
Chapter 19

Kolmogorov Complexity

April 24, 2002

19.1 Introduction

Kolmogorov complexity has intellectual roots in the areas of information theory, computability theory and prob-
ability theory. Despites its remarkably simple basis, it has some striking applications in Complexity Theory. The
subject was developed by the Russian mathematician Andrei N. Kolmogorov (1903–1987) as an approach to the
notion of random sequences and to provide an algorithmic approach to information theory [1]. A similar theory was
described by Ray J. Solomonoff (1926–) in his study of inductive inference [5, 6]. For a comprehensive treatment
of this subject, including the history of this subject, we refer to the excellent book of Li and Vitányi [4].

We give some intuitions that point to Kolmogorov complexity. Consider the following binary strings:

x0 = 0000, 0000, 0000, 0000, . . .
x1 = 1010, 1010, 1010, 1010, . . .
x2 = 0110, 1010, 0010, 1000, . . .

(The commas are just a visual aid for parsing the strings). If these strings are being continued, we might ask
whether the next bit can be predicted based on the first 16 bits shown. For instance, a natural guess is that the
17th bit of xi is i for i = 0, 1. It is less obvious1 what ought to be the next bit in x2. This question leads to
predictive theories about strings from examples, or more generally, the problem of inductive inference.

We can also ask for the “shortest descriptions” of strings such these. Thus x0 might be described as “a string
of zeros of lenghth 12”. If x0 is considered an infinite string, we want the shortest description of an extension of
the first 12 bits. This might be “a string of all 0’s”. If K(x) is the length of the shortest description of x (within
some suitable formalism), then we can interprete K(x) as the “information content” of x. One can further view
those strings x where K(x) is approximately |x| to be “random”. This makes connection with the theory of random
strings. Kolmogorov complexity is essentially the study of the function K(x). In the rest of this introduction, we
provide some background concepts and unifying notations.

Bit Strings and Natural Numbers. Unless otherwise noted, “strings” shall mean bit strings and “numbers”
shall mean natural numbers. We interchangeably view a bit string x ∈ {0, 1}∗ as a number. Let ε denote the
empty string, and |x| denote the length of x. Note that xy can mean concatenation (if x, y are strings) or product
(if x, y are numbers). Similarly, constants such as 0, 1, 10 can refer to strings or numbers unless the context makes
this clear. Because of such ambiguities, it is important to always distinguish between strings and numbers. To
facilitate the transformations between the two domains, we introduce the bijection 〈·〉 : {0, 1}∗ → N where the
string s = bk−1bk−2 · · · b1b0 is mapped to n ∈ N where

n =
k−1∑
i=0

(1 + bi)2i = 2k − 1 +
k−1∑
i=0

bi2i. (1)

Thus s is just the dyadic notation for n, and we write 〈s〉 = n. We alse define the length of n = 〈s〉 to be k.
Setting the bi’s to all zeros or all ones in (1), we obtain

2k − 1 ≤ n ≤ 2(2k − 1)
1It is the characteristic sequence of the prime numbers (the nth bit is 1 iff n is prime).

1

2 CHAPTER 19. KOLMOGOROV COMPLEXITY

and hence k ≤ lg(n+ 1) < k + 1. This proves that the length function `(n) is logarithmic:

lg(n+ 1) − 1 < `(n) ≤ lg(n+ 1). (2)

For instance, 〈001〉 = 8 because 8 = 2 · 20 + 1 · 21 + 1 · 22. The first few values are

〈ε〉 = 0, 〈0〉 = 1, 〈1〉 = 2, 〈00〉 = 3, 〈01〉 = 4, 〈10〉 = 5, 〈11〉 = 6, 〈000〉 = 7, 〈001〉 = 8,

We also want a notation for the inverse bijection: if 〈s〉 = n, we will write n̂ for s. Thus 〈n̂〉 = n and `(n) = |n̂|.
[The “hat” in n̂ is intended to suggest a connection to the angle brackets in 〈s〉.]

In Kolmogorov complexity, we need another type of encodings of numbers as bit strings. A one-one function
E : N → {0, 1}∗ is called a self-limiting encoding or prefix-free code of N if n 6= m implies E(n) is not a
prefix of E(m). It is easy to see that E cannot be a bijection. Here is the simplest prefix-free code: for n ∈ N, let
E0(n) = 1n0. So E0(0) = 0, E0(1) = 10, E0(2) = 110, etc. We will generalize E0 to Ek for any k ∈ N. Define

Ek+1(n) :=Ek(`(n))n̂.

In particular, E1(n) = 1`(n)0n̂, and E2(n) = 1`(`(n))0 ̂̀(n)n̂. So E0(2) = 110 and E1(4) = E0(2)4̂ = 11001. Also
E2(4) = E1(2)4̂ = E0(1)2̂4̂ = 10101. The reader may also verify that Ek(0) = 0 for all k ≥ 0. The lengths of these
encodings are given by |E0(n)| = 1 + n, |E1(n)| = 1 + 2`(n) and |E2(n)| = 1 + 2`(`(n)) + `(n).

Pairing Functions. By a pairing function, we mean a one-one function from N2 to N. The standard pairing
function 〈·, ·〉′ is defined by

〈m,n〉′ :=m+
(
m+ n+ 1

2

)
. (3)

Thus 〈0, 0〉′ = 0, 〈0, 1〉′ = 1, 〈1, 0〉′ = 2, 〈0, 2〉′ = 3. For Kolmogorov complexity, we prefer to use a non-bijective
function, 〈·, ·〉 : N2 → N where

〈m,n〉 = 〈E2(m)n̂〉. (4)

Note that we need to convert the string E2(m)n̂ back to a number in (4). For instance, E2(4) = 10101 and
E2(1) = 0, and so

〈4, 1〉 = 〈E2(4)1̃〉 = 〈101010〉 = 1 + 2 · 2 + 4 + 2 · 8 + 16 + 2 × 32 = 105.

This function is a not bijection, but it has a key property which we will need:

`(〈m,n〉) = `(n) +O(m). (5)

So if m is fixed, we have `(〈m,n〉) = `(n) +Om(1).
For k ≥ 3, we can define the k-tupling function 〈·, · · · , ·〉k : Nk → N where

〈x1, . . . , xk〉k :=〈E2(x1)〈x2, . . . , xk〉〉.

Because we use “n̂” in (4), the notation 〈m,n〉 is not “selflimiting”. But it suffices for our purposes. For instance,
we could have defined a self-limiting version where 〈m,n〉 = 〈E2(m)E2n〉. In a certain sense, 〈x1, . . . , xk〉k is
self-limiting except for the last element of the k-tuple.

