Midterm Exam with SOLUTIONS

Answer all questions. This is an OPEN book, in-class exam. Please write ONLY in complete English sentences, even if they involve centered equations. Up to 15% of points are allotted for the clarity of your answer.

PROBLEM 1 (Short Questions) [10 points for each part]

Classify each of the following assertions as True or False or Unknown (T/F/U). Brief justification is needed to get any credit at all. If "Unknown", say why the relevant theorems don't yield a conclusion. You only need to know results from Chapter 2 in this problem, although you may also quote general results that you know.

(a) co- $NSPACE(3^n) \subseteq DSPACE(6^n)$.

(b) $NSPACE(\sqrt{\log n}) \subseteq DSPACE(\log n).$

(c) Let $\mu : 2^X \to 2^X$ be monotone. We define $A \subseteq X$ to be **big** if $\mu(A) \subseteq A$, and **small** if $A \subseteq \mu(A)$. Let $A^* \subseteq A$ be the union of all small sets, and $B^* \subseteq X$ be the intersection (not union) of all big sets. We know that A^* and B^* are fixed points of μ . If C is any fixed point of μ , then $B^* \subseteq C \subseteq A^*$.

(d) Let M be a dfa that accepts A. Then there is an nfa N that accepts the "reverse language" $A^R = \{w^R : w \in A\}$. Note that w^R is the reverse of w, given by $w^R[i] = w[n+1-i]$ where n = |w|.

SOLUTION:

(a) Unknown: We know that $\text{co-NSPACE}(3^n) = NSPACE(3^n) \subseteq DSPACE(9^n)$, from the Immerman result, and Savitch's result. Based on chapter 2 results, we do not know if $DSPACE(9^n) \subseteq DSPACE(6^n)$. Actually, we know that the latter is false. STILL, we cannot conclude that the result is False, because we do not know if Savitch's result is tight.

REMARK: the Immerman result applies to running complexity, but this for the "nice function" 3^n used in this space complexity, the result applies to accepting complexity.

(b) Unknown: The only relation between deterministic and nondeterministic space comes from Savitch's theorem. But this theorem works for space bounds above $\log n$, not $\sqrt{\log n}$.

(c) True: $\mu(C) = C$ implies C is both big and small. This means $C \subseteq A^*$ and $B^* \subseteq C$.

(d) True: Let $M = (Q, \Sigma, \delta, q_0, F)$. Let $N = (2^Q, \delta', F, F')$. Also, $q' \in F'$ iff $q_0 \in q'$. Basically, N keeps track of all the states of M that can reach its "current set of sets".

In more detail: The set $\delta'(q', a)$ is defined to be $\{q \in Q : \delta(q, a) \in q'\}$.

PROBLEM 2 (CFL) [20 points]

Show that CFL is not closed under complementation.

Besides quoting general results from lecture notes, anything else must to be proved from first principles.

SOLUTION: Let $L = \{a^n b^n c^n : n \ge 0\}$. This is not CFL (use pumping lemma). Consider co-L. Let $L_0 = \{a^i b^j c^k : i, j, k \ge 0\}$ and $L_1 = \{a^i b^j c^k : i \ne j, \text{ or } j \ne k\}$. Then co- $L = \text{co-}L_0 \cup L_1$. You can easily show that co- L_0 and L_1 are CFL, and hence co-L is CFL.

PROBLEM 3 (Computability) [20 points]

For languages $A, B \subseteq \Sigma^*$, we say A is **many-one reducible** to B, denoted $A \leq_m B$, if there is some total recursive transformation t such that for all $x \in \Sigma^*$, $x \in A$ iff $t(x) \in B$. Show that every r.e. language is many-one reducible to

$$HALT = \{i : i \in W_i\} = \{i : \phi_i(i) \downarrow\}.$$

SOLUTION: Let A be r.e., computed by some TM M. For any input x, we construct a TM M_x that on input y, will halt iff $x \in A$. Let i(x) be index of M_x . Therefore, $i(x) \in HALT$ iff $x \in A$.

Our construction shows that $i(\cdot)$ is s total recursive function. Hence $A \leq_m HALT$. Q.E.D.

REMARK: Since Σ is arbitrary, we ought to make the adjustment that whenever an $i \in \mathbb{N}$ is used in the above proof, it refers to the word in Σ^* which is the $|\Sigma|$ -adic notation for i.

PROBLEM 4 (Complexity) [30 points]

Let $A \subseteq \Sigma^*$ and $0, 1 \notin \Sigma$. Show that the following are equivalent:

(a) $A \in NP$

(b) There exists $B \in P$ and a constant $k \ge 1$, such that for all $x \in \Sigma^*$,

$$x \in A \Leftrightarrow (\exists y \in \{0,1\}^*) \left[|y| \le |x|^k \land xy \in B \right].$$

SOLUTION: (\Rightarrow) Let A be accepted by a nondeterministic TM N that accepts in time n^{ℓ} (for some constant $\ell \geq 1$). In this case, every computation path of N of length n^{ℓ} on input of length |x| = n can be encoded by a binary string of length $n^{2\ell}$. Let $k = 2\ell$ and

 $B = \{xy : x \in \Sigma^*, \text{and } y \text{ encodes an accepting computation path of } N \text{ for } y \text{ of length } n^k\}.$

It is easy to see that $B \in P$ and $x \in A$ iff there is a $y \in \{0,1\}^*$ such that $|y| \leq |x|^k$ and $xy \in B$.

(\Leftarrow) Suppose *B* can be accepted by a deterministic TM *M* that accepts in time n^{ℓ} for some ℓ . We construct a nondeterministic *N* to accept *A*: on input *x*, *N* will guess a binary string *y* of length $|x|^k$, and then run *M* on *xy*. The running time of *M* on *xy* is $|xy|^{\ell} = (n + n^k)^{\ell}$, which is polynomial in n = |x|. This proves that $A \in NP$.