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Lecture XIII

Cryptography

§1. Introduction

Cryptography is an crucial element in discussing security of Operating Sys-
tems. However, the development of cryptography began quite independently of
any OS motivation, and is in fact an ancient subject. Our main goals here is
to introduce the elements of public-key cryptography. One of the most surpris-
ing modern discoveries are the cryptographic applications of Number Theory.
Since 1980, the fascinating subject of cryptography is being developed in re-
markable new directions completely unpredicted by its previous history. Some
background in elementary number theory will be given here.

§2. Modern Cryptography

We make a brief excursion into cryptology and cryptography, the ancient art
and modern science of sending “secure” messages. As we shall see, “secure”
does not necessarily mean “secret”. Traditional cryptography arises in mar-
tial applications where there is an obvious need for secure communication. For
instance, a general will need to communicate the latest battle plans to his com-
manders in the field. There is today a growing commercial need for secure data
transmission, especially in electronic mail and fund transfers. In traditional
encryption systems, two parties (Alice and Bob) must first agree on a common
secret key K. Thereafter, if Alice wants to send Bob a secret message M , she
first encrypts the message as C = E(M,K) where E is the encryption function.
Bob, on receipt of the encoded message C can decrypt it as D(C,K) = M . The
pair M,C are also called the plaintext and ciphertext, respectively. Informally,
we also call M,C the message and the encrypted message. Let us denote the
space of texts (this includes plaintext or ciphertext) and space of keys by

T, K,

respectively. For instance, T can be the set of all bit-strings, or perhaps the
set of all bit-strings of length 512; K can be the set of bit-strings of length 256.
Then the encryption E and decryption D functions are

E : T×K→ T

D : T×K→ T.

Caesar cipher. This is a very simple system attributed to Julius Caesar
and well-known to children. It will serve to illustrate some of our concepts.
Assume T = Σ∗ where Σ is the set of integers modulo m. A key K is any
integer modulo m and the encryption function simply transforms each integer i
to i+K( mod m). Say m = 37 and messages are strings over the set of symbols

a, b, c, . . . , z,  , 0, 1, . . . , 9
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Using this as the collating sequence (i.e., a = 1, b = 2, . . . , z = 26,  = 27, 0 =
28, . . . , 9 = 37) the message

meet me at 7 tonite

can be encrypted as
nffu0nf0bu080upojuf

with K = 1.

Cryptographic Assumptions

(A) It is an axiom that plaintexts and ciphertexts are as readily distinguishable
as the difference between English and gibberish. I will call this the Fun-
damental Assumption of cryptography because, without this, much of this
subject would be meaningless (cryptography would reduce to pure coding theory
or mathematical information theory). This assumption really says something
about all natural languages, namely, they are highly structured and redundant
systems. Formally, we may assume1 an easily computable predicate

G : T→ {English,Gibberish}

that classifies all messages into plaintext (i.e., English for us) and the rest (gib-
berish).

Relative to some encryption function E, a ciphertext is just E(M) for some
plaintext M . Some properties of G may be postulated: it is certainly an axiom
that most elements in T are classified as gibberish. So it is highly unlikely that
a ciphertext E(M) is a plaintext when M is a plaintext. Otherwise, it would
be quite confusing since the transmission of ciphertext is often accompanied by
plaintext. E.g., the plaintext accompanying E(M) might say “This is sent by
Alice to Bob”.

In our applications below, we use the obvious but critical property of plain-
texts: they can be “understood” by a human agent, and could have the crypto-
graphically significant properties such as “self-authentication”. What does this
mean? Well, a message that tells you that a certain number divides another
number is self-authenticating because you can verify if it is correct.

(B) Another basic assumption is the insecurity of channels, that messages
can be freely intercepted2 by a third party. Two physical models of this are the
broadcast of ciphertext via radio waves or along insecure wires that can be
tapped. This is the minimal assumption about the enemy against whom we
want to secure our messages. It amounts to saying that the enemy can get hold

1In reality, we should allow plaintext and ciphertext to be in intermediate states arising

from local errors, and which can be corrected by some other mechanism. This is not too hard

in natural languages because of builtin redundancies. Error-correcting codes can be used to

correct ciphertext.
2This third party is actually a crucial element which helps to distinguish cryptography from

coding theory. In coding theory, the channel is “unreliable” but there is no malevolence. In

fact, one actually relies on certain statistical properties of the so-called “unreliable” channel!
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of some number of ciphertexts. Classical cryptography often stop at this level.
We can postulate more powerful enemies who can launch active attacks against
our system. The next level is where the enemy is in possession of some number
of plaintext-ciphertext pairs. An even more powerful enemy can launch the
chosen plaintext attack: this enemy can produce ciphertexts corresponding
to any number of plaintext of his choice. In practice, it means the enemy that
has gotten hold of our encryption device E(·,K). This is the espionage scenario
during the World War II, when the Allies captured the Enigma machine used
by the German military to encrypt messages.