Encodings as numbers. We use angle brackets for the pairing function 〈m,n〉 as well as the dyadic notation
〈s〉. It is useful to remember this general notational convention: for any object X , we write 〈X〉 to denote a number
that represents X . Here X will range over a suitable class of mathematical objects (graphs, Turing machines, etc)
We will need such encodings for other classes objects later.

Computability. For any sets A and B, let [A → B] denote the set of all partial functions from A to B. Thus
[N → N] is the set of all number theoretic functions. Computability theory is traditionally formulated as the
study of the “computable” number theoretic functions. We take this viewpoint in Kolmogorov complexity. As in
Chapter 0, we assume a fixed universal Turing machine U (2) such that for each n ∈ N, if we place n̂ on the index
tape of U (2), the resulting Turing machine computes a partial function

φn : N → N

19.1. INTRODUCTION 3

assuming the dyadic notation for input and output. Thus

φ0, φ1, φ2, . . .

is the standard enumeration of all partial recursive functions. Sometimes we need partial recursive functions
of k arguments (k ≥ 3). In this case, we will a k-tupling function that is a bijection. Furthermore, φ : N → N is
converted to the k-ary function φ(k) : Nk → N via the equation

φ(k)(x1, . . . , xk) = φ(〈x1, . . . , xk〉). (6)

We say φ(k) is partial recursive iff φ is partial recursive.
We remark that in Kolmogorov complexity, the use of simple Turing machines suffices. A further simplification

comes from the fact that we may assume that the tape alphabet is binary.

Information Theory. Following Shannon, we regard a “message source” X as a random variable taking values
in a finite set S = {x1, . . . , xn}. We have a probability distribution p = (p1, . . . , pn) where

∑n
i=1 pi = 1 and

Pr{X = xi} = pi ≥ 0 for all i = 1, . . . , n. The entropy H(X) of the source is defined by

H(X) =
n∑
i=1

pi lg(1/pi) = −
n∑
i=1

pi lg pi.

For example, if p = (1/2, 1/2) then H(X) = 1. Intuitively, on average, we need one bit to sent a message in S.
If p = (1/4, 3/4) the H(X) < 0.811 so that we need somewhat less than one bit in this case. It is not hard to
show that for any n, the entropy is maximized when each pi = 1/n in which case H(X) = lg n. If n = 2k then the
maximum entropy is k (we need k bits to send a message in S).

Let us motivate this definition: let I(X = xi) informally measure the “information” when we receive a message
X = xi. First, we expect I(X = xi) to vary inversely with pi. The message “I woke up this morning” has probability
close to 1 but the information content of this message is2 close to 0. Conversely, “I hit the first prize in the lottery”
has probability close to zero, but its information content is extremely high. One choice is I(X = xi) = 1/pi. But
this is not enough to ensure our next property, which is additivity of information: if X and Y are two independent
message sources, the information received from X and Y to be I(X = xi) + I(Y = yj). Both these properties are
satisfied if we define

I(X = xi) := lg(1/pi) = − lg(pi).

The base of the logarithm is not very important, but we choose lg = log2 since most modern communication devices
are binary. It follows that the above two properties hold. It is then a small step from this to the use of entropy
H(X) =

∑n
i=1 piI(X = xi) as a measure of the information content of X .

Suppose Y is a second source of information that takes values yj from some finite set. It is natural to define

H(XY) :=−
∑
i

∑
j

Pr{X = xi, Y = yj} lg(Pr{X = xi, Y = yj}).

We also consider “relative information”: how much information is conveyed by X = xi if we already know Y = yj?
Denote this quantity by I(X = xi|Y = yj), or I(xi|yj) for short. To avoid notational clutter in general, whenever
we write “xi” or “yj” in formulas, these are understood to be short hand for “X = xi” and “Y = yj” (respectively).
We shall define

I(xi|yj) := lg(1/Pr{xi|yj}).
It follows that H(X |yj) =

∑
i Pr{xi|yj}I(xi|yj) and H(X |Y) =

∑
j Pr{yj}H(X |yj). It is not hard to show that

H(X |Y) ≤ H(X).

We also have
H(XY) = H(X) +H(Y |X).

Hence, H(XY) ≤ H(X) +H(Y).
Note: Ziv-Lempel [2] gives a theory of compression of finite strings based on copying subsequences. See [7] for

a surprising application of this.

Exercise

2The information content is not exactly zero because it tells you that I have not been sleepless the whole of last night.

4 CHAPTER 19. KOLMOGOROV COMPLEXITY

Exercise 19.1.1: What is the dyadic notation for 2n? What numbers are represented by the dyadic notation 1n?
0n?

Exercise 19.1.2: Consider the prefix-free codes Ek(n).
(i) What is Ek(1) for all k ≥ 0?
(ii) What is Ek(20) for k = 0, 1, 2, 3?
(iii) What is n if E3(n) = 1100, 0000, 1000, 000 (a string of length 15)?
(iv) Determine the function fk(n) = |Ek(n)| for each k. The case k = 0, 1, 2 has been given.
(v) Define the function f∗(n) to be the limit of fk(n) as k → ∞. What can you say about this function?

Exercise 19.1.3: Let E : N → {0, 1}∗ be a self-limiting encoding. We know that E cannot be a bijection. Prove
lower bounds on |E(n)|.

Exercise 19.1.4: Prove that H(X) is maximized when pi = 1/n for i = 1, . . . , n.

Exercise 19.1.5: Consider the function D : N → N where D(n) = 1 if φn(n) ↑ and D(n) ↑ otherwise. Prove that
D is not partial recursive.

End Exercise

19.2 Kolmogorov Complexity

Let f : N → N be any partial function. The key concept to be investigated in Kolmogorov complexity is easily
defined as follows:

Kf(x) := min{`(z) : f(z) = x}.
If the set {z : f(z) = x} is empty, then Kf(x) = ∞ by definition.

But what does Kf (x) “mean”? We give three viewpoints. First, we may think of f as a decoder function:
so f(z) = x means z is the “code” and x is the “object” encoded by z. Alternatively, f is some compiler (or
computing hardware), and z is the software or program which outputs x when executed on the hardware. Finally,
f can be viewed as an interpreter and z is a “description” of x. The “descriptive complexity” of x is Kf(x), the
size of the smallest description of x.

