
Honors Theory, Spring 2002, Yap
Homework 3 Solution

DISCLAIMER ABOUT SOLUTION: In the interest of posting this in a timely fashion, I have not been
able to fully debug the solution. But I believe the solution is substantially correct. –Chee.

MOSTLY ABOUT RECURSIVELY ENUMERABLE SETS In the following, we will identify the set
{0, 1}∗ with N via the dyadic notation. So we will interchangeably talk of (natural) numbers and binary
strings.

1. (20 Points) In the notes on the Bernstein-Schröder theorem we showed a fixed point A∗ for any
monotone map µ : 2X → 2X . This fixed point was based on the idea of sets A ⊆ X that are small in
the sense that A ⊆ µ(A). (The set A is “small” relative to its image µ(A).) Now define a set B ⊆ X
to be big if µ(B) ⊆ B. Show a fixed point B∗ for µ based on big sets.

SOLUTION: Define B∗ to be the intersection of all the big sets. To show that B∗ is a fixed point, we
first show one direction:

µ(B∗) ⊆ B∗

This amounts to saying that B∗ is big. If b ∈ µ(B∗), by definition of B∗, B∗ ⊆ B for any big B, and
so b ∈ µ(B∗) ⊆ µ(B), by monotonicity. As B satisfies µ(B) ⊆ B, we have b ∈ B, for any B that is
big. But B∗ is the intersection of all the B’s that are big, thus b ∈ B∗. In the other direction, we
make a general observation: if B is big, then µ(B) is big. This is because the bigness of B implies
µ(µ(B)) ⊆ µ(B), by monotonicity. Since B∗ is big, µ(B∗) must be big. As B∗ is the intersection of all
big sets, this shows B∗ ⊆ µ(B∗).

Extra Credit: Construct an example in which the B∗ 6= A∗.

SOLUTION: An example function: µ : 2X → 2X , µ(S) = S for any S ∈ X . The function is monotone
as µ(S1) ⊆ µ(S2), for any S1 ⊆ S2 ⊆ X . As each set is both small and big, A∗ = X is the union of all
small sets, and B∗ = ∅ is the intersection of all big sets. Thus A∗ 6= B∗.

2. (15 Points) Prove that a set A ⊆ N is r.e. if and only if there exists a recursive set B ⊆ {0, 1, #}∗ such
that A = {w ∈ {0, 1}∗ : (∃y ∈ {0, 1}∗)[w#y ∈ B]}.
SOLUTION: Let’s show the direction from right to left first. As B is recursive, there is a STM MB

that decides B. We need to prove that the language A = {w ∈ {0, 1}∗ : (∃y ∈ {0, 1}∗)[w#y ∈ B]} is
r.e.. We construct a STM MA that works in the following way:

MA = “On input w:
1. Repeat the following for i = 1,2,3,...
2. Run MB on w#si.
3. If MB accepts, accept.”

Here s1, s2, s3... is a list of all possible strings in {0, 1}∗. We know that MA recognizes A, because:

For each w ∈ A, there exists a string y such that w#y ∈ B. So after a finite number of tests, y will be
found. As MB is a decider, each test of y is done in finite steps. Thus w will be accepted by MA in
finite steps.
For each w /∈ A, there is no string y such that w#y ∈ B. So MA will try to find y for ever, so it loops.

As STM MA recognizes A, A is r.e..

Then we prove the direction from left to right. Suppose A is r.e., then there is a STM MA that recognizes
A. we need to find a recursive language B such that A = {w ∈ {0, 1}∗ : (∃y ∈ {0, 1}∗)[w#y ∈ B]}.
Intuitively, we want B to accept w#C where C is the encoded string for configuration history of MA

running w. We construct a STM MB that decides B:

MB = “On input w:
1. If w is not of the form x#C1 → C2 → ...Cm, m ≥ 1 (where symbol → separates the configurations
Ci’s), rejects.
2. Repeat stage 3 for i = 1 to m
3. Run MA on w for the ith step. If MA halts and rejects, reject; Else if the current configuration of

1



MA is not the same as Ci also reject. Else if i = m and MA accepts w, accept.”
4. If MA still does not accept after m steps (Cm is not an accepting configuration), reject.

