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Lecture 4: Process Synchronization
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1 MiniQuiz

• Q: What is the other command that seems to go hand-in-hand with fork()?

A: exec* (7 variants of this command)

• Q: Suppose you have a Makefile that is ready made. How can you determine what actions you can
take in this Makefile?

A: Look at the ”targets” in the Makefile. These are the list of names that begin a colon (”:”) terminated
line. E.g. a line in the file

action1 hw1:

says that ”action1” and ”hw1” are names for the same target. You execute these actions by typing

> make action1

or

> make hw1

• Q: Give two reasons why keyboard editors are more efficient and more productive than WYSIWYG
editors, and one reason why people like WYSIWYG.

A: Here are two reasons for superiority of keyboards:

(1) Keyboard editors are more powerful because you can compose sophisticated and repetitive com-
mands using the keyboard. With WYSIWYG, this ability is limited.

E.g., You cannot tell WYSIWYG to ”search the next 100 lines of file, and replace each occurrence of
the word ”GOOD” to ”BAD”.

But in (say) vi/vim/gvim, you type this sequence:

:.,+100s/GOOD/BAD/g

(2) WYSIWYG editors requires hand-eye coordination. With keyboard editors, you can can even look
elsewhere if you know how to touch type!

Here is a reason why people seem to like WYSIWYG:

The learning curve for WYSIWYG is low – you can pick it up intuitively. The learning curve for
keyboard editors is steep. But the payoff is more than worth the effort.

By the way, I think gvim is superior to emacs because you generally can do things with much fewer
key strokes (because many basic facts about text files are built into the editor).

1



2 The MUTEX Problem

• One of the goals of an OS is to run a set of processes in such a way that each THINKS it has exclusive
use of the CPU and resources! In other words, we seek to ISOLATE processes from each other.

• Our goal in this lecture is to backtrack on this isolationist idea — we want to consider processes that
communicate with each other. This gives rise to so-called inter-process communication (IPC) issues.

• IPC has many purposes:

– parent-child communication (in UNIX, these are accomplished through ”pipes”) to coordinate block-
ing, termination, etc.

– communication to achieve non-interference of each other (coordination of shared resources)

– proper sequencing of actions across processes (perhaps the processes are working together to accom-
plish a common task)

– shared resource (memory or variables, files, devices)

– E.g., print spooler

To print a file, a process enters the name in the spooler directory. A printer daemon periodically checks
this directory, prints the file, and removes the entry from spooler directory.

• One IPC issue is the idea of a race condition.

Q: What is a ”race condition”?

A: When the outcome of two interacting processes depends on the speed or order in which the processes
execute commands, but the outcome ought not to depend on such orders of execution.

• Q: Give an example.

A: Let P and Q be processes that are both accessing a variable ”Balance”, initialized to 100.

o P: Balance++

o Q: Balance–

o Intuitively, after both processes are done, Balance=100.

o But we might get 101 or 99. HOW CAN THIS HAPPEN? HINT: the commands ”Balance++” and
”Balance–” are non-atomic.

o ANSWER: Balance++ is really (X=Balance; X++; Balance=X) or alternatively (READ(X,Balance);
INC(X); WRITE(Balance,X)) and X is a local variable. Similarly for Balance–.

Now imagine that the two sequences Balance++, Balance– of atomic actions are interleaved...

• SOLUTION STRATEGY:

We must prevent the interleaving of certain code fragments. This is called the mutual exclusion

problem (MUTEX problem). The code fragments which must be ”atomic” are called critical sec-

tions.

We can associate each critical section with a variable (called a resource or semaphore). When a process
is inside the critical section, we say it is accessing that resource/semaphore. Following Dijkstra, we
write P(S), V(S) for accessing and releasing the semaphore S.

• PROPERTIES:

1. [MUTEX] No two processes may be simultaneously access a resource.

2. [SPEED] The speeds and number of processes are arbitrary but, equality important, the speed of
each process is non-zero.

3. [NONBLOCK] Processes outside a critical section may not block other processes.

