(i) For all recursive A, there exists a constant c = c(A) such that $K'(\chi_A[n]) \leq c$.

(ii) For all r.e. A, there is a constant c = c(A) such that $K'(\chi_A[n]) \leq \ell(n) + c$.

END EXERCISE

19.4 Some Applications

Kolmogorov Complexity has many applications, typically in lower bound proofs. For instance, in showing the existence of "random" or "hard" instances in a suitable class. Such arguments amounts to a sophisticated form of counting, and are especially amenable in the Kolmogorov Complexity framework. The advantage of such a framework is often conciseness (since the basic facts of Kolmogorov Complexity can be taken as given). Having a single framework to approach a variety of problems also a source of satisfaction.

In such applications, we will be handling general objects (Turing machines, graphs, crossing sequences, etc) as arguments to our Kolmogorov Complexity function K(x|y). For instance, if G is a graph we must assume some encoding of G as a number denoted $\langle G \rangle$. Instead of writing $K(\langle G \rangle)$, we will freely write K(G). In general, for any kind of object X there is an implicit encoding $\langle X \rangle$. We may need to handle a sequence X_1, X_2, \ldots, X_m of objects, and thus need an encoding $\langle X_1, \ldots, X_m \rangle$. Instead of writing $K(\langle X \rangle | \langle X_1, \ldots, X_m \rangle)$, we simply write $K(X|X_1, \ldots, X_m)$. Furthermore, we will write $\ell(X), \ell(X_1, \ldots, X_m)$ for the length of these encodings. Another notational device is to write (X|Y) (read "X given Y" instead of $\langle X, Y \rangle$. This is useful for the conditioning interpretation of arguments.

19.4.1 Crossing Sequences

We revisit the crossing sequence arguments in Chapter 2, Section 10. Throughout the following discussion, let M be a nondeterministic multitape Turing machine accepting the binary palindromes, $L_{pal} = \{x \in \{0,1\}^* : x = x^R\}$. Let M accept in time-space (t, s). In Chapter 2, it was shown that

$$t(n)s(n) = \Omega(n^2).$$

We now give a proof based on Kolmogorov Complexity, but assuming that M is a deterministic machine.

Recall that a storage configuration C_j is like a configuration except that the input tape contents and input head position are omitted. If a configuration is $\langle q, w_i, n_i \rangle_{i=0}^k$, then the corresponding storage configuration is just $\langle q, w_i, n_i \rangle_{i=1}^k$. If π is an accepting computation path of M on an input x of length n, and $i = 0, \ldots, n$, then an *i*-crossing sequence relative to π is $S = (C_1, \ldots, C_m)$ where C_j $(j = 1, \ldots, m)$ is the storage configuration in π when the input head of M crosses from cell i to cell i + 1 for the (j + 1)/2-th time (assuming odd j) or from cell i + 1 to cell i for the (j/2)-th time (assuming even j). Each C_j can be represented by a string of length $O(\lg |Q| + s(3n)) = O_M(s(3n))$, where Q is the state set of M. Since |S| = m, we have

$$\ell(S) = O(ms(n)). \tag{13}$$

We may also assume that M always returns its input head to position 0 before accepting, and this means that we only need consider crossing sequence of even length m = |S|.

LEMMA 10 For any y, there exists There exists x of length n such that for all $i = \lceil n/3 \rceil, \ldots, n$, $K(x_i|y) \ge n/3 - 4\ell(n)$. Here x_i is prefix of x of length i.

Proof. By incompressibility (Theorem 6), there exists x of length n such that $K(x|\langle M, n \rangle) \geq n$. Let U be the reference machine for K. Consider a TM N which, given $(\langle w, z \rangle | y)$, outputs U(z|y)w. So, if z is a U-program for x_i given y, and $x_iw = x$ then $\langle w, z \rangle$ is N-program for x given y. Since $\ell(\langle w, z \rangle) \leq \ell(z) + \ell(w) + 2\ell(\ell(w)) + 1$ and $\ell(w) = n - i$, we obtain

$$K_N(x|y) \le K(x_i|y) + (n-i) + 2\ell(n-i) + 1 \le K(x_i|y) + n/3 + 3\ell(n)$$

provided $\ell(n) \ge 1$. By invariance,

$$n \le K(x|y) \le K_N(x|y) + C \le K(x_i|y) + 2n/3 + 4\ell(n)$$

provided $\ell(n) \geq C$. Thus $K(x_i|y) \geq n/3 - 4\ell(n)$, as claimed. Note that C depends on N and K, but not on M, n, y, x. Q.E.D.

