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Honors Theory of Computation, G22.3550, Spring 2002; Yap; May 13, 2002.

FINAL EXAM (with SOLUTION)

Answer all questions. This is an OPEN book, in-class exam. Please
write only in complete English sentences.

1. (Short Questions, 10 Points Each)
Brief justification is necessary; you may cite any known results. DO NOT write more
than half a page for any part of this question (often 2 lines suffice).

(a) TRUE/FALSE: L = {anb2nan : n ∈ N} is context-free.
(b) Draw the quantum circuit to produce the following state 1√

2
(|000〉+ |111〉) starting

from |000〉.
(c) The following three statements cannot all be true:

(i) All reversible gates are quantum gates.
(ii) The control-NOT gate named T2 can copy any bit x, i.e., T2(|x, 0〉) = |x, x〉.
(iii) The No Cloning Theorem is true.

What is the apparent contradiction? Resolve it.

SOLUTION:
(a) FALSE: Here is a proof by contradiction. (The question is tricky because L looked
like some other languages known to be a CFL.) Assuming L is CFL, then the pumping
lemma says that if x ∈ L has length sufficiently long, then x = uvwyz ∈ L such that for
all i ∈ N, uviwyiz ∈ L. Clearly, vy must contain both a’s and b’s. If v contain a’s and
b’s, then v2 = . . . b . . . a . . . b . . ., which implies v2 is not s subword of x. Contradiction.
(b) You may recall that we can produce (|00〉+ |11〉)/√2 using a Hadamdard gate on
line 1, then use a control-NOT (or T2) gate on line 2 (using line 1 as control line).
Simply follow this circuit by another control-NOT gate applied to line 3 (using line 1
as control gate again).
(c) The seeming contradiction comes from (ii) saying that you can clone a bit, and
(iii) saying you cannot. Moreover, (i) tells you that you can regard the gate in (ii) as
a quantum gate. The resolution lies in the fact that statement (ii) is only true when
x is a classical state!

2. (Reduction, 20 Points)
Suppose A ∈ NP∩co-NP . Show that if B is Cook-reducible to A then B ∈ NP∩co-NP .

SOLUTION: Let A be accepted by an NP -machine M0 and co-A be accepted by a
NP-machine M1. Suppose T is a deterministic oracle machine that reduces B to A.
We construct an NP-machine (call it N) to accept B as follows: on any input x, we
simulate T until a query z is made. At that moment, we dovetail a computation of M0

on z, and a computation of M1 on z. If M0 accepts, we continue the simulation of T
from the ”yes” state of the query machine. If M1 acccepts, we continue the simulation
of T from the ”no” state. We accept iff T accepts. It is clear that N accepts x iff T (A)

accepts x. Hence B ∈ NP .

We also show that B ∈ co-NP . Construct a nondeterministic machine N ′ that is
similar to N above. Only difference is that if N accepts, then we reject, and vice-
versa.
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3. (Kolmogorov Complexity, 20 Points)
Let A ⊆ N. We say A is sparse if there is a constant C > 0 such that for all n
large enough, |{x : x ∈ A, x < 2n}| < nC . Give an upper bound on the function
f(n) = K(χA[n]|n) when A is a sparse and recursively enumerable. Here, χA[n] =
〈b0b1 · · · bn−1〉 where bi = 1 iff i ∈ A.

SOLUTION: (This is essentially Barzdin’s theorem for sparse set, and the proof is
exactly as for a similar homework problem!)

We claim that K(χ[n]|n) ≤ `(`(n)) + C for some C.

Let N be any deterministic Turing machine that accepts A. Construct a STM M that
on input 〈n, m〉, will dovetail the computations of N on the inputs i = 0, 1, . . . , n− 1.
When m of these computations accepts, then N outputs a string b0b1 · · · bn where
bi = 1 iff the acceptor for A has accepted i.