Let us consider the third viewpoint. It may seem strange that we use natural numbers as “descriptions” for
other natural numbers. But recall that natural numbers are identified with bit strings, and bit string can be used
to encode any definite and representable object. For instance, let us view each bit string z as a digraph G(z) (in the
sense of graph theory). Then f can now be thought of as a function from {0, 1}∗ to the set of (finite) graphs. Thus
f can capture any an encoding of graphs. There are several well-known representation of digraphs in computer
science: (i) as a list of edges, (ii) as an adjacency list or (iii) as an adjacency matrix. Note that G(z) might well be
one of these representations. In any case, relative to G, we could define f to capture any of the representation (i),
(ii) or (iii).

Next, let
C ⊆ [N → N].

We say f : N → N is universal for C if f ∈ C and for all g ∈ C, there is a constant c = c(g) such that

Kf(x) ≤ Kg(x) + c

for all x ∈ N.

Lemma 1 If C = [N → N] then C does not have a universal function.

Proof. Pick any f ∈ C. To show that f is not universal, we construct another function g ∈ C as follows: For each
n ∈ N, pick some xn ∈ N such that Kf(xn) ≥ n and xn is different from xi for i < n. Such an xn exists because
we only need to pick xn outside the finite set {x0, . . . , xn−1} ∪ {f(z) : `(z) < n}. Define g(n) = xn. Then

Kg(xn) = `(n) ≤ n ≤ Kf(xn).

Since Kf(z) −Kg(z) ≥ n− `(n) is unbounded, we conclude that f is not universal for C. Q.E.D.

We next show that the same phenomenon cannot occur if C is the set of partial recursive functions. However,
we first generalize our definitions a little.

19.2. KOLMOGOROV COMPLEXITY 5

Conditional Kolmogorov Complexity. Let f ∈ [N → N]. For any x, y ∈ N, the conditional Kolmogorov
complexity of x given y (relative to f) is defined to be

Kf(x|y) := min{`(z) : f(〈y, z〉) = x}. (7)

The conditional Kolmogorov complexity function is a total function,

Kf : N × N → N ∪ {∞}.
If f(〈y, z〉) = x we call z a f-program for x given y. If, in addition, we have `(z) = Kf (x|y), then z is called the
minimal f-program for x given y. Thus, f is viewed as a programming language interpreter and f(〈y, z〉) = x
means that “the f -program z on input y will output x”.

In view of above definition, it is natural to write

f(z|y) := f(〈y, z〉) (8)

by inverting the order of the arguments. Thus, f(z|y) = x means that z an f -program for x given y.
The unconditional Kolmogorov complexity of x (relative to f) is given by Kf(x) :=Kf (x|0). If f(z|0) = x

then z is an (unconditional) f-program for x. This new definition of Kf (x) is an official replacement for the
previous one, although there is practically no difference between them in our main application (when f is universal).

Since we are interested in partial computable functions, whenM is a Turing machine that computes f ∈ [N → N],
we may write KM (x) instead of Kf (x).

We say function Φ ∈ [N → N] is universal if it is partial recursive, and for all partial recursive f , there is a
constant c = c(f) such that for all x, y ∈ N,

KΦ(x|y) ≤ Kf (x|y) + c.

Note that the previous definition of “universality” was relative to a set C; the new definition is similar, but with C
equal to the set of partial recursive functions. Furthermore, we now use conditional rather than absolute Kolmogorov
complexity. The starting point of Kolmogorov complexity is the following result from Kolmogorov.

Theorem 2 (Invariance) There is a universal function Φ.

Proof. We use the fact that there exists a partial recursive Φ with this property: for all n, y, z ∈ N,

Φ(〈y, 〈n, z〉〉) = φn(〈y, z〉).
We do not care about the value of Φ(x) if x is not of the form 〈〈n, z〉, y〉. We leave it as an exercise to construct a
simple Turing machine to compute Φ.

Fix n, x, y ∈ N. Let z be a minimal φn-program for x given y. This means φn(z|y) = x, by (7). Therefore 〈n, z〉
is a Φ-program for x given y, since Φ(〈y, 〈n, z〉〉) = φn(z|y) = x. Thus KΦ(x|y) ≤ `(〈n, z〉) = `(z) + On(1). This
proves that

KΦ(x|y) ≤ Kφn(x|y) +On(1)

. This inequality still holds if there is no φn-program for x given y, since Kφn(x|y) = ∞ in this case. Thus Φ is
universal. Q.E.D.

Based on this theorem, we can choose a fixed universal Φ and define the conditional Kolmogorov complexity
function K : N2 → N to be K(x|y) = KΦ(x|y). Let U be the Turing machine that computes Φ. We call Φ the
reference function and U the reference machine for K. A Φ-program for x (given y, etc) is simply called
a program for x (given y, etc). The unconditional Kolmogorov complexity function, still denoted K, is
K : N → N where Kφ(x) :=Kφ(x|0).

The invariance theorem tells us that if K ′(x|y) is defined by choosing another universal function Φ′, then
|K(x|y) −K ′(x|y)| ≤ c for some constant c. So K is unique up to an additive constant.

Example. We give a typical application of the Invariant Theorem. We want to show that

K(〈ww〉) ≤ K(〈w〉) +O(1) (9)

for all strings w. Suppose z is a Φ-program for w. Consider the Turing machine M that, on input z, simulates
Φ(z|0) until it halts with some output string w. Then M will duplicate the string w. If f is computed by M ,
we have just shown that Kf(〈ww〉) ≤ K(〈w〉). By the Invariance theorem, K(〈ww〉) ≤ Kf (〈ww〉) + Of (1), thus
proving (9).

6 CHAPTER 19. KOLMOGOROV COMPLEXITY

CONVENTION: In the above example, we should like to write K(ww) instead of K(〈ww〉), etc. In Kolmogorov
complexity terminologies, we shall henceforth freely interchange numbers m,n ∈ N with their dyadic notations
n̂ = v, m̂ = w ∈ {0, 1}∗. We shall write K(w) and K(w|v) instead of the tedious but correct K(〈w〉) and
K(〈w〉|〈v〉). Similarly, we speak of w being a f -program for v, etc.

We next prove a logarithmic upper bound on K(x|y).

Theorem 3 There is a constant c such that for all x, y ∈ N, K(x|y) ≤ `(x) + c.

Proof. Consider the simple Turing machineM that, on input of the form 〈y, z〉 will output z. Since 〈y, z〉 = 〈E2(y)ẑ〉,
the input string is actually E2(y)ẑ. So M simply has to erase the prefix E2(y), and leave ẑ on the tape. If f is the
function computed by M , then x is a program for x given y. Thus

Kf(x|y) = `(x).

The result then follows by the invariance theorem. Q.E.D.

The constant c in the preceding result depends on M but not on y. Since K(x) = K(x|0), we obtain:

Corollary 4 There is a constant c such that for all x ∈ N, K(x) ≤ `(x) + c.