STM MB is a decider as it always halts in finite simulation steps of MA. Obviously it only accepts
those strings of form w#C where C is the encoded string of accepting configuration history of MA

running w. If w ∈ A, there exists an accepting configuration history y of MA running w, so MB accepts
w#y; If w /∈ A, there is no accepting configuration history of MA running w, MB rejects w#y for all
y’s.

3. (15+15+10 Points) Fix a deterministic universal Turing machine U such that K(U) = RE |{0, 1}. We
can view this U as computing a function Φ : N × N → N, where the output alphabet of U is assumed
to be {0, 1} and we identify the set {0, 1}∗ with N via the dyadic notation. Recall how transducers
define functions – on input 〈i, w〉, if v is the non-blank word that is being scanned by the work head
when U enters the accept state qA, then Φ(i, w) is the dyadic number v. If U(i, w) ↑, then Φ(i, w) is
undefined. Define

Φ :={φi : i ∈ N}
where φi : N → N be the function φi(w) = Φ(i, w). We define a function f to be partial recursive
if f ∈ Φ. Thus Φ is the function analogue of the class RE . Let sets Wi :={w ∈ N : φi(w) ↓} and
Ei :={φi(w) : w ∈ N, φi(w) ↓}. Thus, Wi, Ei are basically the domain and range of φ (Mnemonic: φi

is a map from the “west” set Wi to the “east” set Ei.) Prove the following:
(i) A set A ⊆ N is r.e. iff A = Wi for some i.
(ii) A set B ⊆ N is r.e. iff B = Ei for some i. HINT: to show that Ei is r.e. you need to “dovetail”
together a denumerable sequence of computations.
(iii) The set TOT :={i ∈ N : φi is total} is not r.e.

SOLUTION:

(i) Let’s prove the direction from left to right first. As the set A is r.e., there is a STM M that
recognizes it. We construct a function φa for it.

φa = “On input w
1. Run M on w.
2. If M accepts w, halt and output w. Else if M halts and rejects w, loop.”

For each w ∈ A, φa halts; For each w /∈ A, φa is undefined. So A = {w ∈ N : φa(w) ↓}.
Now prove the direction from right to left. This is trivial. If A = Wi for some i, we can construct a
STM M from φi. Compute φi(w), whenever φi halts, M accepts w. If φi does not halt, M does not
halt either. Since M accepts only all the strings in A, it recognizes A. Thus A is r.e..

(ii) Let’s prove the direction from left to right first. As the set A is r.e., there is a STM M that
recognizes it. We construct a function φa the same way as part (i).

φa = “On input w
1. Run M on w.
2. If M accepts w, halt and output w. Else if M halts and rejects w, loop.”

For each w ∈ A, φa halts and outputs w; For each w /∈ A, φa is undefined. So A = {φa(w) = w : w ∈
N, φa(w) ↓}.
Now prove the direction from right to left. If A = Ei for some i, we can construct a STM M from φi:

M = “On input w
1. Repeat the following for i = 1, 2, 3 ...
2. Compute φi for i steps on each string s1, s2, ...si.
3. If any computation halts and outputs w, halt and accept.”

Where s1, s2, ...si is a list of all possible strings.

For each string w ∈ Ei, on some string u, φi halts and outputs w, so M will accept w in finite steps.
For each string w /∈ Ei, φi will never find any string u, such that φi(u) = w, so M will loop for ever.
Thus STM M recogizes A.

2



(iii)Suppose not, the set TOT is r.e.. There is a recursive enumerator E enumerates it. Consider the
total function g(m) = φm(m) + 1 for each m ∈ N . Obviously g is computable. But as g differs from
each function φi, it is not included in the enumeration E. That’s a contradiction. Thus the set TOT
is not r.e..

3