Note that M will loop if less than m of the computations of N accept. Clearly, if
χA[n] has m 1’s, then our machine N on 〈n, m〉 will output χA[n]. But by sparseness
of A, χA[n] has m ≤ lg(nc) = c lg n non-zero entries. Thus, KN(χA[n]|n) = `(m) ≤
`(`(n)) + c0, for some c0. By invariance, K(χA[n]|n) ≤ `(`(n)) + C for some C.

4. (Choice Computation, 20 Points)
Describe a polynomial time alternating machine that, on input (n, x, r), will accept iff
r is the n-order of x, i.e., x ∈ Z

∗
n and ordn(x) = r. You may assume that checking

whether a number is prime is in NP .

Give an algorithm with as few alternations as possible (one alternation suffice). What
is the number of alternations in your solution (you must explain your algorithm clearly
enough that this number is easy to see)?

SOLUTION:

On input (n, x, r), we first check that GCD(n, x) = 1 and that xr ≡ 1(modn). All
this in polynomial time. If check fails, we answer NO, else we continue. Then we
universally guess s < r and check that xs 6≡ 1(modn). If so, we reply YES.

There is only one alternation “round” in this answer. (Note: your answer should
justify some of the above assertions, etc)

5. (Quantum Computation, 40 Points)
Let U be a unitary transformation and |v〉 an eigenvector such that U |v〉 = ωφ|v〉
where 0 ≤ φ < 1 and, as usual, we write ω for ei2π.

U

|0〉

|v〉 |v〉

|?〉H H

Figure 1: Alternative primitive for phase estimation
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(i) Consider the circuit in Figure 1 that has two Hadamard gates and a control-U gate.
What is the output of this circuit on input |0〉 ⊗ |v〉?
(ii) Show that the probability of |0〉 on the control line is p0 = (1 + cos 2πφ)/2.
(iii) Suppose X is the number of heads in n tosses of a coin. If the coin has probability
p (0 < p < 1) of showing up heads, then

Pr{|p − (X/n)| > ε} ≤ 2 exp(−2nε2).

This is known as the “Hoeffding bound”. Suppose cos 2πφ = 0.b1b2b3 · · · in binary
notation. Using the Hoeffding bound as well as the quantum circuit, describe an
experimental procedure to estimate the first two bits b1, b2 so that

Pr{| cos 2πφ − 0.b1b2| > 1/8} ≤ δ (1)

where 0 < δ < 1 is given.
(iv) Outline a generalization of (iii), so that we efficiently estimate the first m bits of
cos 2πφ with error probability δ. That is, Pr{| cos 2πφ − 0.b1b2 · · · bm| > 2m+1} ≤ δ.
HINT: use the control-U2i

circuits (i ≥ 1) to estimate the bits in parallel.

SOLUTION:
(i) Begin with the state |0〉 ⊗ |v〉. After the first Hadamard gate, we get (|0〉 + |1〉) ⊗
|v〉/√2. After applying control-U , we obtain (|0〉+ ωφ|1〉)⊗ |v〉/√2. After the second
Hadamard gate, we get

((|0〉 + |1〉) + ωφ(|0〉 + |1〉)) ⊗ |v〉/2 = ((1 + ωφ)|0〉 + (1 − ωφ)|1〉) ⊗ |v〉/2.

(ii) The probability of |0〉 is |1+ωφ|2/4 = (1+ωφ)(1+ω−φ)/4 = (1+ωφ+ω−φ+ω0)/4 =
(1 + cos 2πφ)/2.
(iii) The idea is simply to measure the control line in this circuit n times, and if h is
the number of times that we get the state |0〉, then we would like to estimate p0 by
h/n. There are two steps to reach our goal of estimating c = cos 2πφ. The following
argument is slightly more general than what we ask you to show.