Next, we show the connection between conditional and unconditional Kolmogorov complexity.

Theorem 5 (i) There is a constant c such that for all x, y ∈ N, K(x|y) ≤ K(x) + c.
(ii) For all y, there is a constant c = c(y) such that for all x ∈ N, K(x) ≤ K(x|y) + c.

Proof. Assume Φ is the universal function such that K = KΦ.
(i) Let M be the STM that on input 〈y, z〉, constructs 〈0, z〉 and simulates Φ on 〈0, z〉. If M computes the function
f , and z is a Φ-program for x, then z is a f -program for x given y. So Kf(x|y) ≤ K(x). The result follows from
the invariance theorem.
(ii) Similarly, we construct a STM N = N(y) that on input 〈0, z〉, simulates Φ on 〈y, z〉. If N computes the function
g, then Kg(x) ≤ K(x|y). Thus K(x) ≤ K(x|y) +ON (1) = K(x|y) +Oy(1). Q.E.D.

Incompressibility. An important theme in Kolmogorov complexity is compressibility of strings. Because of the
bijection 〈·〉 between numbers and strings, we may speak of “incompressible numbers”. For instance, instead of
saying that the “string 0n” is highly compressible, we will say that the number 〈0n〉 = 2n−1 is highly compressible.

Let c be any constant. A number n is said to be c-incompressible if K(n) ≥ `(n) − c. If c = 0, we simply
say n is incompressible. This goes back to a motivation in studying Kolmogorov complexity: random strings.
Kolmogorov intends incompressible strings to be a formalization of random strings. What is remarkable is that this
notion can even be defined for strings. For, it may appear that “randomness” can only be ascribed to ω-strings.

A trivial remark is that for any k ≥ 1 there are incompressible numbers of length k. This is because there are
≤ 2k − 1 minimal programs of length < k but there are 2k numbers of length k. Hence at least one number has
minimial program of length ≥ k. This is generalized to the following simple but important result:

Theorem 6 (Incompressibility) Let c ∈ N and A ⊆ N be a finite set. For any y ∈ N, the fraction of elements
x ∈ A such that K(x|y) ≥ blg |A|c − c is strictly more than 1 − 2−c.

Proof. Let |A| = m. The number of programs (conditioned on y) of length < blg(m)c − c is

blg(m)c−c−1∑
i=0

2i = 2blg(m)c−c − 1 ≤ m2−c − 1.

Therefore, the number of elements x ∈ A such that K(x|y) ≥ blg(m)c − c is ≥ m(1 − 2−c) + 1. Q.E.D.

When c = 0, this theorem says that there exists some x such that K(x|y) ≥ blg |A|c. Choosing c = 1, we
conclude that the majority of elements in A have minimal programs of length ≥ blg |A|c − 1.

Exercise

Exercise 19.2.1: Suppose C contain the identity function. Prove that if f is universal for C then f is surjective.

19.3. NON-RECURSIVENESS OF K 7

Exercise 19.2.2: Determine upper and lower bounds on the following functions.
(i) K(n|`(n))
(ii) K(2n)
(iii) K(〈n,m〉|m)
(iv) K(〈m,n〉|n)
(v) K(φn(n)) provided φn(n) ↓.

Exercise 19.2.3: Show some c such that:
(i) K(〈x, y〉) ≤ K(x) + 2`(K(x)) +K(y|x) + c.
(ii) K(φn(x)|y) ≤ K(x|y) + 2`(k) + c.
(iii) K(x|φn(y)) ≥ K(x|y) − 2`(k) − c.

Exercise 19.2.4: Let χ be an ω-string such that χ[i] = 1 iff i is prime (for i = 1, 2, 3, . . .). Thus χ = 0110, 1010, 0010, 1000, 101
Let χ[1 : n] be the prefix of χ of length n. Show that there is a constant c > 0 such that for all n,
K(χ[1 : n]|n)`c.

Exercise 19.2.5: Construct the simple Turing machine that computes the universal function Φ described in the
proof of the Invariance Theorem. Specifically, for all n, y, z ∈ N,

Φ(〈y, 〈n, z〉〉) = φn(〈y, z〉) = φn(z|y).

Exercise 19.2.6: (i) Determine the relationship between K(x) and K(〈E2(x)〉).
(ii) Determine K(x|〈E2(x)〉),K(〈E2(x)〉|x).

Exercise 19.2.7: Theorem 6 requires c ∈ N. Show a similar result when c ∈ R≥0.

Exercise 19.2.8: Two enumerations of the partial recursive functions {φn} and {φ′n} are recursively equivalent
if there are total recursive functions f, g such that for each n, φn = φ′f(n) and φ′n = φg(n). Prove that the
invariance theorem is still true if we replace the “standard enumeration” by an equivalent one.

End Exercise

19.3 Non-recursiveness of K

We have seen two properties of the function K(x): (a) K is unbounded. This is because among strings x of length
n, at least half of them satisfy K(x) > lg |x| − 1. (b) K is logarithmic in the sense that K(x) ≤ `(x) + c.

Another interesting property is “continuity”: there is a c such that for all x, h,

|K(x) −K(x+ h)| ≤ 2`(h) + c. (10)

To see this, if z is a program for x then we can construct a program z′ for x + h such that z′ modifies the output
of z by adding h to it. Moreover, `(z′) ≤ `(z) + 2`(h) + c. This proves (10).

We next show that K is non-recursive. Let us define µ : N → N via

µ(x) := min{K(y) : y ≥ x}.

We verify that

• µ is non-decreasing

• µ(x) is unbounded [since K is unbounded].

• µ is a lower bound function on K(x): µ(x) ≤ K(x) for all x.

• If f(x) is total, non-decreasing functions that is also a lower bound on K, then f(x) ≤ µ(x). In other words,
µ is the unique maximal function the lower bounds on K(x).

We shall show that µ is not recursive in a strong way.

8 CHAPTER 19. KOLMOGOROV COMPLEXITY

Theorem 7 Let φ be partial recursive function. If φ is non-decreasing and unbounded then µ(x) < φ(x) (i.o.).

Let us first deduce a corollary.

Corollary 8 If φ is total recursive, non-decreasing and unbounded, then φ is not a lower bound on K.

We return to the theorem.
Proof. By way of contradiction, assuming µ(x) ≥ φ(x)(ev.).