(C) Modern cryptography assumes that the encryption and decryption schemes
(E and D above) are public knowledge. Hence, modern systems must be con-
structed to withstand chosen plaintext attacks. In the children example, it
amounts to telling the other kids in the block that we will be encoding message
using Caesar cipher. In contrast, ancient cryptology often amounts to the art
of dissimulation (or deception). Stories have been told of a message branded
onto the shaved head of a slave who is sent to the recipient after the hair has
regrown. One problem with such methods is their limited channel bandwidth,
and their being not amenable to modern digital technology.

The basic cryptographic problem then is to discover the key K, given E,D,
some ciphertexts and possibly other information. A brute force attack against
such a system is as follows: given a few ciphertexts C1, . . . , Ck, we can try for
each key K ∈ K to see if D(Ci,K) is a plaintext (this is easy by assumption (A)).
If K makes each Ci “plain”, then we may assume the system is compromised.
Hence, at the minimum, the security of a modern cryptosystem requires the size
of the key space K to be large enough to exclude the brute force attack. For
instance, |K| = 2512 may be big enough. Our Caesar cipher is insecure since it
is clearly susceptible to the brute force attack.

(D) Computational complexity is the basis for defining security of modern
cryptosystems. Thus, when we say above that the cryptographic attack on
Caesar cipher is “easy” we meant that the simple brute force attack is com-
putationally easy. Note that the Fundamental Assumption of cryptography is
necessary even here. We may identify “easy” with polynomial time, perhaps
in the randomized sense. In particular, we assume that the encryption and
decryption functions E,D must be polynomial time computable.

Other properties will be invoked as we go along. The bottom line is that
cryptography has not yet reached a maturity that permits a systematic logical
analysis of all its concepts.

Exercises

Exercise 2.1: What properties of English justifies the Fundamental Assump-
tion of cryptography? ♦

Exercise 2.2: Suppose that we extend Caesar cipher so that we operate on a
block of m ≥ 1 symbols at a time. Treating each block as a new symbol,
we have effectively increased the size of the key space from 37 to 37m. How
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can we implement a form of Caesar cipher on this enlarged alphabet? How
large can you reasonably choose m? Discuss the security of this “block
Caesar cipher”? ♦

End Exercises

§3. Public-key cryptography

An unfortunate property of the traditional crytographic systems is the need
for prior secure communication between Alice and Bob (to agree on the secret
K). In the mid-1970’s, Whitfield Diffie and Martin Hellman [?] proposed the
concept of a public-key cryptosystem. See [?] for a non-technical account of this
development, including the role of Ralph Merkle. In such a system, a participant
Alice chooses a pair of keys SA, PA where SA is the secret key known only to Alice
and PA is the public key known to all. We can postulate a public key directory
in which the public keys of all participants are published. Corresponding to
SA, PA are a pair of permutations,

ŜA, P̂A : T→ T

with the properties

1. ŜA(P̂A(M)) = P̂A(ŜA(M)) = M for all M ∈ T.

2. If A 6= B then ŜA(P̂B(M)) and P̂A(ŜB(M)) is gibberish for most M . Á
fortiori, they are both unequal to M for most plaintexts M .

3. ŜA (resp., P̂A) is easy to compute if we know SA (resp., PA), and difficult
otherwise. Such functions are called trapdoor functions.

Depending on the application, there are various cryptographic requirements
for sending and receiving messages. These requirements amounts to having
security in the face of various forms of cryptographic attacks. Some of these
requirements can be satisfied within the public-key cryptosystem, as we now
indicate. Besides the protagonists Alice and Bob, we further postulate (a) some
third party such as Carol or Carl who are generally unfriendly to Alice or Bob,
and (b) a judge Dee or judge Dick who can arbitrate between Alice and Bob.
Note that traditional cryptography does not have to deal with (b).

Protocol A: receiver authentication. Let us see how Alice can send Bob a
message M in such a system. Alice looks up the public key directory and finds
PB . She then sends Bob the encrypted message

P̂B(M).

Bob on receipt of P̂B(M) can recover the message by applying ŜB to P̂B(M).
Call this protocol A. In protocol A, Alice is assured that only Bob is able to read
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the message (no one else can compute ŜB with ease). In other words, protocol
A “authenticates the receiver” since the plaintext M remains secret to other
third parties.

Protocol A may be useful if Alice wants to send the FBI (=Bob) some secret.
Alice does not have to reveal her identity to the FBI with this protocol, and
in fact, it is impossible for Alice to convince anyone that she was in fact the
sender. Presumably in this application, it is not important for the FBI to know
who sent the message. The FBI does not need to trust the message, but it is
important that message is self-authenticating. Such a message may say: The
murder weapon is inside a PC at 251 Mercer Street.