Initially let ε > 0 be left unspecified. This will be determined after we see what
restrictions on ε are needed. Let E be the event {|p0 − (h/n)| > ε}. We want the
following bound to hold:

Pr(E) = Pr{|p0 − (h/n)| > ε} ≤ δ. (2)

Hoeffding’s bound tells us that it is sufficient to choose n such that δ ≥ 2 exp(−2nε2),
or

n ≥ 1 + ln(1/δ)
2ε2

. (3)

Next, we re-express the above event E.

E = {|p0 − (h/n)| > ε}
= {|(1 + c)/2 − (h/n)| > ε}, c = cos 2πφ

= {|c − ((2h/n) − 1)| > 2ε}.
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Thus (2h/n) − 1 is to be our estimate for c. Suppose we choose the bits b1, b2, . . . , bt

such that
|((2h/n) − 1) − 0.b1b2 · · · bt| ≤ 2ε.

This is possible provided 2ε ≥ 2−t−1, or

ε ≥ 2−t−2. (4)

We then see that

{|c − 0.b1b2 · · · bt| > 4ε} ⊆ {|c − ((2h/n) − 1)| > 2ε} ∪ {|((2h/n)− 1) − 0.b1b2 · · · bt| > 2ε}
= {|c − ((2h/n) − 1)| > 2ε},

where the last equality follows from the fact that {|((2h/n) − 1) − 0.b1b2 · · · bt| > 2ε}
is empty.
Hence

Pr{|c − 0.b1b2 · · · bt| > 4ε} ≤ Pr{|c − ((2h/n) − 1)| > 2ε} = Pr(E) ≤ δ.

If we want to ensure that

Pr{|c − 0.b1b2 · · · bt| > 2−t} (5)

we just need 4ε ≥ 2−t or ε ≥ 2−t−2. Combined with (4), we can choose

ε = 2−t−2. (6)

From (3), we only have to choose

n =
⌈
(1 + ln(1/δ)22t+3

⌉
.

Note that the exam question asks for the case t = 2 only.
(iv) This is considerably harder to do, but we would be happy if you could sketch out
some of the issues that must be solved.

Before attempting the solution, the obvious question is “why not simply use the frame-
work of part (iii)?” The answer is, yes, part (iii) can be generalized to give as many
bits of precision as you like. The catch is that the number of measurements n will
grow exponentially with the precision: n = Ω(ε−2), or n = Ω(4p) if you want p bits of
precision. Hence for efficiency, you will need to use control-U2i

gates for i = 1, 2 . . .,
as in phase estimation.

A new complication arises: we are only estimating cos 2πφ, not φ. So when we apply
U2i

-gates, we are getting estimates for cos 2πφ2i. Hence you need to modify (iii) so
that you directly obtain estimates on φ rather than cos 2πφ. This can be done, but
requires more analysis.

We must answer the following question: if you know t bits of precision for cos 2πφ
(that is, you know c such that |c− cos 2πφ| ≤ 2−t), how many bits of precision do you
know about φ? It is easy to prove the upper bound

| cos(x + δx) − cosx| ≤ |δx|.
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Unfortunately, what we need is a lower bound. Using Taylor series with remainder,
we have

cos(x + δx) = cosx − δx sin(x + δ′)

where 0 ≤ δ′ ≤ δx. Thus

| cos(x + δx) − cosx| ≥ |δx sin(x + δ′)|

This means we must first bound x away from 0, π, 2π (otherwise the righthand side gets
arbitrarily close to 0. Assuming this has been done, so that we know some constant
c > 0 where

| cos(x + δx) − cosx| ≥ δx2−c

This means that
δx < 2−t+c.

At each stage i ≥ 0, we choose t = c + 5 to ensures that we can estimate 2πφ2i to
at least 5 bits of precision, and hence φ2i to at least 2 bits of precision. We obtain
obtain

φ = 0.φ1φ2φ3 · · · =
b2φc

2
+

⌊
22φ

⌋

22
+

⌊
23φ

⌋

23
+ · · · .

FINALLY, if we want to compute φ to p bits of precision with error probability at
most δ, we can make the error probability for estimating each bit to be δ/p. This
concludes the algorithm.