(1) Let A be the domain of φ. Hence A is r.e. and infinite. Then there is an infinite recursive subset B ⊆ A. Let
B = {x0, x1, x2, . . .} where xi < xi+1.
(2) Now define ψ : N → N so that ψ(x) = φ(xi) if xi ≤ x < xi+1. If x < x0, then let ψ(x) = 0. Thus ψ is
total recursive [pf: on input x, first determine i such that xi ≤ x < xi+1 and then output φ(xi).] Also, ψ is
non-decreasing since φ is non-decreasing. Observe that

ψ(x) ≤ µ(x) (i.o.)

since ψ(xi) = φ(xi) ≤ µ(xi) (ev.i).
(3) For a ∈ N, define

M(a) := max{xi : µ(xi) ≤ a},
F (a) := min{xi : ψ(xi) > a}.

Note that M(a) < F (a). This is because µ(M(a)) ≤ a < ψ(F (a)) ≤ µ(F (a)) but µ is non-decreasing.
(4) We have K(F (a)) > a since K(F (a)) = K(xi) (for some i) and K(xi) ≥ µ(xi) = ψ(xi) > a by definition of i.
(5) F is a recursive function (because ψ is recursive).
(6) We claim that for some c > 0, K(F (a)) ≤ `(a) + c for infinitely many a’s. It is sufficient, by the invariance
theorem, to show that KF (F (a)) ≤ `(a) for infinitely many a’s. For each z ∈ N, we choose a = 〈z, 0〉. Then
`(a) ≤ `(z). Moreover, F (a) = F (〈z, 0〉) implies that z is a F -program for F (a) relative to 0. Thus KF (F (a)) ≤
`(z) ≤ `(a), as desired.
(7) Finally, items (4) and (6) gives our desired contradiction:

a < K(F (a)) ≤ `(a) (i.o.).

Q.E.D.

Theorem 9 Let φ ∈ [N → N] with domain(φ) infinite. If φ(x) = K(x) (ev. x) then φ is not partial recursive.

Proof. Since domain(φ) is infinite and r.e., there exists a infinite recursive subset B ⊆ domain(φ). Define
ψ(m) := min{x ∈ B : K(x) ≥ m}. Then the function ψ is unbounded and recursive [use fact that K(x) = φ(x) if
x ∈ A (ev.)]. Moreover

K(ψ(m)) ≥ m (by definition of ψ) (11)

We now claim that for some c > 0,
K(ψ(m)) ≤ `(m) + c (i.o.). (12)

By the invariance theorem, it is sufficient to show Kψ(ψ(m)) ≤ `(m). But as in the proof of the previous theorem,
if m = 〈0, z〉 for some z (and this happens for infinitely many choices of m), then z is a ψ-program for φ(m) given
0. Thus Kψ(ψ(m)) ≤ `(z) ≤ `(m), proving (12). But (12) and (11) gives a contradiction. Q.E.D.

Length Conditioned Complexity. Theorem 7 fails if K(x) is replaced by “length conditioned Kolmogorov
complexity” K ′(x) :=K(x|`(x)). This is because K(x|`(x)), although still unbounded, will drop to a constant
complexity infinitely often. For example, if x = 〈0n〉 = 2n+1 − 1 then K(x|`(n)) = K(2n+1 − 1|n) = O(1). Thus
the corresponding lower bound function M(x) is bounded, and is recursive. The complexity K ′(x) is interesting
because we can view every string as holding two types of information: (1) its length and (2) its bit pattern. So
K ′(x) is an attempt to measure “pure” type (2) information.

Exercise

Exercise 19.3.1: Let K ′(x) be the length conditioned Kolmogorov complexity function. Show that K ′(x) ≥
K(x) −K(`(x)).

19.4. SOME APPLICATIONS 9

Exercise 19.3.2: Let A ⊆ N be any set. Let χA = b0b1b2 · · · be the ω-string such that bi = 1 iff i ∈. Write
χA[i : j] for bibi+1 · · · bj , and χA[j] for χA[0 : j].
(i) For all recursive A, there exists a constant c = c(A) such that K ′(χA[n]) ≤ c.
(ii) For all r.e. A, there is a constant c = c(A) such that K ′(χA[n]) ≤ `(n) + c.

End Exercise

19.4 Some Applications

Kolmogorov Complexity has many applications, typically in lower bound proofs. For instance, in showing the
existence of “random” or “hard” instances in a suitable class. Such arguments amounts to a sophisticated form
of counting, and are especially amenable in the Kolmogorov Complexity framework. The advantage of such a
framework is often conciseness (since the basic facts of Kolmogorov Complexity can be taken as given). Having a
single framework to approach a variety of problems also a source of satisfaction.

In such applications, we will be handling general objects (Turing machines, graphs, crossing sequences, etc) as
arguments to our Kolmogorov Complexity function K(x|y). For instance, if G is a graph we must assume some
encoding of G as a number denoted 〈G〉. Instead of writing K(〈G〉), we will freely write K(G). In general, for
any kind of object X there is an implicit encoding 〈X〉. We may need to handle a seqeuence X1, X2, . . . , Xm

of objects, and thus need an encoding 〈X1, . . . , Xm〉. Instead of writing K(〈X〉|〈X1, . . . , Xm〉), we simply write
K(X |X1, . . . , Xm). Furthermore, we will write `(X), `(X1, . . . , Xm) for the length of these encodings. Another
notational device is to write (X |Y) (read ”X given Y ” instead of 〈X,Y 〉. This is useful for the conditioning
interpretation of arguments.

19.4.1 Crossing Sequences

We revisit the crossing sequence arguments in Chapter 2, Section 10. Throughout the following discussion, let M
be a nondeterministic multitape Turing machine accepting the binary palindromes, Lpal = {x ∈ {0, 1}∗ : x = xR}.
Let M accept in time-space (t, s). In Chapter 2, it was shown that

t(n)s(n) = Ω(n2).

We now give a proof based on Kolmogorov Complexity, but assuming that M is a deterministic machine.
Recall that a storage configuration Cj is like a configuration except that the input tape contents and input

head position are omitted. If a configuration is 〈q, wi, ni〉ki=0, then the corresponding storage configuration is just
〈q, wi, ni〉ki=1. If π is an accepting computation path of M on an input x of length n, and i = 0, . . . , n, then an
i-crossing sequence relative to π is S = (C1, . . . , Cm) where Cj (j = 1, . . . ,m) is the storage configuration
in π when the input head of M crosses from cell i to cell i + 1 for the (j + 1)/2-th time (assuming odd j) or
from cell i+ 1 to cell i for the (j/2)-th time (assuming even j). Each Cj can be represented by a string of length
O(lg |Q| + s(3n)) = OM (s(3n)), where Q is the state set of M . Since |S| = m, we have

`(S) = O(ms(n)). (13)

We may also assume that M always returns its input head to position 0 before accepting, and this means that we
only need consider crossing sequence of even length m = |S|.

