Honors Theory, Spring 2002, Yap Homework 3 Due: Wed Feb 27 in class

MOSTLY ABOUT RECURSIVELY ENUMERABLE SETS In the following, we will identify the set $\{0,1\}^*$ with \mathbb{N} via the dyadic notation. So we will interchangeably talk of (natural) numbers and binary strings.

1. (20 Points) In the notes on the Bernstein-Schröder theorem we showed a fixed point A^* for any monotone map $\mu : 2^X \to 2^X$. This fixed point was based on the idea of sets $A \subseteq X$ that are **small** in the sense that $A \subseteq \mu(A)$. (The set A is "small" relative to its image $\mu(A)$.) Now define a set $B \subseteq X$ to be **big** if $\mu(B) \subseteq B$. Show a fixed point B^* for μ based on big sets.

Extra Credit: Construct an example in which the $B^* \neq A^*$.

GENERAL COMMENT: Extra credit work is always optional, and should only be attempted after you solved the other problems. The points awarded depend on the nature of your solution.

- 2. (15 Points) Prove that a set $A \subseteq \mathbb{N}$ is r.e. if and only if there exists a recursive set $B \subseteq \{0, 1, \#\}^*$ such that $A = \{w \in \{0, 1\}^* : (\exists y \in \{0, 1\}^*) | w \# y \in B] \}.$
- 3. (15+15+10 Points) Fix a deterministic universal Turing machine U such that $K(U) = RE|\{0,1\}$. We can view this U as computing a function $\Phi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, where the output alphabet of U is assumed to be $\{0,1\}$ and we identify the set $\{0,1\}^*$ with \mathbb{N} via the dyadic notation. Recall how transducers define functions on input $\langle i, w \rangle$, if v is the non-blank word that is being scanned by the work head when U enters the accept state q_A , then $\Phi(i, w)$ is the dyadic number v. If $U(i, w) \uparrow$, then $\Phi(i, w)$ is undefined. Define

$$\Phi := \{\phi_i : i \in \mathbb{N}\}$$

where $\phi_i : \mathbb{N} \to \mathbb{N}$ be the function $\phi_i(w) = \Phi(i, w)$. We define a function f to be **partial recursive** if $f \in \Phi$. Thus Φ is the function analogue of the class RE. Let sets $W_i := \{w \in \mathbb{N} : \phi_i(w) \downarrow\}$ and $E_i := \{\phi_i(w) : w \in \mathbb{N}, \phi_i(w) \downarrow\}$. Thus, W_i, E_i are basically the domain and range of ϕ (Mnemonic: ϕ_i is a map from the "west" set W_i to the "east" set E_i .) Prove the following: (i) A set $A \subseteq \mathbb{N}$ is r.e. iff $A = W_i$ for some i.

(ii) A set $B \subseteq \mathbb{N}$ is r.e. iff $B = E_i$ for some *i*. HINT: to show that E_i is r.e. you need to "dovetail" together a denumerable sequence of computations.

(iii) The set $TOT := \{i \in \mathbb{N} : \phi_i \text{ is total}\}$ is not r.e.