
Honors Theory, Spring 2002, Yap
Homework 2

Due: Wed Feb 13 in class

MOSTLY ABOUT CONTEXT FREE LANGUAGES.

1. No credit work, as this exercise is self-rewarding :-). Recall the example of translating “The spirit is
willing but the flesh is weak” into Russian, and back again, producing “The vodka is strong
but the meat is rotten”. The sentence “Out of sight, out of mind” was translated into “Blind
idiot”. Try to outdo these machine translations produced in the early days of MT. [It only goes to
prove that this problem is too hard for machines.]

2. (10+15 Points)
For n ≥ 1, let Σn = {a1, . . . , an} be an alphabet with n letters. Define Ln ⊆ Σ∗

n to comprise those
words w for which there is some i = 1, . . . , n such that ai does not occur in w.
(i) Show that there is an nfa Nn with n + 1 states that accept Ln.
(ii) Show that every dfa tha accepts Ln has at least 2n states. HINT: why 2n?

3. (15+10 Points)
Let A, B ⊆ Σ∗. The right quotient of A by B is defined to be

A/B :={w ∈ Σ∗ : (∃u ∈ B)[wu ∈ A]}.

(i) Show that if A is context free and B is regular, then A/B is context free.
(ii) Use part (i) to show that the language {0p1n : p is prime, n > p} is not context free.

4. (10 Points Each) Prove or disprove that the following are context free:
(i) L1 = {w ∈ {a, b, c}∗ : #a(w) = #b(w) or #b(w) = #c(w) or #a(w) = #c(w)}.
(ii) L2 = {w ∈ {a, b, c}∗ : #a(w) 6= #b(w) or #b(w) 6= #c(w) or #a(w) 6= #c(w)}.
(iii) L3 = {w ∈ {a, b, c}∗ : #a(w) = #b(w) and #b(w) = #c(w) and #a(w) = #c(w)}.
NOTE: #a(w) counts the number of occurences of a in w.

5. (15+15 Points) (i) Construct an efficient algorithm that, on input 〈G, w〉 where G = (V, T, S, R) is a
grammar in Chomsky Normal Form and w a string, decide whether w ∈ L(G).
HINT: Use dynamic programming. For 1 ≤ i ≤ j ≤ n, let wij denote the substring ai · · · aj where
w = a1, . . . , an. Define Vij = {A ∈ V : A ⇒∗ wij}. How do you compute Vij if you know the sets
Vik, Vkj for all k = i, . . . , j?
(ii) What is the worst-case complexity of your algorithm, as a function of input sizes m = |G|, n = |w|?
There is an interesting low-level issue here: |w| and |G| must be suitably interpreted. Note that V, T
are arbitrary alphabets, but your algorithm must accept input with a fixed alphabet (say Σ). Hence
use the following convention: assume Σ contains the special symbols A, a, 0, 1 (among others), and
each symbol of V is encoded as a string of the form A(0 + 1)∗, and each symbol of T and w is encoded
as a string of the form a(0 + 1)∗. The definition of |G| can be taken to be the number of symbols in
writing down all the rules of G plus |V ∪ T |. Then each symbol in x has length equal to its encoding
as a string in L(a(0 + 1)∗)! Similarly, you need specify your encoding G over the fixed alphabet Σ and
tell us how to determine its length |G|.

1