Lemma 10 For any y, there exists There exists x of length n such that for all i = dn/3e , . . . , n, K(xi|y) ≥
n/3 − 4`(n). Here xi is prefix of x of length i.

Proof. By incompressibility (Theorem 6), there exists x of length n such that K(x|〈M,n〉) ≥ n. Let U be the
reference machine for K. Consider a TM N which, given (〈w, z〉|y), outputs U(z|y)w. So, if z is a U -program for
xi given y, and xiw = x then 〈w, z〉 is N -program for x given y. Since `(〈w, z〉) ≤ `(z) + `(w) + 2`(`(w)) + 1 and
`(w) = n− i, we obtain

KN(x|y) ≤ K(xi|y) + (n− i) + 2`(n− i) + 1 ≤ K(xi|y) + n/3 + 3`(n)

provided `(n) ≥ 1. By invariance,

n ≤ K(x|y) ≤ KN (x|y) + C ≤ K(xi|y) + 2n/3 + 4`(n)

10 CHAPTER 19. KOLMOGOROV COMPLEXITY

provided `(n) ≥ C. Thus K(xi|y) ≥ n/3 − 4`(n), as claimed. Note that C depends on N and K, but not on
M,n, y, x. Q.E.D.

We give two related definitions:
(A) A sequence S of storage configurations is called an (M, i)-sequence if there exists an accepting computation
path π of M on some x where |x| ≥ 2i, and S is an i-crossing sequence relative to π. Furthermore, the prefix xi of
x of length |xi| = i is called a witness for S.
(B) If S is any sequence of storage configurations and w a word, we say (w, S) is compatible iff the following
Turing machine N accepts (w, S). On input (〈w, S〉|〈M〉), N will simulate M on input w “modulo S”. This means
that, as long as the input head of M does read past the end of w, the simulation is normal. Let S = (C1, . . . , Cm),
m even. Immediately after the jth time (j = 1, 2, . . . ,m/2) when M moves its input head from position |w| = i to
position i + 1, N will check to see if the current storage configuration of M is equal to C2j−1. If not, N rejects.
Otherwise, N replaces the current storage configuration with C2j , and continues its simulation with input head at
position i. After Cm has been installed in this manner, N accepts 〈w, S〉 iff M goes on to accept its input without
ever crossing to cell i+ 1 again.

Lemma 11 Let S be an (M, i)-sequence.
(i) There is a unique w of length i such that (w, S) is compatible.
(ii) There is a unique witness of length i for S.
(iii) If w is the witness for S then K(w|M) ≤ `(S) + 3`(|w|).

Proof.
(i) By definition of (M, i)-sequence, S has a witness w of length i. It is also clear that (w, S) is compatible. Next,
for any w′ of length i, we claim that if (w′, S) is compatible then w = w′. To see this, note that since w is a witness,
there is a palindrome v such that S is the |w|-crossing sequence relative to π, where π is the accepting computation
of M on wvwR, It follows from the compatibility of (w′, S) that M also accepts w′vwR. This means w′vwR is a
palindrome and hence w′ = w.
(ii) We know that (w, S) is compatible when w is a witness of S. From part (i), there is a unique u of length i such
that (u, S) is compatible. We conclude that any witness of length i for S must be equal to this unique u.
(iii) Consider the Turing machine T that on input (〈i, S〉|〈M〉) will generate each string w of length i in turn. For
each w, T will check if (w, S) is compatible (using N above). If so, T outputs w. If not, T tests the next string of
length i. It follows that 〈|w|, S〉 is a T -program for w given M . Hence

KT (w|M) ≤ `(|w|, S) ≤ `(S) + 2`(|w|).

By invariance, K(w|M) ≤ `(S) + 2`(|w|) + C ≤ `(S) + 3`(|w|), assuming `(|w|) ≥ C, as desired. Note that C
depends on T , and hence on N , but does not depend on M or w. Q.E.D.

Theorem 12 For all deterministic M that accepts Lpal in time-space (t(n), s(n)), and for all n ∈ N sufficiently
large, there is a constant C > 0 such that t(n)s(n) ≥ Cn2.

Proof. By Lemma 10, there is an x of length n such that K(xi|M,n) ≥ n/3 − 4`(n) for all i ≥ dn/3e. Let Si
be the i-crossing sequence for the accepting computation path of M on input x. By Lemma 11(iii), for i ≤ n/2,
K(xi|M) ≤ `(Si) + 3`(n). Hence `(Si) ≥ n/3 − 7`(n). If the length of Si is ti then `(Si) = Ctis(n)) where C
depends on M (see (13)). Summing over all i = dn/3e , . . . , bn/2c, we obtain

t(n)s(n) ≥
bn/2c∑
i=dn/3e

tis(n)

≥
∑
i

C`(Si)

≥ C
∑
i

(n
3
− 7`(n)

)
= Ω(n2).

Q.E.D.

19.5. ENUMERABLE REAL-VALUED FUNCTIONS 11

19.4.2 Formal Language Theory

Li and Vitánayi [3] showed that many basic results in formal language theory can be based on Kolmogorov com-
plexity. In particular, there are analogues of the pumping lemmas. Recall that the classical pumping lemmas
do not characterize regular languages. Only recently have pumping lemmas that characterize regular languages
been formulated, but they are quite involved. The Kolmogorov complexity versions of the pumping lemma do
characterize regular languages.

Exercise

Exercise 19.4.1: Obtain the lower bound on the time-space product complexity of palindromes as in the above
text, but allowing nondeterministic M .

End Exercise

19.5 Enumerable Real-valued Functions

We are interested in real-valued functions, and these shall be approximated by rational valued functions. In the
following, let f : N → R and g : N × N → Q.

The function g is said to be recursive if for some partial computable φn : N → N, we have that for all m,n ∈ N,
we have φ(m,n) = 〈σ, p, q〉 for some p, q ∈ N, q 6= 0 and σ ∈ {0, 1}, and

g(m,n) = (1 − 2σ)
p

q
.

We say the real-valued f is enumerable if there is a recursive function g as before such that g(m,n) is non-
decreasing in n and for all m,

f(m) = lim
n→∞ g(m,n).

Thus g(m,n) approximates f(m) from below. We say f is co-enumerable if −f is enumerable (so f is approxi-
mated by some computable g from above). Finally, say f is recursive if there is some recursive g such that for all
m,n ∈ N,

|f(m) − g(m,n)| < 1/n.