4. [FAIRNESS] Each process wanting to access a resouce will eventually be able to do so.
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Remark that Fairness is stronger than asserting ”no deadlock”. A scenario is where a fast process
keeps getting to its critical section (hence no deadlock), but a slower process is repeatedly denied
access (lockout). Stronger and weaker forms of FAIRNESS (4.) have been proposed. A weaker form
is this: it is fair as long as each process makes progress.

• NO INTERRUPT SOLUTION: Turn off interrupts.

We can allow the user programs to turn off interrupts, but this is clearly dangerous.

We can restrict this ability only to system processes. But this will not help user processes achieve
mutual exclusion (e.g., the Balance update problem).

Also, this would not help in multi-CPU situations.

3 Peterson’s Solutions

• Before we present Peterson’s solution, let us present a first attempt that turns out to be wrong.

Initially P1wants = P2wants = false

P1: P2:

Loop forever Loop forever

P1wants <-- true ENTRY P2wants <-- true

NO MAN ZONE

while (P2wants) {} while (P1wants) {}

critical-section critical-section

P1wants <-- false EXIT P2wants <-- false

non-critical-section non-critical-section

• WHAT IS wrong? Can get stuck if both P1 and P2 enters the NO MAN ZONE at the same time.
Neither can go forward!

The trouble was that setting ”want” before the loop. Try again:

• HERE is another attempt:

Initially turn=1

P1: P2:

Loop forever Loop forever

while (turn = 2) {} while (turn = 1) {}

critical-section critical-section

turn <-- 2 turn <-- 1

non-critical-section non-critical-section

This one forces alternation – no process can enter its CS twice in a row! This is unfair for a fast
process.

Specifically, it fails condition 3: a process in its NCS can stop another process from entering CS.
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• Many earlier “solutions” were found and several were published. The first correct solution was from
Dekker (1964). It is clever, but complicated (see below). Subsequent solutions with better fairness
properties were found (e.g., no task has to wait for another task to enter the CS twice).

• Peterson’s Solution (1981):

When first published, it’s simplicity was a surprise.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Initially P1wants=P2wants=false (Important!)

and turn=1 (Unimportant)

P1: P2:

Loop forever Loop forever

P1wants <-- true P2wants <-- true

turn <-- 2 turn <-- 1

while (P2wants and turn=2) {} while (P1wants and turn=1) {}

critical-section critical-section

P1wants <-- false P2wants <-- false

non-critical-section non-critical-section

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

• JUSTIFICATION:

Why is MUTEX achieved? Consider P1 (the argument is symmetrical with P2).

0. Process P1 enters its C.S. iff (P2wants=false OR turn=1).

1. If P2wants=false, it is surely safe. (Because P2wants=true throughout the moment P2 decides to
enter the C.S.)

2. If turn=1, it is also safe because it meant the last process to set turn was P2, and once P2 has set
turn to 1, P2 will be waiting for P1 to reset it to 2 or to P1want=false. Since turn=1 and P1want=true,
it it meant that P2 will be waiting.

VERIFY THE REMAINING 3 PROPERTIES WE NEED.

• REMARK:
1. This extends to any number of processes. See Operating Systems Review Jan 1990, pp. 18-22. See
Tanenbaum p.106.
2. This solution requires each process to know a unique value (e.g., its PID).
3. Note that Semaphores (e.g., P1want, turn) are GLOBAL variables in a very strong sense, in the
system-wide sense! Such variables are controlled by the OS. Normal ”global variables” in processes are
local to each process (they are only outside all ”scopes” of that process).

4 HARDWARE ASSISTED SOLUTIONS

• Test-and-Set Lock:

TSL (Reg, LockVar)
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It copies LockVar into register Reg, and stores ”1” (or any non-zero value) into LockVar. All this is
ATOMIC.

• ALTERNATIVE:

TAS (boolVar)

ATOMICALLY sets boolVar to TRUE and returns the OLD value of boolVar.

