Honors Theory, Spring 2002, Yap
Homework 5 (with SOLUTIONS)

This is due on Wed April 3.
Please try to rewrite your solutions to make them more concise (without being more obscure). Always
introduce your paragraphs with an introduction (e.g., what method of proof will be used, etc).

1. (10 Points) Question 3 of the midterm is a basic type of argument that you need to master in com-
putability theory.

Fix any r.e. set A. You were asked to construct a total recursive function ¢ : N — N such that for all
x €N,z € Aiff t(x) € HALT. Now, you should realize that ¢(z) is the index of a suitable STM (isn’t
that all that HALT knows about?). In our published solution, we described this STM and called it
M,,. Then we simply said “the function ¢(x) which gives the index of M, is clearly total computable”.
Usually, you can simply assert this without further elaboration. But for this question, we specifically
ask you to elaborate on it.

ANSWER: Let N be a STM that accepts A. The STM M,, on any input y, ignores y and simulates
N on z, and accepts iff N does. We may assume ¥ = {0, 1} is the input alphabet for N and for M,.
However, the state set for M, must depend on |z|. Let all the states we need be identified with with
elements of @Q{0,1}* (Q,0,1 are special symbols). In particular, let @, Q0 be the start state g and
accept state ¢ = qq, respectively. We assume that the code for a STM is a sequence of instructions of
the form I = (q,a — ¢’,b, D), meansing that if you are in state ¢ reading a then you go into state ¢,
replace a with b and move the head in direction D € {—1,0,+1}. Thus I can be encoded as a string
over a fixed alphabet I' = {0,1,Q, .. .}.
Fix = of length n. The instructions of M, can be divided into the following four groups:
(1) First, we have instructions to “blanking out the input” while staying in the start state go. We long
as the currently scanned symbol is non-blank, we replace it by a blank and move right. For all a € ¥,
we have the instruction

I, = {(qo,a,qo, L, +1).

When we are done blanking, we move into state ¢;:

I|_| = <q0a U, q1, |—|a0>'

(2) Next, we write the word = 1, ..., x, into the tape of M,. We introduce the states ¢1,...,¢n+1-
Fori=1,...,n—1, we have

I = (qi, U, qit1, 24, +1)
and also

I, = {gn, U, @nt1,Tn, 0).

(3) Now, we move the head position to the beginning of the word x: for each a € X, let

Ié = <Qn+1, a, qn+1; _1>

Finally, when we reach the first blank to the left of z, we move into state ¢, y2:

Ill_l = <Qn+1a L, qn+2, +1>

(4) We now begin simulating N on z. Simply insert all the instructions of N into M, (but with g,
in place of the start state of N).

Thus, t(x) € I'* is just a linear sequence of instructions corresponding to the above four groups, (1)—(4).
Note that only group 3 depends on z. Using any |T'|-adic encoding, we can view ¢(z) € N.

REMARK: all these are tedious, but straightforward. That is why, generally, we do not ask you to
provide such details. But you should know how to do it when “challenged” to be explicit.

2. (10 Points) Construct a non-recursive bijection f : N — A where A is an infinite r.e. set. NOTE
This possibility seems to have been overlooked by several students that I decided you should try to
construct one for yourself.

HINT: Since A is infinite r.e., there recursive denumeration of A, o : N — A. Define o (i) = «(2i) and
a1(1) = (2t +1). Thus oj : N — A; (for j = 0,1) is a denumeration. Try to define f : N — A such
that f(i) € Ag iff i € HALT.

ANSWER: We know that there exists denumerations
h:N — HALT, h:N — co-HALT.

With a’s as in the HINT, define

-1

[ao(h™(3) if i€ HALT
f(z){ ai(h (i) else.

Then f is a recursive denumeration of A. It remains to show that if f is recursive, then HALT is
recursive. This is because ¢ € HALT iff f(i) € Ap. To check if f(i) € Ay, we simply dovetail the
computations

{ao(4), a1 (j) - 7 € N}
until we see f(i) being output. Then we know whether f(i) € Ay or not.

3. (10 Points) Show that NP = co-NP iff there is an NP-complete language that is in co-NP. There is
an implicit notion of reducibility (which I will simply denote as “<”) in these terminology. You have
to tell us what property is needed of < to make this result true.

ANSWER: The direction from left to right is trivial. Take any language L that is NP-complete, for
example SAT. Since L € NP and NP = co-NP then L € co-NP.

For the other direction, given a NP-complete language Lo in co-NP, we show that NP = co-NP. For
any language L € NP, we have L < Ly. As Ly € co-NP, and co-NP is closed under reductions,
L € co-NP. Therefore, NP C co-NP. We can now also conclude co-NP C NP: if L € co-NP then
co-L € NP C co-NP, and so L € NP.

What is the property needed of our reductions? In the preceding argument, we need the unproved
claim, that

co-NP is closed under reductions. (1)
We can prove this directly, just the same way we prove that NP is closed under reduction.