Lemma 13 Let f : N → R and

Bf :={〈n, σ, p, q〉 : n, p, q ∈ N, σ ∈ {0, 1}, (1− 2σ)p/q ≤ f(n)} ∈ N.

If Bf is r.e., then f is enumerable.

Proof. Construct g(m,n) as follows: g(m, 0) = (1 − 2σ)p/q where 〈m,σ, p, q〉 is the first value in an enumeration
of Bf whose first component is m. For n ≥ 1, let g(m,n) = (1 − 2σ)p/q where 〈m,σ, p, q〉 is the first value in an
enumeration of Bf whose first component is m and (1 − 2σ)p/q ≥ g(m,n− 1). Q.E.D.

Lemma 14 A real-valued function f is recursive if and only if it is enumerable and co-enumerable.

Proof. (⇒): Let g be recursive and |f(m) − g(m,n)| < 1/n for all n. Define gL(m,n) := max{g(m, i) − 1/i : i =
0, . . . , k}. Note that gL(m,n) ≤ f(m) and gL(m,n) is non-decreasing in n. Moreover f(m) = limn→∞ g(m,n). We
can similarly define an approximation gU (m,n) for f(m) from above.
(⇐): If gU and gL are upper and lower approximations for f , we define g(m,n) :=(gU (m,n′) + gL(m,n′))/2 where
n′ is the first number such that gU (m,n′) − gL(m,n′) ≤ 1/n. Q.E.D.

Exercise

Exercise 19.5.1:
(i) Define “halting function” HALT (m,n) = 1 if φm(n) ↓ and HALT (m,n) = 0 otherwise. Show that HALT
is not recursive.
(ii) Define the “halting set” H :={〈m,n〉 : φm(n) ↓} and show that it is r.e., but not recursive.
(iii) Define the “diagonal set” K :={m : φm(m) ↓} and show that it is r.e., but not recursive.

Exercise 19.5.2: Show that the characteristic function χK : N → {0, 1} of the diagonal set K (previous exercise)
is enumerable but not recursive.

End Exercise

12 CHAPTER 19. KOLMOGOROV COMPLEXITY

19.6 Resource-Bounded Complexity

The Kolmogorov complexity developed so far is based on static complexity complexity of Turing machines only.
Traditional complexity theory is based on dynamic resources such as time and space, which are a function of actual
computations. We now refine Kolmogorov complexity by considering such dynamic resource bounds. The resulting
theory is considerably more intricate.

Computational Model. We now take up the off-line multitape Turing machine model of chapter 2. However, to
keep the focus on number theoretic functions, [N → N], we shall view these machines as transducers, thus provide
each with a one-way output tape. The input and output tape alphabets are assumed to be {0, 1} but the work
tapes symbols could use any alphabet. We can specify such a Turing machine T by a sequence (k,m, r, δ) where k
is the number of work tapes, m is the number of work-tape symbols Zm = {0, 1, 2, . . . ,m− 1}, r is the number of
states Zr = {0, 1, . . . , r − 1} and δ is a sequence of tuples from the set

Zr × Zk+1
m × Zr × Zk+1

m × Zk+2
3 .

State 0 is the start state and state 1 is the accept state. Tape 0 is the input tape and tape k+1 is the output tape.
A tuple

〈q, a0, . . . , ak, q
′, b1, . . . , bk+1, d0, . . . , dk+1〉 ∈ δ

of δ is interpreted as an instruction: “if T is in state q and scanning ai’s on the input and work tapes, then the
next state is q′ and bi’s replaces the ai’s, and the ith head moves in the direction indicated by di.” Some of these
instructions are considered illegal – for instance, those tuples that cause the output head to move left, or when q
is the accept state (q = 1). The illegal instructions are just ignored when we use δ. The sequence (k,m, r, δ) is
represented as a bit string using any reasonable convention, and when this bit string is interpreted as a number
n, we say T is the nth Turing machine. We will write 〈T 〉 = n in this case. Note that some numbers n may not
represent any Turing machine according to our representation. In this case, by convention, n represents the null
machine that loops on every input. This gives us a fixed enumeration

T1, T2, T3 . . .

of Turing machines where 〈Tn〉 = n. We shall interprete each Tn as a deterministic Turing machine (so if more
than one instruction applies to a machine configuration, we assume the first instruction in δ is applied). If the
computation of Tn comes to a halt, we say it produces an output provided that final state is the accept state (state
1); otherwise it is said to produce no output. Another way to produce no output is to “loop” without halting.
Assuming the 2-adic notation for input and output, let

φn : N → N

be the number theoretic function computed by Tn. It is not hard to see that a function is partial recursive (recall
its definition as a function computed by a very simple Turing machine) iff it is equal to φn for some n. Time
and space used by Tn on any input is defined as usual (we focus on “running” complexity). For instance, for any
complexity function t, we say Tn runs in time t if, for any input of length n, Tn halts in t(n) steps. Of course, space
on the input and output tapes are not counted.

We come to the key definition: let t, s : R → R ∪ {∞} be complexity functions. Then we write

T t,sn (y) = x, (x, y ∈ N)

if Tn on input y outputs x within t(|x|) steps and uses ≤ s(|x|) space. Otherwise we write T t,sn (y) = ∞. Also, let

Kt,s
Tn

(x|y) := min{`(z) : T t,sn (〈y, z〉) = x}.

As usual, if y = 0, we may omit it to obtain the unconditional function Kt,s
Tn

(x). By an abuse of notation, if φ is
computed by Tn, we shall write

Kt,s
φ (x|y)

instead of Kt,s
Tn

(x|y). This is an abuse since time and space bounds are primarily associated with Turing machines.
For the following, we shall mostly work with time bounds only and the meaning of the notations “T tn(y) = x” and
“Kt

φ(x|y)” should be clear.
We need a technical lemma:

19.6. RESOURCE-BOUNDED COMPLEXITY 13

Lemma 15 On input string w, a 1-tape Turing machine can check if w = E2(n) for some n ∈ N in O(`(n)) steps
and space ``(n).

Proof. Recall that E2(n) = sñ = 1``(n)0˜̀nñ. Using ``(n) space and |s| steps, we can scan w to see that it contains
a prefix s of the form s = 1`(m)0m̃ for some m ∈ N. If this is false, we reject at once. Otherwise, w = ss′ for some
bit string s′ and it remains to verify that |s′| = m. To do this, we need to view m̃ (which is copied to our work
tape) as a 2-adic counter. We must repeatedly decrement this counter until the zero value. For each decrement, we
scan one more symbol of s′, and we accept iff the zero value is reached after all of s′ is scanned. We need to show
that the total time for this repeated decrement takes O(m) steps. This is a well-known “amortization argument”
(usually applied to binary counters). The result is similar for 2-adic counter: if `(m) = k, then we subdivide the
decrementing into k stages where the ith stage (i = 1, . . . , k) corresponds to the counter having exactly i bits.
Notice that there are at most 2i decrement steps in the ith stage. The ith stage takes

∑i
j=1 2j Turing machine

steps. Summing over k stages, the number of steps is

≤
k∑
i=1

i · 2k+1−i = O(2k).

