Honors Theory, Spring 2002, Yap Homework 1 Due: Wed Feb 6 in class

In the following questions, when you describe a dfa or nfa, please use state transition diagrams only. Do not explicitly describe the δ function. This makes grading much easier. Be sure to use our convention for indicating start states and final states.

- 1. Construct dfa's to accept the following languages:
 - (i) $\{w \in \{0, 1\}^* : w \text{ has } 0101 \text{ as substring}\}.$
 - (ii) $\{w \in \{0,1\}^* : w \text{ has neither } 00 \text{ nor } 11 \text{ as substring}\}.$
- 2. Write regular expressions for (i) and (ii) in the previous question.
- 3. Construct nfa's to accept the languages indicated by the following expressions:

(i) $(01)^*(10)^* + 00^*$.

(ii) $((01+001)^*0^*)^*$.

Be sure to parse these regular expressions correctly when we paretheses are omitted.

4. Prove or disprove that each of the following languages is regular:

(i) $\{1^n : n \text{ is divisible by } 7\}$.

- (ii) $\{w \in \{0,1\}^* : w \text{ is a binary number divisible by } 7\}.$
- (iii) $\{0^n 10^m 10^{m+n} : n, m \ge 1\}.$
- (iv) $\{ww' \in \{0,1\}^* : w' \text{ is obtained from } w \text{ by interchanging } 0 \text{ and } 1\}.$
- 5. A letter homomorphism is a function $h : \Sigma \to \Gamma^*$ where Σ, Γ are alphabets. We can extend h to the function

 $h:\Sigma^*\to\Gamma^*$

in the natural way, so that h(vw) = h(v)h(w) for all $v, w \in \Sigma^*$. In particular, $h(\epsilon) = \epsilon$. If $A \subseteq \Sigma^*$, then define $h[A] = \{h(w) : w \in A\} \subseteq \Gamma^*$. Show the following.

(i) If $A \subseteq \Sigma^*$ is regular, so is h[A].

(ii) If $B \subseteq \Gamma^*$ is regular, so is that $h^{-1}[B] = \{w \in \Sigma^* : h(w) \in B\}$. HINT: start from a dfa M for B and construct one that, when it reads an input symbol a, tries to simulate M on h(a).