Alternatively, we can use a different property, that our <-reduction has the property:
L<L' & co-L<colL. (2)

For instance, (2) would be true if < is a many-one reducibility (polynomial time or not). From (2), it
is quite easy to prove (1).

4. (15 Points) Show that if A is PSPACE-complete under Karp-reducibility, then P 4 = NP2 NOTE:
P 4 means the class of language accepted in polynomial time by a deterministic oracle machine with
A as oracle. The class NP is similarly defined, but in the nondeterministic mode.

ANSWER: If A is a PSPACE-complete languge, we will show
PSPACE C P C NP* C PSPACE.

The first inclusion holds because A is PSPACE-complete, and thus any language L € PSPACE can be
decided by a polynomial-time deterministic Turing machine M that performs the reduction from L to
A. More precisely, if the output of M on input x is ¢(z), we simply ask the oracle A if t(z) € A. If the
oracle says YES, we accept, else reject.

The second inclusion is trivial, as any polynomial-time deterministic Turing machine is also a polynomig}l—
time nondeterministic machine.

For the third inclusion, any nondeterministic polynomial-time Turing machine M with oracle A can
be simulated by a nondeterministic polynomial space-bounded Turing machine M’, which resolves
the queries to A by running a third polynomial space machine that accepts A. Although this M’ is
nondeterministic, Savitch’s theorem tells us that there is a deterministic polynomial space machine
that simulates M’.

[You can also refer to Papadimitriou’s book p.340.]

. (15 Points) Let s be a space-constructible function (see Chapter 2 for definition). Assume s(n) < oo
for all n. Prove a (DSPACE(s), RE) separation result.

ANSWER: From space hierarchy theorem, given a space-constructable function s, if we take a space-
constructable function s’ such that s'(n) = w(s(n)), then

DSPACE(s') — DSPACE(s) # 0.
Simply choose s'(n) = s(n)n. Since DSPACE(s") C RE, RE \ DSPACE(s) # 0.

. (20 Points) A Simple Alternating Machine is like an alternating machine, except that it has 1
worktape but no input tapes. The input is placed on the sole worktape. Show that such a machine can
accept the palindrome language in linear time, using only a constant number of alternations. HINT:
guess the positions (in binary) of about log n equally spaced input symbols, writing them directly under
the corresponding symbols. Call these the “marker positions”. The positions of the other symbols can
be determined relative to these marker positions. Remember that if you guess something, you need to
verify it.

ANSWER:
Given an input w = wy, ..., w,—1 where w; € {0,1}, we want to check if w[i] = w; is equal to w[n — i
for all i =0,...,n — 1. Here is the algorithm (it is basically what we outline in class):

(a) Universally guess ¢ = 0,...,n — 1 by placing a marker ”X” under wl[i]. Assume w is on track 1,

and "X’ is on track 2.

(b) Existentially guess n — i by placing another marker ”Y” under some w(j]. If w[i] # w[j], answer
NO. Otherwise, we must check that i + j = n. Note that we allow i = j = n/2.

(¢) On track 3, existentially guess a sequence of markers denoted ”Z” under w. You must put a
marker under w[1] and under w[n|. Let there be k > 2 such Z-markers.

(d) On track 4, existentially guess a binary string. This binary string must extend beyond z[n]. The
information on tracks 3 and 4 can be viewed as a sequence of dyadic numbers,

mi,ma,...,Mg

where the most significant bit of m; is the binary bit under the ith ”Z” marker. The guess is
”correct” if x[m;] is the position of the ith Z-marker. For instance, we want m; = 0 and my = n.
[Actually my = 0 is a special case, as its dyadic representation is the empty string, so we should
not write 0 or 1 under x[0].] You also see why we insist that the binary string on track 4 must be
longer than n, otherwise my, is probably wrong.

(e) On track 5, we existentially guess another binary string. Again, this string combined with the
Z-markers on track 3 gives us a sequence of dyadic numbers

L1, L2y, Tk

This sequence is "correct” if 1 = xo,...,= xx = i. In otherwords, x; indicates the position of
the X-marker.

(f)

(h)
(i)

()

Similarly, on track 6, we existentially guess a binary string to represent a sequence of dyadi%
numbers
Y1,Y2,-- -5 Yk

This sequence is ”correct” if y; = y2,...,= yx = j. In otherwords, y; indicates the position of the
Y-marker.

Universally choose to verify that each m; is correct. We simply make sure that m;,1 —m; is equal
to the distance between the i 4+ 1st Z-marker and the ith Z-marker. This is done by computing
the “counter” ¢; = m;y1 — m;, and then decrementing ¢; to 0. As you decrement, you check the
number of spaces between the two Z-markers.

Universally choose to verify that z; = z;41 and y; = y;41 for alli =1,... k.

Finally, verify that the position of the X-marker is equal to the z; value that is closest to it.
Similarly, the position of the Y-marker is equal to the y;-value that closest.

) The final verification is that zj + yr = my.

This completes the description of the simple alternating machine. It is easy to argue that (1) if the
input w is a palindrome, this machine will accept in O(n) time, and (2) if w is not a palindrom, this
machine never accepts.

