Midterm Exam with SOLUTIONS

Answer all questions. This is an OPEN book, in-Class exam. Please write ONLY in COMplete English sentences, Even if they involve centered equaTIONS. Up TO 15% OF POINTS ARE ALLOTTED FOR THE CLARITY OF YOUR ANSWER.

PROBLEM 1 (Short Questions) [10 points for each part]
Classify each of the following assertions as True or False or Unknown (T/F/U). Brief justification is needed to get any credit at all. If "Unknown", say why the relevant theorems don't yield a conclusion. You only need to know results from Chapter 2 in this problem, although you may also quote general results that you know.
(a) co- $\operatorname{NSPACE}\left(3^{n}\right) \subseteq D S P A C E\left(6^{n}\right)$.
(b) $N S P A C E(\sqrt{\log n}) \subseteq D S P A C E(\log n)$.
(c) Let $\mu: 2^{X} \rightarrow 2^{X}$ be monotone. We define $A \subseteq X$ to be big if $\mu(A) \subseteq A$, and small if $A \subseteq \mu(A)$. Let $A^{*} \subseteq A$ be the union of all small sets, and $B^{*} \subseteq X$ be the intersection (not union) of all big sets. We know that A^{*} and B^{*} are fixed points of μ. If C is any fixed point of μ, then $B^{*} \subseteq C \subseteq A^{*}$.
(d) Let M be a dfa that accepts A. Then there is an nfa N that accepts the "reverse language" $A^{R}=\left\{w^{R}: w \in A\right\}$. Note that w^{R} is the reverse of w, given by $w^{R}[i]=$ $w[n+1-i]$ where $n=|w|$.
SOLUTION:
(a) Unknown: We know that co- $\operatorname{NSPACE}\left(3^{n}\right)=\operatorname{NSPACE}\left(3^{n}\right) \subseteq D S P A C E\left(9^{n}\right)$, from the Immerman result, and Savitch's result. Based on chapter 2 results, we do not know if $D S P A C E\left(9^{n}\right) \subseteq D S P A C E\left(6^{n}\right)$. Actually, we know that the latter is false. STILL, we cannot conclude that the result is False, because we do not know if Savitch's result is tight.

REMARK: the Immerman result applies to running complexity, but this for the "nice function" 3^{n} used in this space complexity, the result applies to accepting complexity.
(b) Unknown: The only relation between deterministic and nondeterministic space comes from Savitch's theorem. But this theorem works for space bounds above $\log n$, not $\sqrt{\log n}$.
(c) True: $\mu(C)=C$ implies C is both big and small. This means $C \subseteq A^{*}$ and $B^{*} \subseteq C$.
(d) True: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. Let $N=\left(2^{Q}, \delta^{\prime}, F, F^{\prime}\right)$. Also, $q^{\prime} \in F^{\prime}$ iff $q_{0} \in q^{\prime}$. Basically, N keeps track of all the states of M that can reach its "current set of sets".
In more detail: The set $\delta^{\prime}\left(q^{\prime}, a\right)$ is defined to be $\left\{q \in Q: \delta(q, a) \in q^{\prime}\right\}$.
PROBLEM 2 (CFL) [20 points]
Show that CFL is not closed under complementation.
Besides quoting general results from lecture notes, anything else must to be proved from first principles.
SOLUTION: Let $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$. This is not CFL (use pumping lemma). Consider co- L. Let $L_{0}=\left\{a^{i} b^{j} c^{k}: i, j, k \geq 0\right\}$ and $L_{1}=\left\{a^{i} b^{j} c^{k}: i \neq j\right.$, or $\left.j \neq k\right\}$. Then co- $L=\operatorname{co}-L_{0} \cup L_{1}$. You can easily show that co- L_{0} and L_{1} are CFL, and hence co- L is CFL.

PROBLEM 3 (Computability) [20 points]
For languages $A, B \subseteq \Sigma^{*}$, we say A is many-one reducible to B, denoted $A \leq_{m} B$, if there is some total recursive transformation t such that for all $x \in \Sigma^{*}, x \in A$ iff $t(x) \in B$. Show that every r.e. language is many-one reducible to

$$
H A L T=\left\{i: i \in W_{i}\right\}=\left\{i: \phi_{i}(i) \downarrow\right\} .
$$

SOLUTION: Let A be r.e., computed by some TM M. For any input x, we construct a TM M_{x} that on input y, will halt iff $x \in A$. Let $i(x)$ be index of M_{x}. Therefore, $i(x) \in H A L T$ iff $x \in A$.
Our construction shows that $i(\cdot)$ is s total recursive function. Hence $A \leq_{m} H A L T$. Q.E.D.

REMARK: Since Σ is arbitrary, we ought to make the adjustment that whenever an $i \in \mathbb{N}$ is used in the above proof, it refers to the word in Σ^{*} which is the $|\Sigma|$-adic notation for i.

PROBLEM 4 (Complexity) [30 points]
Let $A \subseteq \Sigma^{*}$ and $0,1 \notin \Sigma$. Show that the following are equivalent:
(a) $A \in N P$
(b) There exists $B \in P$ and a constant $k \geq 1$, such that for all $x \in \Sigma^{*}$,

$$
x \in A \Leftrightarrow\left(\exists y \in\{0,1\}^{*}\right)\left[|y| \leq|x|^{k} \wedge x y \in B\right] .
$$

SOLUTION: (\Rightarrow) Let A be accepted by a nondeterministic TM N that accepts in time n^{ℓ} (for some constant $\ell \geq 1$). In this case, every computation path of N of length n^{ℓ} on input of length $|x|=n$ can be encoded by a binary string of length $n^{2 \ell}$. Let $k=2 \ell$ and
$B=\left\{x y: x \in \Sigma^{*}\right.$, and y encodes an accepting computation path of N for y of length $\left.n^{k}\right\}$.
It is easy to see that $B \in P$ and $x \in A$ iff there is a $y \in\{0,1\}^{*}$ such that $|y| \leq|x|^{k}$ and $x y \in B$.
(\Leftarrow) Suppose B can be accepted by a deterministic TM M that accepts in time n^{ℓ} for some ℓ. We construct a nondeterministic N to accept A : on input x, N will guess a binary string y of length $|x|^{k}$, and then run M on $x y$. The running time of M on $x y$ is $|x y|^{\ell}=\left(n+n^{k}\right)^{\ell}$, which is polynomial in $n=|x|$. This proves that $A \in N P$.