But 2k = O(`(`(m)) = O(`(n). Q.E.D.

We have the following space-time bounded version of the Invariance theorem:

Theorem 16 Let s, t be complexity functions such that s(n) ≥ 1 and t(n) ≥ n. There exists a universal Turing
machine U such that for all n, there is a c ≥ 0 such that for all x, y ∈ N,

Kct lg t,s
U (x|y) ≤ Kt,s

Tn
(x|y) + c.

Proof. It is useful to first describe a simpler machine Ũ which can be modified to our desired U . Let Ũ be the
4-tape Turing machine that, on any input string w, checks that 〈w〉 = 〈y, 〈m, z〉〉 for some y,m, z ∈ N, and that
Tm is a 2-tape Turing machine; we say w is well-formed in this case. If w is ill-formed, Ũ will loop. Otherwise, Ũ
writes n̂ on tape 1 and 〈̂y, z〉 on tape 2, and begins to simulate Tm on input x̂, using tapes 3 and 4 as its worktape
and tape 2 to hold its input. The contents of tape 1 is to enable U simulate Tm. Finally, Ũ accepts iff Tm accepts.

Now let n be as given in the theorem. If Tn accepts within time t and space s, then the Hennie-Stearns tape
reduction result (chapter 2) says that there is an m = m(n) such that Tm is a 2-tape Turing machine with φm = φn
and Tm runs within time t′ = O(t lg t) and space s′ = O(s). Suppose T t,sn (〈y, z〉) = x for some z. [If no such z
exists, then result is trivially true.] We wish to claim that

Ũ t
′,s′(〈y, 〈m, z〉〉) = x.

This is not quite true, as we see.
Let us analyze the resources used by Ũ on input w = 〈y, 〈m, z〉〉. How much time and space does Ũ use before

it begins the actual simulation of Tm? Note that

w = E2(y)E2(m)ẑ.

So we can check well-formedness of w in O(|w|) steps using Om(1) space, by our preceding technical lemma. We
can further copy m̂ and ŷ, z (which are substrings of w) to tapes 1 and 2 while doing the checking. Similarly,
assuming that our encodings of a k-tape Turing machine begins with the string E2(k), we can verify that Tm is
a 2-tape Turing machine during this checking. So Ũ takes O(|w|) extra time steps and Om(1) space on tape 1.
Unfortunately, we cannot afford the extra space ŷ, z on tape 2. Therefore we modify Ũ to U where U does not use
tape 2 at all. In U , the simulated machine Tm takes its input “〈y, z〉” directly from the input tape of U . To do
this, it needs to skip the substring E2(m) in w = E2(y)E2(m)ẑ when reading the input tape. This is easy to do,
incurring Om(1) additional steps (when skipping) when simulating each step of Tm, and Om(1) additional space.
Finally, U uses Om(1) steps to simulate one step of Tm. Hence the time and space used by U on inputs of length
k = |w| is bounded by

t′′(k) :=Om(k + t′(k)), s′′(k) :=Om(s′(k) + 1).

This proves that U t
′′,s′′(〈y, 〈m, z〉〉) = x, and so

Kt′′,s′′
U (x|y) ≤ `(〈m, z〉).

14 CHAPTER 19. KOLMOGOROV COMPLEXITY

Assuming `(z) = Kt,s
Tm

(x|y), we conclude that

Kt′′,s′′
U (x|y) ≤ Kt,s

Tm
(x|y) +Om(1).

Finally choose c = c(n) such that t′′ ≤ ct lg t and s′′ ≤ c · s and Om(1) ≤ c. Q.E.D.

19.6.1 Alternative Approach.

[INCOMPLETE]
The above approach to complexity-bounded descriptions of a string x is based on the shortest program z that

can “generate” the target string x. An alternative is to ask for the shortest program z that can “recognize” the
target string x. Although this approach does not produce anything new in unbounded case, this is apparently
different when complexity bounds are imposed.

Let T1, T2, T2, . . . be the enumeration of multitape Turing machines as before. We now view each machine Tn
as an acceptor, and an input x is said to be accepted by Tn if Tn finally enters the accept state (state 1). The
output tape can now be ignored. Let ψn : N → {0, 1} be the partial function computed by Tn, where ψn(x) ↑ if it
does not halt, and otherwise ψn(x) = 1 or 0 depending on whether Tn accepts or not; We also call ψn a partial
recursive predicate. Thus we get an enumeration of all the partial recursive predicates

ψ1, ψ2, ψ3,

We define the predicate
T t,sn (x, y, z), (x, y, z ∈ N) (14)

to be be true provided, for all y ∈ N, (a) if y = x, Tn accepts y within time t(|y|) and space s(|y|), and (b) if y 6= x,
Tn does not accept y within running time t(|y|) and space s(|y|). Then

KDt,s
Tn

(x|y) := min{`(z) : T t,sn (〈y, z〉) = x}.

As usual, if y = 0, we may omit it in this notation. By an abuse of notation, if φ is computed by Tn, we shall write

Kt,s
φ (x|y)

instead of Kt,s
Tn

(x|y).
Another variant definition of (14) is as follows: (a) on input y, Tn accepts iff x = y, and (b) if y = x, Tn accepts

within running time t(|x|) and space s(|x|),

Bibliography

[1] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems Inform. Trans-
mission, 1(1):1–7, 1965.

[2] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inform. THeory, IT-22:??, 1976.

[3] M. Li and P. M. B. Vitányi. A new approach to formal language theory by Kolmogorov complexity. SIAM J.
Comput., 24(2):398–=410, 1995.

[4] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov Complexity and its Applications. Springer-Verlag,
second edition, 1997.

[5] R. J. Solomonoff. A preliminary report on a general theory of inductive inference. Technical Report ZTB-141,
Rockford Research, Cambridge, Mass., November 1960.

[6] R. J. Solomonoff. A formal theory of inductive inference, parts 1 and 2. Information and Control, 7:1–22,
224–254, 1964.

[7] Y. Yacobi. Fast exponentiation using data compression. SIAM J. Comput., 28(2):700–703, 1998.

15

