible.
(ii) There is a unique witness of length i for S.
(iii) If w is the witness for S then K(w|M) ≤ `(S) + 3`(|w|).

Proof.
(i) By definition of (M, i)-sequence, S has a witness w of length i. It is also clear that (w, S) is compatible. Next,
for any w′ of length i, we claim that if (w′, S) is compatible then w = w′. To see this, note that since w is a witness,
there is a palindrome v such that S is the |w|-crossing sequence relative to π, where π is the accepting computation
of M on wvwR, It follows from the compatibility of (w′, S) that M also accepts w′vwR. This means w′vwR is a
palindrome and hence w′ = w.
(ii) We know that (w, S) is compatible when w is a witness of S. From part (i), there is a unique u of length i such
that (u, S) is compatible. We conclude that any witness of length i for S must be equal to this unique u.
(iii) Consider the Turing machine T that on input (〈i, S〉|〈M〉) will generate each string w of length i in turn. For
each w, T will check if (w, S) is compatible (using N above). If so, T outputs w. If not, T tests the next string of
length i. It follows that 〈|w|, S〉 is a T -program for w given M . Hence

KT (w|M) ≤ `(|w|, S) ≤ `(S) + 2`(|w|).

By invariance, K(w|M) ≤ `(S) + 2`(|w|) + C ≤ `(S) + 3`(|w|), assuming `(|w|) ≥ C, as desired. Note that C
depends on T , and hence on N , but does not depend on M or w. Q.E.D.

Theorem 12 For all deterministic M that accepts Lpal in time-space (t(n), s(n)), and for all n ∈ N sufficiently
large, there is a constant C > 0 such that t(n)s(n) ≥ Cn2.

Proof. By Lemma 10, there is an x of length n such that K(xi|M,n) ≥ n/3 − 4`(n) for all i ≥ dn/3e. Let Si
be the i-crossing sequence for the accepting computation path of M on input x. By Lemma 11(iii), for i ≤ n/2,
K(xi|M) ≤ `(Si) + 3`(n). Hence `(Si) ≥ n/3 − 7`(n). If the length of Si is ti then `(Si) = Ctis(n)) where C
depends on M (see (13)). Summing over all i = dn/3e , . . . , bn/2c, we obtain

t(n)s(n) ≥
bn/2c∑
i=dn/3e

tis(n)

≥
∑
i

C`(Si)

≥ C
∑
i

(n
3
− 7`(n)

)
= Ω(n2).

Q.E.D.

