
1Honors Theory, Spring 2002, Yap
Homework 8

(WITH SOLUTIONS

This last homework will not graded. Solution sketch will be published on Wed May 7.
Please read the lecture notes on the quantum factorization algorithm, and the provided number theory

background.
NOTE: I have slightly debugged questions 1.

1. Consider classical reversible circuits to compute the following transformation: f : B
2n → B

2n where
f(x, y) = (x, yxmodN) if x, y ∈ Z

∗
N (N = 2n), and f(x, y) = (x, y) otherwise. Construct the circuit

explicitly for the case n = 3 using the family of Tn gates.
SOLUTION: Since n = 3 and N = 8, Z

∗
8 = {1, 3, 5, 7}. For most (x, y), f(x, y) = (x, y), i.e., the

transformation is trivial. Consider the nontrivial transformations of f .
If x = 3, then we see that the second register is transformed according to the two transpositions:
1 ↔ 3, and 5 ↔ 7.
If x = 5, then the second register is transformed according to the two transpositions: 1 ↔ 5, and
3 ↔ 7.
If x = 7, then the second register is transformed according to the two transpositions: 1 ↔ 7, and
3 ↔ 5.
We saw in class (problem session on Wednesday) how to do this for x = 3. Consider how to implement
the 1 ↔ 3 transposition: |011, 001〉 ↔ |011, 011〉. Let the qubits be |x1x2x3, y1y2y3〉. We want a
6-input control-NOT (T6) gate to flip y2 iff the x1x2x3 = 011 and y1y3 = 01. This is done is three
stages:

• First negate x1 and y1.
• Then apply T6 to flip y2 (with all the other 5 lines as controls).
• Finally, we negate x1 and y1 again (thus returning them to the original values).

We leave it to you to draw the reversible circuit. It is clear that you can repeat this for each of the
other transpositions.

2. Let n = 3 and N = 23 = 8. Suppose we prepare the state |111〉, and then apply Hadamard transform
to each bit. Then we apply QFT to the result. What is the resulting state?
SOLUTION: A bit tedious to carry this out. Note that |x〉 = H |111〉 = 1√

8
(|0〉 − |1〉)⊗3. One way is

to apply the quantum circuit for QFT to this input.
Alternatively, use the equation for QFT (|x〉) as in the definition.

3. Let N = 2n, m be an odd number less than N , and x ∈ Z
∗
m. We define a transformation on two

quwords, each with n qubits. defined as follows: Um,x be

Um,x(|k〉|y〉) = |k〉|yxk modm〉.
Here, we assume that Um,x(|k〉|y〉) = |k〉|y〉 in case y ≥ m.

Let |z〉 = 1√
N

∑N−1
`=0 |k〉|1〉. To be specific, let n = 4, m = 10, x = 3. What is Um,x(|z〉)? Suppose you

measure the second quword, and obtain the result 1. What is the resulting state?
SOLUTION:

Um,x(|z〉) =
1√
16

(

|0, 1〉 + |1, 3〉 + |2, 9〉+ |3, 7〉+
|4, 1〉 + |5, 3〉 + |6, 9〉+ |7, 7〉+
|8, 1〉 + |9, 3〉 + |10, 1〉+ |11, 1〉+
|12, 1〉 + |13, 1〉+ |14, 1〉+ |15, 1〉).



2You measure and get 1 in the second quword, the probability is 9/16, and the resulting state is

(|0, 1〉 + |4, 1〉 + |8, 1〉 + |10, 1〉+ |11, 1〉+ |12, 1〉 + |13, 1〉+ |14, 1〉+ |15, 1〉)/3.

4. Integer Factorization: give a simple polynomial time algorithm to detect if an input integer N is a
power or not. In case of a non-power, output its power factorization, namely N = M e for some
M, e ∈ N.

SOLUTION: Assume N is an n-bit number. Note that e ranges from 2 to at most n. If you fix any
e, then M has at most m = bn/ec bits. We can determine each of the m bits of M , starting from the
most significant bit: for instance if M = (b1b2 · · · bm)2, then we check if b1 = 1 by computing T e

1 and
comparing it to N . Here, T1 = (10 · · ·0)2 is a m-bit number. If this number is equal to N , we are
done. If it is greater than N then b1 must be 0. Otherwise, it must be 1. We continue to test for b2

by considering T2 = (b110 · · ·0)2, and comparing T e
2 against N . And so on. This is easily seen to take

O(n4) time. Since we have to test for each e, the overall algorithm is O(n5).

You can speed up this simple algorithm is you use fast FFT based multiplication, and exploit the fact
that to test successive bits, you can reduce this to addition.

5. Find all the square roots of 1 modulo 45. Describe your method for finding them.
NOTE: we want you to do your calculations by hand (not by writing a program to do it, for instance).
SOLUTION:

The squareroots of 1 modulo 45 are {1,−1 ≡ 44, 19,−19 ≡ 26}.
METHOD: We start with Z

∗
45 = {1, 2, 4, 7, ·44}, and try to eliminate elements.

One way is observe that if x is a squareroot of 1, then xmod 9 and xmod 5 must be ±1.

Another way is to note that 45|(x − 1)(x + 1) and therefore 3|(x − 1) or 3|(x + 1). Hence, x must be
adjacent to 3. Similarly, we can observe that x must be adjacent to 5. Antonio notes

When the list is small enough, you can just bruteforce check. It is useful to remember that you can
operate modulo 45. For instance, to check 19 is a squareroot of 1, we compute 192 = (20 − 1)2 =
(400 − 40 + 1) = (−50 + 5 + 1) = 1(mod45).

6. Let x ∈ Z
∗
n. If h(x) = (g1, . . . , gm) where each gi is a generator and 2` = LCM(φ(q1), . . . , φ(qm)).

Characterize the conditions where x` ≡ −1(modn).

SOLUTION: Write h(x`) = (y1, . . . , ym) where each yi ∈ {±1}. Hence we require yi = −1 for all
i. Since φ(qi)|2` and φ(qi)∼| `, we must have v2(φ(qi)) = v2(2`). Thus v2(φ(qi) = v2(φ(qj)) for all
i, j = 1, . . . , m.

EXTRA EXERCISES:

7. Consider the following linear equation:
ax = b(mod n)

where a, b ∈ Zn are given. We want to find x ∈ Zn. Let d = GCD(a, n).
(i) The linear equation has a solution iff d|b.
(ii) In case d = 1, the solution is unique and given by x = ba−1 modn.
(iii) In case d ≥ 2, there are exactly d solutions. Find these solutions. HINT: consider the “reduced
equation” a′x = b′(mod n′) where a = a′d, b = b′d, n = n′d.

SOLUTION: This problem is a standard result in congruence arithmetic. Write a = a′d, n = n′d.

(i) If d|b then a solution is b = b′d. Then ax = b(mod n) is the same as a′x = b′(mod n′). But then
x = b′(A)−1 is a solution where Aa′ = 1 modn′ (so A is the inverse of a′ mod n′). Conversely, if we
have a solution ax = b(mod n) then n|ax − b. Since d|n and d|a, it follows that d|b.
(ii) This comes from the first part of the proof of (i).

(iii) If x0 is any solution, then so is x0 + in/d where i = 1, . . . , d − 1. These solutions are distinct.


