
1Honors Theory, Spring 2002, Yap
Homework 6

This is due on Wed April 17.
All reducibility concepts assume Karp-reducibility.

1. (15 Points) The proof of Cook’s theorem in Chapter 3 reduces any language A ∈ NP to SAT. If M
is an NP -machine for A, for any input w, the proof constructs a 3CNF formula Fw such that Fw is
satisfiable iff w ∈ A. We claim that something stronger is true: #(Fw) is equal to the number of
accepting computations of M on input w. Actually, this claim needs a mild condition on M . What is
it? Prove this claim under this mild condition. Hint: if you do not see what this condition might be,
we suggest the strategy of ignoring it at first, and trying to prove the claim unconditionally.

SOLUTION: We know from the proof of Cook’s theorem that an accepting computation path for w
determines an assignment that satisfies Fw. To show that #(Fw) is equal to the number of accepting
computation paths ofM on input w, we only need to show that any two different accepting computation
paths on w determine two different satisfiable assignments for Fw, and vice versa.

But observe that distinct computation paths correspond to distinct sequences of instruction execution
(this is more general than just having distinct sequences of configurations). But the sequence of
instructions are encoded by the Boolean variables I(j, t) for the appropriate values of j and t.

What is the “mild condition”? Notice that if there are accepting paths that are longer than p(n)
(where n = |w|), then these will not be counted among the number of distinct satisfying assignments
to Fw. Therefore, we require that every accepting computation path has length ≤ p(n).

2. (20 Points) Prove that QBF is PSPACE -complete. Since this proof can be found in the literature, I will
enforce some originality in your solution by asking you to use the same framework as my description
of Cook’s theorem in Chapter 3. The additional idea you need comes from the key idea in the proof
of Savage’s theorem: if C `2m C′ (i.e., there is an 2m-step path from C to C′ then C `m C′′ and
C ′′ `m C′ for some C′′.

SOLUTION: First we show QBF is in PSPACE. We may assume that the input formula is in prenex
normal form, with no free variables. The following is linear space algorithm for accepting QBF: let φ
be the input formula.

1. If φ contains no quantifiers, then it is a constant formula with no variables. We just evaluate it and
accept if it is true; otherwise reject.

2. If φ is ∃xψ, recursively call M on ψ, first substitute x with 0, if the result is accept then accept, else
substitute x with 1, accept if the result is accept; otherwise reject.

3. If φ is ∀xψ, recursively call M on ψ, first substitute x with 0, if the result is reject then reject, else
substitute x with 1, reject if the result is reject; otherwise accept.

Next, we show that QBF is PSPACE hard. For any language A ∈ DSPACE (nk), we reduce it
to QBF as follows. We use the same framework as the proof of Cook’s theorem. For any string
w, it is in language A iff there is a computation path of length t(n) = O(1)nk

, from the initial
configuration C1 to an accepting configuration Ca. Let the predicate PATHm(C,C′) be true if there
is a computation sequence from C to C′ of length ≤ m. We want a Boolean formula Fw that is true
iff PATHt(n)(C0, Ca) where C0, Ca are the initial and accepting configurations (which we may assume
are uniquely represented).

The problem is, t(n) is exponential so we cannot afford to explicitly describe all the t(n) configurations
as in Cook’s proof. We use the idea of Savitch’s theorem to fix this to: thus PATHm(C,C′) is true iff

(∃C ′′)(∀x, x′)[(x = C ∧ x′ = C′′). ∨ .(x = C′′ ∧ x′ = C′). ⇒ .PATHm/2(x, x′)] (1)

Here, C ′′, x, x′ represents configurations using space nk. So we need to introduce O(nk) variables, as
in Cook’s proof to represent them.

2BASE CASE: In case m = 2, the subexpression PATHm/2(x, x′) in (1) can be directly replaced by
a polynomial size Boolean formula (unquantified) that says that x ` x′ according to the rules of the
Turing acceptor of the set A. This is analogous to Cook’s proof.

INDUCTION: If m > 2, we recursively replace PATHm/2(x, x′) by further expansions of (1). The
number of expansions needed is t(n) = nk. Hence the final quantified Boolean formula is our desired
Fw, and it has polynomial size.

It is routine (but tedious) to construct a transducer which, given w will output Fw. Then w ∈ A iff
Fw ∈QBF, proving that A is Karp-reducible to QBF.

3. (20 Points) This exercise helps you gain some facility with the group theoretic ideas in the NONISO ∈
IP proof. Let V = Vn = {1, . . . , n} and Sn be the set of permutations on Vn. The trivial permutation
is denoted 1n (or simply 1). Write the composition of σ, σ′ ∈ Sn in the form of a product σσ′, instead
of σ ◦ σ′.
(i) Let 2 ≤ k ≤ n. If {a1, . . . , ak} ⊆ (

V
k

)
, then (a1, . . . , ak) ∈ Sn denotes the permutation which takes

each ai to a(i+1mod k), called a cyclic permutation. Two special cases are k = 2 or k = n. Then
(a1, . . . , ak) is transpose or a Hamiltonian permutation, respectively. Two cyclic permutations
(a1, . . . , ak), (b1, . . . , b`) are disjoint if ai 6= bj for all i, j. For instance, (132)(45) = (45)(132) is a
product of two disjoint cycles. The order of writing disjoint products does not matter. Show that
every non-trivial permutation is a product of disjoint permutations.

(a) G0 (a) G1

1

34

5 2

1

25

34

Figure 1: Two labeled digraphs G0, G1.

(ii) Let G0 be the digraph shown in Figure 1. Determine iso(G0) and iso(G1). What the sizes of
these two sets?
(iii) Determine aut(G0) and aut(G1). What the sizes of these two sets?

SOLUTION:

(i) Let π : Vn → Vn be any permutation. First for any i that π(i) 6= i, we construct a cyclic permutation
that includes i as follows: starting from i, consider π(i), then π2(i), etc. This produces a sequence

C1 = (i, π(i), π2(i), . . . , πk(i)) (2)

where we stop when πk+1(i) is equal to some previously encountered element πj(i) (j = 0, 1, . . . , k) in
this sequence. We claim that j = 0 (and this means the C in (2) is a cycle). If j > 0 this means that
π(πk(i)) = π(πj−1(i)), since both are equal to πj(i). But π is a bijection, this means πk(i) = πj−1(i),
contradiction since we said k is the first time that we had a repeat.

We can pick another i that does not occur in C1 such that π(i) 6= i, and construct another cycle C2.
It is easy to see that C1, C2 are disjoint. We continue this until there are no more such i’s. If there are
m such cycles, we see that

π = C1C2 · · ·Cm

for some m ≥ 1.

3(ii)
∀G ∈ gn, |iso(G)| × |aut(G)| = n!

So |iso(G0)| = |iso(G1)| = 5!/1 = 120.

(iii) Automorphism preserves in-degree and out-degree of vertex. In graph G0, only vertice 2 has in-
degree 2 and out-degree 1, and only vertice 5 has in-degree 1 and out-degree 2, so these two vertices
should be the same after permutation. Vertice 1 is the only one connects vertice 2 and 5, thus should
be the same. Vertice 4 is the only one has an edge outgoing to vertice 5, thus should be the same.
Hence the only permutation allowed is trivial. The same analysis for graph G1.

So |aut(G0)| = |aut(G1)| = 1.

