Honors Theory, Spring 2002, Yap

Homework 3 Solution
DISCLAIMER ABOUT SOLUTION: In the interest of posting this in a timely fashion, I have not been able to fully debug the solution. But I believe the solution is substantially correct. - Chee.

MOSTLY ABOUT RECURSIVELY ENUMERABLE SETS In the following, we will identify the set $\{0,1\}^{*}$ with \mathbb{N} via the dyadic notation. So we will interchangeably talk of (natural) numbers and binary strings.

1. (20 Points) In the notes on the Bernstein-Schröder theorem we showed a fixed point A^{*} for any monotone map $\mu: 2^{X} \rightarrow 2^{X}$. This fixed point was based on the idea of sets $A \subseteq X$ that are small in the sense that $A \subseteq \mu(A)$. (The set A is "small" relative to its image $\mu(A)$.) Now define a set $B \subseteq X$ to be big if $\mu(B) \subseteq B$. Show a fixed point B^{*} for μ based on big sets.
SOLUTION: Define B^{*} to be the intersection of all the big sets. To show that B^{*} is a fixed point, we first show one direction:

$$
\mu\left(B^{*}\right) \subseteq B^{*}
$$

This amounts to saying that B^{*} is big. If $b \in \mu\left(B^{*}\right)$, by definition of $B^{*}, B^{*} \subseteq B$ for any big B, and so $b \in \mu\left(B^{*}\right) \subseteq \mu(B)$, by monotonicity. As B satisfies $\mu(B) \subseteq B$, we have $b \in B$, for any B that is big. But B^{*} is the intersection of all the B 's that are big, thus $b \in B^{*}$. In the other direction, we make a general observation: if B is big, then $\mu(B)$ is big. This is because the bigness of B implies $\mu(\mu(B)) \subseteq \mu(B)$, by monotonicity. Since B^{*} is big, $\mu\left(B^{*}\right)$ must be big. As B^{*} is the intersection of all big sets, this shows $B^{*} \subseteq \mu\left(B^{*}\right)$.
Extra Credit: Construct an example in which the $B^{*} \neq A^{*}$.
SOLUTION: An example function: $\mu: 2^{X} \rightarrow 2^{X}, \mu(S)=S$ for any $S \in X$. The function is monotone as $\mu\left(S_{1}\right) \subseteq \mu\left(S_{2}\right)$, for any $S_{1} \subseteq S_{2} \subseteq X$. As each set is both small and big, $A^{*}=X$ is the union of all small sets, and $B^{*}=\emptyset$ is the intersection of all big sets. Thus $A^{*} \neq B^{*}$.
2. (15 Points) Prove that a set $A \subseteq \mathbb{N}$ is r.e. if and only if there exists a recursive set $B \subseteq\{0,1, \#\}^{*}$ such that $A=\left\{w \in\{0,1\}^{*}:\left(\exists y \in\{0,1\}^{*}\right)[w \# y \in B]\right\}$.
SOLUTION: Let's show the direction from right to left first. As B is recursive, there is a STM M_{B} that decides B. We need to prove that the language $A=\left\{w \in\{0,1\}^{*}:\left(\exists y \in\{0,1\}^{*}\right)[w \# y \in B]\right\}$ is r.e.. We construct a STM M_{A} that works in the following way:
$M_{A}=$ "On input w :

1. Repeat the following for $\mathrm{i}=1,2,3, \ldots$
2. Run M_{B} on $w \# s_{i}$.
3. If M_{B} accepts, accept."

Here $s_{1}, s_{2}, s_{3} \ldots$ is a list of all possible strings in $\{0,1\}^{*}$. We know that M_{A} recognizes A, because:
For each $w \in A$, there exists a string y such that $w \# y \in B$. So after a finite number of tests, y will be found. As M_{B} is a decider, each test of y is done in finite steps. Thus w will be accepted by M_{A} in finite steps.
For each $w \notin A$, there is no string y such that $w \# y \in B$. So M_{A} will try to find y for ever, so it loops.
As STM M_{A} recognizes A, A is r.e..
Then we prove the direction from left to right. Suppose A is r.e., then there is a STM M_{A} that recognizes A. we need to find a recursive language B such that $A=\left\{w \in\{0,1\}^{*}:\left(\exists y \in\{0,1\}^{*}\right)[w \# y \in B]\right\}$. Intuitively, we want B to accept $w \# C$ where C is the encoded string for configuration history of M_{A} running w. We construct a STM M_{B} that decides B:
$M_{B}=$ "On input w :

1. If w is not of the form $x \# C_{1} \rightarrow C_{2} \rightarrow \ldots C_{m}, m \geq 1$ (where symbol \rightarrow separates the configurations C_{i} 's), rejects.
2. Repeat stage 3 for $\mathrm{i}=1$ to m
3. Run M_{A} on w for the ith step. If M_{A} halts and rejects, reject; Else if the current configuration of
M_{A} is not the same as C_{i} also reject. Else if $i=m$ and M_{A} accepts w, accept."
4. If M_{A} still does not accept after m steps (C_{m} is not an accepting configuration), reject.