• Now implementing a critical section for any number of processes is trivial.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

loop forever

while (TAS(boolVar)) {}

CS

boolVar<--false

NCS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

• THE ABOVE solutions requires busy-waiting.

WHAT COULD GO WRONG: Process H and L with HIGH and LOW priorities. After L enters critical
region, H is busy waiting for L. Now both are stuck.

• Sleep and Wakeup Solution:

To avoid the busy waiting solution, we introduce two new system calls:

– SLEEP() causes process to block.

– WAKEUP(pid) causes process pid to unblock.

• P and V and Semaphores:

According to the dictionary, a ”semaphore” is any system of signaling. Traditionally (a hundred years
ago or more), semaphore systems are done using lights or flags.

HERE, semaphore is just a special variable (representing a resource).

• The entry code is often called P and the exit code V.

This PV-terminology came from the Dutch computer scientist Dijkstra, and it has meaning in Dutch.
We can use this to sove the critical section problem:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

loop forever

P(S)

critical-section

V(S)

non-critical-section

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

• We must check that this PV solution satisfies our requirements:

1. Mutual exclusion

2. No speed assumptions

3. No blocking by processes in NCS

4’. Reasonable Progress (weaker form of above condition 4)

• Remark:
a. Peterson’s solution requires shared variables across processes.
b. Peterson’s solution requires each process to know its processor number. The TAS soluton does not.
The definition of P and V does not permit use of the processor number.
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5 The Original Solution (OPTIONAL READING)

• We present Dekker’s solution here partly for historical reasons, but also to indicate its subtlety and to
contrast with the simplicity of Peterson’s solution.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Initially:

P1wants=P2wants=false (Important!)

turn=1 (Unimportant)

-----------------------------------------------------------------

P1: | P2:

|

Loop forever | Loop forever

|

P: P1wants <-- true | P2wants <-- true

|

A: while (P2wants) { | while (P1wants) {

if (turn=2) { | if (turn=1) {

P1wants <-- false | P2wants <-- false

B: while (turn=2) {} | while (turn=1) {}

P1wants <-- true | P2wants <-- true

} | }

} | }

|

C: critical-section | critical-section

|

V: P1wants <-- false | P2wants <-- false

turn <-- 2 | turn <-- 1

|

D: non-critical-section | non-critical-section

|

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

• Let us notice some salient features of this code. There are six interesting labeled ”points”: Points C
and D correspond to the CS (critical section) and non-CS parts of the code. Points P and V correspond
to the usual protocols we execute before and after a CS. Finally, there is a doubly nested while-loop,
where the ”outer-loop” is marked by point A and the ”inner-loop” by point B.

• Let us now show that Dekker’s solution satisfies the 3 requirements of the text:

• 1. Mutual Exclusion: We discuss process P1, but the situation is entirely symmetrical with P2. It is
important to exploit this symmetry.

1. First observe that ”P1want” is only set by process P1. But ”turn” is set by both processes.

2. When P1 exits from its outer-loop, but before it finishes its critical section (CS), we have the
condition [P2wants=false]. However, ”turn” can be 1 or 2.

3. Now [P2wants=false] can mean P2 is either (I) inside the if-statement of the outer-loop. or (II)
between points V and D of its code. In other words, P2 is NOT in its critical section.

4. Can P2 move into its own CS as P1 proceeds to its CS? There are two possibilities.

CASE (I): In this case, P2 in inside the if-statement of the outer-loop. Hence turn=1. But until
P1 changed ”turn” to 2, we will have turn=1. Until then, P2 will be stuck at point B. Thus P1
can safely proceed to its CS.

CASE (II): In this case, P2 has to pass through its non-CS before reaching its CS again. But
when P2 reaches point P, it will encounter P1wants=true. If turn=1, it will be stuck at point B
(as in CASE (I)). If turn=2, it will be stuck in the outer-loop. It can only get out of these loops
after P1 has safely gone through its CS.
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5. We conclude that when P1 is in its CS, it is safe.