Using an OS example, if Bob forgot his password and asks the password
administrator for his password, the system administrator can use Protocol A.

Protocol B: sender authentication. Suppose Alice wants to send a message
that authenticates her as the sender. Protocol A cannot do this. It is no use to
claim in the plaintext that “I, Alice, sent you, Bob, this” since Carol or
Carl could well have posed as Alice in this way. A solution is for Alice to send
the encrypted message

ŜA(M),

which Bob can decrypt by applying P̂A to the received message. If the result is
a plaintext, then Bob has “authenticated Alice as the sender”. Call this protocol
B. Note that this encrypted message ought to be accompanied by a plaintext
that says: “Alice sends you this”.

Sender authentication solves the imposter problem or masquarading problem.
Protocol B might be useful to the military commander who wants to send a
message to his men to lay down their arms. The message is public but it is
important that each receiver can authenticate the commander as sender.

An OS application is where a computer is asked by a remote user to execute
some secure command, such as to shut down. If the computer can authenticate
the sender of the command, the secure command may be executed.

Digital signature. As in human handwritten signatures, “digital signatures”
are meant to authenticate the sender. However, digital signature must be
message-specific in the sense that it cannot be transferred to another message.
Otherwise someone in possession of a message signed by Alice can reuse it to
forge a different message with Alice’s signature. Note that traditional signatures
is message-specific since it is written on the paper containing the message, and
assuming it is not easy to transfer the signature to a different piece of paper. In
the electronic medium, the latter is trickier to achieve. Protocol B implements
a form of digital signature in the case of sending a public message.

Reneging. Protocol B can be modified to solve the problem of reneging:
namely Bob can subsequently prove to a judge that (1) he received a message
M intended for Bob and (2) M came from Alice. In other words, we want both
sender and receiver authentication. Protocol B already achieves property (2).
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To achieve property (1), we modify protocol B so that Alice says explicitly in
the message M that it is addressed to Bob. [Bob will not act upon any message
that does not have this in plaintext.] This trick is interesting: we have resorted
to a non-mathematical property of plaintexts to achieve cryptographic security.

Private Bob on receiving the message “I, commander Alice, asks all

soldiers to surrender to the enemy at once” under this modified proto-
col B can safely act on this message. Of course, this only works if the message
can be public.

Protocols AB and BA. Suppose the message that Alice sent to Bob is meant
for him alone, and Bob must know that the message came from Alice. Unlike the
previous solution to the reneging problem, we now want the message to remain
secret to Alice and Bob. This situation might arise if Alice is the client of Bob
the stockbroker. Bob does not want to be liable for acting on Alice’s instructions
if Alice can later deny having sent him the message. [If Alice told Bob to sell all
her IBM shares immediately, and the next day, IBM shares increased in value,
there is incentive for Alice to deny having given the instructions.]

Here are two other protocols to solve this reneging problem for secret mes-
sages. Alice could send

P̂B(ŜA(M)) or ŜA(P̂B(M)).

Bob can decode both messages, in the obvious way. Call these protocol AB
and protocol BA, respectively. Is there a significant cryptographic difference
between the two protocols? There are many subtle differences, although both
can be used to achieve the same purposes with some care.

In protocol AB, only Bob could decode the sent message to ŜA(M). This
authenticates the receiver as Bob. Is the sender really authenticated? Of course,
no one but Alice could produce a string of the form ŜA(M). But Carl could have

stolen ŜA(M) (say by wiretapping Alice’s line) and forwarded it to Bob. Recall
that we assume that wiretaping is freely available to Carl. So the only way
that Bob can authenticate Alice as sender and know that he was the intended
recipient is (similar to our original reneging solution) for Alice to “sign her name
and explicitly address Bob” in plaintext M .

What about protocol BA? It seems that Bob can be sure that Alice sent
the message and surely it was addressed to him. But it is open to another
cryptographic attack.

Forgery or Fabrication. The reneging problem above asks for a protocol for
sending messages so that senders cannot later deny having ever sent them. The
converse is the forgery problem: can Carl forge a message to Bob (by posing as
Alice or by modifying an actual message from Alice to Bob)? [The former is the
imposter problem.] A protocol is immune to forgery if the message (ciphertext)
sent cannot be used or modified for use in a forgery.

Consider protocol BA again. The imposter Carl could intercept the cipher-
text ŜA(P̂B(M)), decode it into P̂B(M). Although Carl could not read the
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message M , he could resend the message ŜC(P̂B(M)) to Bob. Of course, this
may be silly for Carl to do since he does not know the contents of M , nor could
he modify M . But ensure that Carl does not attempt this, Alice should again
sign her name and explicitly address Bob.

