This is due on Mon April 29.

1. (10 Points) Let $w=(01)^{n}$ be a string. Prove that $K(\langle w\rangle) \leq \ell(n)+C$ for some C, and $K(\langle w\rangle \mid n)=O(1)$. SOLUTION: Given input n, we can compute (01) ${ }^{n}$. Thus $K\left(\left\langle(01)^{n}\right\rangle\right) \leq \ell(n)+C$. This alsow shows that $K(\langle w\rangle \mid n)$ is $O(1)$.
2. (20 Points) Let $A \subseteq \mathbb{N}$ be any set. Let $\chi_{A}=b_{0} b_{1} b_{2} \cdots$ be the ω-string such that $b_{i}=1$ iff $i \in A$. Write $\chi_{A}[i: j]$ for $b_{i} b_{i+1} \cdots b_{j}$, and $\chi_{A}[j]$ for $\chi_{A}[0: j]$.
(i) For all recursive A, there exists a constant $c=c(A)$ such that $K^{\prime}\left(\chi_{A}[n]\right) \leq c$. NOTE: $K^{\prime}(x)$ here is $K(x \mid \ell(x))$, the length-conditioned Kolmogorov complexity function.
(ii) For all r.e. A, there is a constant $c=c(A)$ such that $K^{\prime}\left(\chi_{A}[n]\right) \leq \ell(n)+c$.

SOLUTION:
(i) Since this is length-conditioned, we must show how to compute $\chi_{A}[n]$ when we are only given n. This is easy. Construct a STM M that on input n, runs some decisive Turing machine for A on the inputs $i=0,1, \ldots, n$ in order. Then M output $\chi_{A}[n]$.
(ii) In case A is r.e., the previous Turing machine M is now modified to N as follows: N checks that its input has the form $\langle n, m\rangle$ with $m>n+1$. If not, it rejects. Otherwise, it dovetails the computations of an acceptor for A on the inputs $i=0,1, \ldots, n$. When m of these computations accepts, then N outputs a string $b_{0} b_{1} \cdots b_{n}$ where $b_{i}=1$ iff the acceptor for A has accepted i. If less than m of these computations accept, N will loop. Clearly, if $\chi_{A}[n]$ has m 1's, then our machine N on $\langle n, m\rangle$ will output $\chi_{A}[n]$. Thus, $K_{N}\left(\chi_{A}[n] \mid n\right)=\ell(m) \leq \ell(n)+C$.
REMARKS: The proof of (ii) is very revealing about the non-constructiveness of $K(x \mid y)$. To show $K(x)=\ell(z)$ where z is minimal program for x, we need not know how to construct z. We only have to show its existence! The m in the above proof is also purely existential.
3. (15 Points) Show that there is some C_{0} such that every minimal programs is C_{0}-incompressible. More precisely, this says: for any $x \in \mathbb{N}$, if z is a minimal program for $x(i . e ., \Phi(z)=x$ and $K(x)=\ell(z))$ then $K(z) \geq \ell(z)-C$.
HINT: Consider the function $f(z)=\Phi(\Phi(z))$. If there is no such C_{0}, then for every C, we can find x such that $K(x)-K_{f}(x)>C$.
SOLUTION: Suppose no such C_{0} exists. Using the HINT, we know that for each C, there is a $x=x(C)$ such that $K(x)-K_{f}(x)>C$. This contradicts the universality of K.
4. (25 Points) Recall the lower bound proof that the time-space product is $\Omega\left(n^{2}\right)$ for any deterministic Turing machine that accept palindromes. Prove the same result when Turing machine is nondeterministic.
SOLUTION: Recall the proof in the lecture notes. Where does the proof break down if M is now nondeterministic? Only in the definition of the "compatibility" of (w, S), where we simulated M on input w "modulo S ". Now, compatibility is defined to mean that "some computation path of M will produce the crossing sequence $S^{\prime \prime}$. We may verify that Lemma 11 still holds with this new definition.