• 2. Progress: a process that is not trying to enter the CS should not hold up other processes.

1. To be precise, we say that process P1 is not trying to enter the CS when it is in its non-CS (point
D in the code).

2. We must show that P2 will be able to get through both while-loops in finite time as long as P1
remains in its non-CS.

3. Notice that just before P1 enters its non-CS, it has (P1wants=false and turn=2). Now ”turn”
might be later changed to 1 by P2, but P1wants=false will not change as long as P1 is in non-CS.

4. We must prove that P2 will be able to enter its CS if it chooses to. Can P2 get stuck in its
outer-loop? This is clearly impossible since P1wants=false.

5. But can P2 get stuck in its inner-loop? (Remember that because we make no assumptions about
relative speeds of the 2 processes, P2 might be inside its outer-loop when P1 is in its non-CS).

6. But if P2 is inside its inner-loop, it means that turn=1. That means that ”turn” has changed by
P2 from 2 to 1 while P1 was in its non-CS. This meant that P2 has gone from point D to point
B. But that is impossible as P1wants=false throughout this time. P1wants=false means P2 will
never ever its outer-loop.

• 3. Bounded Waiting: we show a very strong version of this property – that P2 cannot get to its CS
twice in a row while P1 is waiting to enter its CS

1. Suppose P1 waited for P2 twice-in-a-row in its outer-loop. THIS IS TRICKY TO STATE PRE-
CISELY SINCE WE DO NOT ASSUME ANYTHING ABOUT RELATIVE SPEEDS OF PRO-
CESSES. SO WHAT DO WE MEAN? It means there are two time instances, t1 < t2, such that
the outer-loop of P1 found P2wants=true. But P2 has gone through its CS twice in the period
[t1, t2].

2. To show a contradiction, note that P1wants=true during [t1, t2]. Hence, when P2 goes from its
CS back to its CS again, it would have gotten inside its outer-loop. Moreover, turn=1 (set by
P2 itself). This meant that P1 would have been stuck inside its inner-loop. This contradicts our
assumption that P2 proceeded to its CS the second time.

3. Now let us consider the other possibility: Suppose P1 waited for P2 twice-in-a-row in its inner-
loop. WHAT DO WE MEAN? It means there are two time instances, t1 < t2, such that the
inner-loop of P1 found turn=2. But P2 has gone through its CS twice in the period [t1, t2].

4. After P2 goes through its CS the first time, it would set turn=1 at some time t3 ∈ (t1, t2). That
means ”turn” must be reset to 2 again in the period [t3, t2]. This is impossible since only P1 can
reset ”turn” but P1 was assumed to be inside the inner-loop.

6 Producer-Consumer Problem

• We have seen the simplest synchronization problem, MUTEX.

• There are many other similar ”toy” problems. E.g. Dining Philosophers’ Problem. The point of each
problem is to focus on a particular synchronization phenomena.

• We now consider a generalization of MUTEX to the CONSUMER-PRODUCER problem. Our bank
balance scenario fits this framework.

• The MUTEX SOLUTION CAN BE IMPLEMENTED as follows: IMAGINE that a variable S (”I want
the C.S.”) can only be true or false. It also has an associated ”blocked queue”.

Then P(S) sets S to true if it is false, otherwise blocks.

Similarly, V(S) either wakes up a process blocking on its queue, or if there are no blocked processes,
then it sets S to false.

Modern OS provides such mechanisms.
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• In MUTEX, the semaphore S is a binary variable. To generalize this, we now let S be a counting
variable, which holds any non-negative integer value.

P(S) will block if S=0; otherwise, it decrements S.

V(S) will block if S=maximum buffer size. Otherwise, it wake up some process blocked on S’s queue
if any. If there are no blocked processes, it simply increments S.

• INSTANCES of such problems:

Example: Producer=ttyin() keyboard interrupt service routine, Consumer=getchar().

Example: Producer=ttyout() serial interface transmit interrupt, Consumer=putchar().

Example: Our example of incrementing and decrementing a bank account balance is also an example.

