Homework 1
Due: Wed Feb 6 in class
In the following questions, when you describe a dfa or nfa, please use state transition diagrams only. Do not explicitly describe the δ function. This makes grading much easier. Be sure to use our convention for indicating start states and final states.

1. Construct dfa's to accept the following languages:
(i) $\left\{w \in\{0,1\}^{*}: w\right.$ has 0101 as substring $\}$.
(ii) $\left\{w \in\{0,1\}^{*}: w\right.$ has neither 00 nor 11 as substring $\}$.
2. Write regular expressions for (i) and (ii) in the previous question.
3. Construct nfa's to accept the languages indicated by the following expressions:
(i) $(01)^{*}(10)^{*}+00^{*}$.
(ii) $\left((01+001)^{*} 0^{*}\right)^{*}$.

Be sure to parse these regular expressions correctly when we paretheses are omitted.
4. Prove or disprove that each of the following languages is regular:
(i) $\left\{1^{n}: n\right.$ is divisible by 7$\}$.
(ii) $\left\{w \in\{0,1\}^{*}: w\right.$ is a binary number divisible by 7$\}$.
(iii) $\left\{0^{n} 10^{m} 10^{m+n}: n, m \geq 1\right\}$.
(iv) $\left\{w w^{\prime} \in\{0,1\}^{*}: w^{\prime}\right.$ is obtained from w by interchanging 0 and 1$\}$.
5. A letter homomorphism is a function $h: \Sigma \rightarrow \Gamma^{*}$ where Σ, Γ are alphabets. We can extend h to the function

$$
h: \Sigma^{*} \rightarrow \Gamma^{*}
$$

in the natural way, so that $h(v w)=h(v) h(w)$ for all $v, w \in \Sigma^{*}$. In particular, $h(\epsilon)=\epsilon$. If $A \subseteq \Sigma^{*}$, then define $h[A]=\{h(w): w \in A\} \subseteq \Gamma^{*}$. Show the following.
(i) If $A \subseteq \Sigma^{*}$ is regular, so is $h[A]$.
(ii) If $B \subseteq \Gamma^{*}$ is regular, so is that $h^{-1}[B]=\left\{w \in \Sigma^{*}: h(w) \in B\right\}$. HINT: start from a dfa M for B and construct one that, when it reads an input symbol a, tries to simulate M on $h(a)$.