STM M_{B} is a decider as it always halts in finite simulation steps of M_{A}. Obviously it only accepts those strings of form $w \# C$ where C is the encoded string of accepting configuration history of M_{A} running w. If $w \in A$, there exists an accepting configuration history y of M_{A} running w, so M_{B} accepts $w \# y$; If $w \notin A$, there is no accepting configuration history of M_{A} running w, M_{B} rejects $w \# y$ for all y's.
3. $(15+15+10$ Points) Fix a deterministic universal Turing machine U such that $K(U)=R E \mid\{0,1\}$. We can view this U as computing a function $\Phi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, where the output alphabet of U is assumed to be $\{0,1\}$ and we identify the set $\{0,1\}^{*}$ with \mathbb{N} via the dyadic notation. Recall how transducers define functions - on input $\langle i, w\rangle$, if v is the non-blank word that is being scanned by the work head when U enters the accept state q_{A}, then $\Phi(i, w)$ is the dyadic number v. If $U(i, w) \uparrow$, then $\Phi(i, w)$ is undefined. Define

$$
\Phi:=\left\{\phi_{i}: i \in \mathbb{N}\right\}
$$

where $\phi_{i}: \mathbb{N} \rightarrow \mathbb{N}$ be the function $\phi_{i}(w)=\Phi(i, w)$. We define a function f to be partial recursive if $f \in \Phi$. Thus Φ is the function analogue of the class $R E$. Let sets $W_{i}:=\left\{w \in \mathbb{N}: \phi_{i}(w) \downarrow\right\}$ and $E_{i}:=\left\{\phi_{i}(w): w \in \mathbb{N}, \phi_{i}(w) \downarrow\right\}$. Thus, W_{i}, E_{i} are basically the domain and range of ϕ (Mnemonic: ϕ_{i} is a map from the "west" set W_{i} to the "east" set E_{i}.) Prove the following:
(i) A set $A \subseteq \mathbb{N}$ is r.e. iff $A=W_{i}$ for some i.
(ii) A set $B \subseteq \mathbb{N}$ is r.e. iff $B=E_{i}$ for some i. HINT: to show that E_{i} is r.e. you need to "dovetail" together a denumerable sequence of computations.
(iii) The set $T O T:=\left\{i \in \mathbb{N}: \phi_{i}\right.$ is total $\}$ is not r.e.

SOLUTION:
(i) Let's prove the direction from left to right first. As the set A is r.e., there is a STM M that recognizes it. We construct a function ϕ_{a} for it.
$\phi_{a}=$ "On input w

1. Run M on w.
2. If M accepts w, halt and output w. Else if M halts and rejects w, loop."

For each $w \in A, \phi_{a}$ halts; For each $w \notin A, \phi_{a}$ is undefined. So $A=\left\{w \in N: \phi_{a}(w) \downarrow\right\}$.
Now prove the direction from right to left. This is trivial. If $A=W_{i}$ for some i, we can construct a STM M from ϕ_{i}. Compute $\phi_{i}(w)$, whenever ϕ_{i} halts, M accepts w. If ϕ_{i} does not halt, M does not halt either. Since M accepts only all the strings in A, it recognizes A. Thus A is r.e..
(ii) Let's prove the direction from left to right first. As the set A is r.e., there is a STM M that recognizes it. We construct a function ϕ_{a} the same way as part (i).
$\phi_{a}=$ "On input w

1. Run M on w.
2. If M accepts w, halt and output w. Else if M halts and rejects w, loop."

For each $w \in A, \phi_{a}$ halts and outputs w; For each $w \notin A, \phi_{a}$ is undefined. So $A=\left\{\phi_{a}(w)=w: w \in\right.$ $\left.N, \phi_{a}(w) \downarrow\right\}$.
Now prove the direction from right to left. If $A=E_{i}$ for some i, we can construct a STM M from ϕ_{i} :
$\mathrm{M}=$ "On input w

1. Repeat the following for $\mathrm{i}=1,2,3 \ldots$
2. Compute ϕ_{i} for i steps on each string $s_{1}, s_{2}, \ldots s_{i}$.
3. If any computation halts and outputs w, halt and accept."

Where $s_{1}, s_{2}, \ldots s_{i}$ is a list of all possible strings.
For each string $w \in E_{i}$, on some string u, ϕ_{i} halts and outputs w, so M will accept w in finite steps. For each string $w \notin E_{i}, \phi_{i}$ will never find any string u, such that $\phi_{i}(u)=w$, so M will loop for ever. Thus STM M recogizes A.
(iii)Suppose not, the set TOT is r.e.. There is a recursive enumerator E enumerates it. Consider the total function $g(m)=\phi_{m}(m)+1$ for each $m \in N$. Obviously g is computable. But as g differs from each function ϕ_{i}, it is not included in the enumeration E. That's a contradiction. Thus the set TOT is not r.e..