Example: Print spooler

• Think of integer variable S as the number of items in a buffer. Say the buffer have maximum size of
N. So 0 ≤ S ≤ N .

Count variable, 0<=COUNT<=N

Producer:

loop forever:

item= produce();

if (COUNT == N) SLEEP();

insert(item)

COUNT++

if (COUNT == 1) WAKEUP(Consumer)

Consumer:

loop forever:

if (COUNT == 0) SLEEP();

item=remove(item)

COUNT--

if (COUNT == N-1) WAKEUP(Producer)

consume(item)

WHAT ARE RACE CONDITIONS HERE?

None if there is only one producer and only one consummer. But suppose there are 2 consumers: Then
we can have a race between the 2 consumer.

Similar if there are 2 producers, they could be racing (and overflow the buffer).

• Here is the JAVA View of the problem.

First, we define the interface for buffers:

public interface Buffer {
public abstract void insert(Object item); // insertion
public abstract Object remove(); // removal

}

Now we implement the interface:
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import java.util.*;

public class BoundedBuffer implements Buffer {
static final int BUFSIZE =5;
int count; // number of items in buffer
int in; // next free position
int out; // next full position
Object[] buffer;

public BoundedBuffer() {
count = in = out = 0;
buffer = new Object[BUFSIZ];

}
public void insert(Object item) {

while (count == BUFSIZE) ;
++count;
buffer[in] = item; // produces item
in = (in +1) % BUFSIZE;

}
public Object remove() {

while (count == 0) ;
–count;
item = buffer[out]; // consumes item
out = (out +1) % BUFSIZE;
return item;

}
}

• ANOTHER FORM OF SYNCHRONIZATION: the Buffer paradigm paradigm assumes that the pro-
ducer and consumer shares a common memory (the Buffer). There is another scenario (e.g., distributed
systems) where there is no common memory. Then we need the message passing paradigm.

Instead of a Buffer, we now have a communication channel:

public interface Channel {
public abstract void send(Object item); // sending
public abstract Object receive(); // receiving

}

• initially S=k

loop forever

P(S) SCS <== semi-critical-section V(S) NCS

Initially e=k, f=0 (counting semaphore); b=open (binary semaphore)

Producer Consumer

loop forever loop forever

produce-item P(f)

P(e) P(b); take item from buf; V(b)

P(b); add item to buf; V(b) V(e)

V(f) consume-item
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* k is the size of the buffer

* e represents the number of empty buffer slots

* f represents the number of full buffer slots

* We assume the buffer itself is only serially accessible. That is, only one operation at a time.

o This explains the P(b)–V(b) around buffer operations

o I use ; and put three statements on one line to suggest that a buffer insertion or removal is viewed
as one atomic operation.

o Of course this writing style is only a convention, the enforcement of atomicity is done by the P/V.

* The P(e), V(f) motif is used to force “bounded alternation”. If k=1 it gives strict alternation.

7 Review

• 1. Q: Explain the following terms: mutual exclusion, critical section, semaphore, deadlock.

A: A critical section is a contiguous portion of a process’s code. It has the property that if two
processors execute their critical section at the same time, error can occur.

Mutual exclusion is the problem of ensuring that at most one process is executing its critical
section at any moment in time.

Semaphore is just a special SYSTEM WIDE global variable used for achieving synchronization
(such as MUTEX).

Deadlock is when the system has no useful work done because each process is waiting for another,
but none can proceed.

2. Q: Name the 4 properties required in a MUTEX solution.

A: 1. MUTEX

2. ARBITRARY SPEED ASSUMPTION

3. NONBLOCKING (called ”progress” in text)

4. FAIRNESS (called ”bounded waiting” in text)

3. Q: ”Deadlock-free synchronization may not be fair”. Explain what this means.

A: Deadlock-free means there is at least one process that is doing useful work. But if one process
is constantly not allowed to make progress, it is unfair.

So deadlock is a system-wide property, but fairness is a property for individual processes.
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