We give two related definitions:

(A) A sequence S of storage configurations is called an (M, i)-sequence if there exists an accepting computation path π of M on some x where $|x| \ge 2i$, and S is an *i*-crossing sequence relative to π . Furthermore, the prefix x_i of x of length $|x_i| = i$ is called a witness for S.

(B) If S is any sequence of storage configurations and w a word, we say (w, S) is **compatible** iff the following Turing machine N accepts (w, S). On input $(\langle w, S \rangle | \langle M \rangle)$, N will simulate M on input w "modulo S". This means that, as long as the input head of M does read past the end of w, the simulation is normal. Let $S = (C_1, \ldots, C_m)$, m even. Immediately after the *j*th time $(j = 1, 2, \ldots, m/2)$ when M moves its input head from position |w| = i to position i + 1, N will check to see if the current storage configuration of M is equal to C_{2j-1} . If not, N rejects. Otherwise, N replaces the current storage configuration with C_{2j} , and continues its simulation with input head at position *i*. After C_m has been installed in this manner, N accepts $\langle w, S \rangle$ iff M goes on to accept its input without ever crossing to cell i + 1 again.

LEMMA 11 Let S be an (M, i)-sequence.

(i) There is a unique w of length i such that (w, S) is compatible.

(ii) There is a unique witness of length i for S.

(iii) If w is the witness for S then $K(w|M) \leq \ell(S) + 3\ell(|w|)$.

Proof.

(i) By definition of (M, i)-sequence, S has a witness w of length i. It is also clear that (w, S) is compatible. Next, for any w' of length i, we claim that if (w', S) is compatible then w = w'. To see this, note that since w is a witness, there is a palindrome v such that S is the |w|-crossing sequence relative to π , where π is the accepting computation of M on wvw^R . It follows from the compatibility of (w', S) that M also accepts $w'vw^R$. This means $w'vw^R$ is a palindrome and hence w' = w.

(ii) We know that (w, S) is compatible when w is a witness of S. From part (i), there is a unique u of length i such that (u, S) is compatible. We conclude that any witness of length i for S must be equal to this unique u.

(iii) Consider the Turing machine T that on input $(\langle i, S \rangle | \langle M \rangle)$ will generate each string w of length i in turn. For each w, T will check if (w, S) is compatible (using N above). If so, T outputs w. If not, T tests the next string of length i. It follows that $\langle |w|, S \rangle$ is a T-program for w given M. Hence

$$K_T(w|M) \le \ell(|w|, S) \le \ell(S) + 2\ell(|w|).$$

By invariance, $K(w|M) \le \ell(S) + 2\ell(|w|) + C \le \ell(S) + 3\ell(|w|)$, assuming $\ell(|w|) \ge C$, as desired. Note that C depends on T, and hence on N, but does not depend on M or w. Q.E.D.

THEOREM 12 For all deterministic M that accepts L_{pal} in time-space (t(n), s(n)), and for all $n \in \mathbb{N}$ sufficiently large, there is a constant C > 0 such that $t(n)s(n) \ge Cn^2$.

Proof. By Lemma 10, there is an x of length n such that $K(x_i|M,n) \ge n/3 - 4\ell(n)$ for all $i \ge \lceil n/3 \rceil$. Let S_i be the *i*-crossing sequence for the accepting computation path of M on input x. By Lemma 11(iii), for $i \le n/2$, $K(x_i|M) \le \ell(S_i) + 3\ell(n)$. Hence $\ell(S_i) \ge n/3 - 7\ell(n)$. If the length of S_i is t_i then $\ell(S_i) = Ct_is(n)$) where C depends on M (see (13)). Summing over all $i = \lceil n/3 \rceil, \ldots, \lceil n/2 \rceil$, we obtain

$$t(n)s(n) \geq \sum_{i=\lceil n/3\rceil}^{\lfloor n/2 \rfloor} t_i s(n)$$

$$\geq \sum_i C\ell(S_i)$$

$$\geq C \sum_i \left(\frac{n}{3} - 7\ell(n)\right)$$

$$= \Omega(n^2).$$

Q.E.D.