Judge Dee and Judge Dick. We refine the receiver authentication prob-
lem. Simple receiver authentication means that Bob can convince himself that
the message was meant for him. Strong receiver authentication means he can
convince a judge as well. When is the strong version really different than sim-
ple version? Let us assume protocol A is used. The difference between Bob
convincing himself, versus Bob convincing a judge, is that Bob knows SB but
the judge does not. To convince the judge that the message was intended for
him, Bob has to reveal the secret key SB to the judge. If for some reason, Bob
does not wish to reveal SB to the judge, this protocol does not solve the strong
version. For this reason, we may distinguish between two kinds of judges: judge
Dee is trusted by all parties and judge Dick is not necessarily to be trusted by
any party. So protocol A is a solution under judge Dee but not judge Dick.

Similarly, we can have simple sender authentication and strong sender au-
thentication. Again, the difference is between Bob convincing himself versus
convincing a judge. Assuming the use of protocol B, to convince a judge that
a message was sent by Alice, Bob must reveal to the judge the contents of the
message. Again, this would work only if we have judge Dee and not Dick.

Summary of cryptographic parameters. The preceding scenarios indicate
some requirements of cryptographic protocols. Messages can be public or secret
(private). Private messages can weak (if we can share it with a judge) or strong
kind (if we cannot). Authentication of receiver or of sender come in several fla-
vors. The sender and receiver can be mutually trusting or mutually distrusting,
or perhaps there is only one-sided mistrust. The communication takes place in
an benign or hostile environment. The benign environment still poses threats
if the two communicating parties are not mutually trusting – this means that
cryptographic issues can still arise between Alice and Bob in the absence of
Carl or Carol. There are degrees of hostility. Two weak forms of hostility are
(1) there the communication channel is simply unreliable in a random manner,
and (2) there is an enemy who can only passively intercept messages. But we
may endow the enemy with more power, such as the ability to send deceptive
messages which are perhaps based on previously intercepted messages. Note
that in the above examples, a judge could well be an algorithm or a blackbox
that can check certain inputs. We can have various kinds of judges: some judges
are omnipotent (this amounts to having unlimited computational power), some
judges are trusted by only some of the parties in a dispute. For instance, if an
omnipotent judge sees a ciphertext of the form SA(PB(SA(M))), it should be
enough to convince the judge that M was sent by A to B.

Finally, there are other directions to extend these concepts: for instance,
multiple communicating parties. In many applications (say in electronic com-
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merce), we often need to have mechanisms for deferral of trust, leading to the
idea of “trust management”.

Exercises

Exercise 3.1: Here is another protocol for digital signatures: if Alice wants to
send Bob the plaintext M , she first computes M ′ := ŜA(M) and sends
Bob the “signed message” (M,M ′) using protocol A, with M ′ constituting

the signature. That is, she sends Bob the ciphertext P̂B(M,M ′). Now
Bob can decrypt this back to a pair (M,M ′). To verify that M was sent

by Alice, he can compute P̂A(M ′) and see that it is equal to M . Note
that Bob must somehow know that it was sent by Alice in order to know
the function P̂A(M ′) to use. One way is for Alice to announce herself in
plaintext in M . Compare this protocol with our protocol AB, and describe
any crytographic differences. ♦

Exercise 3.2: Receiver authentication is a 3-ary relation AuthenRec(A,B,M)
indicating that A is convinced that B sent A the message M . It can be
broken up into two parts: A is convinced that B sent M and A is convinced
that M is addressed to A. These can further be analyzed into more basic
forms: let Know(A, f) denote that A knows or is convinced of fact f . The
elementary facts in this case are SentBy(M,B) and SentTo(M,A). So:

AuthenRec(A,B,M) ≡ Know(A,SentBy(M,B))∧Know(A,SentTo(M,A)).

(i) Do a similar, logical analysis for the other concepts discussed above.
(ii) Discuss some properties (“axioms”) of the “Know” modality and the
elementary facts. ♦

Exercise 3.3: We can also distinguish between two kinds of secret messages.
Those that can be revealed to any judge, and those that cannot. Let us
call them weak and strong secrets, respectively. How is this viewpoint
different from the two kinds of judges? ♦

Exercise 3.4: Consider other forms of the reneging problem. In the previous
reneging problem, Bob presumaby does not have the cooperation of Alice.
Consider a scenario where both Alice and Bob are eagar to convince the
judge that Alice is the sender of the message to Bob. That is, Alice
is cooperative with Bob here. When does such a scenario arise? What
cryptographic consequences follow from this in the context of our above
discussions? ♦

Exercise 3.5: For each of the above scenarios, analyze and make explicit (i) the
requirements of the problem, and (ii) the assumptions on the public-key
cryptosystem. ♦

Exercise 3.6: Discuss the class of “alternating protocols”, protocol ABA . . . A[B]
or protocol BAB . . . B[A]. ♦
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Exercise 3.7: Investigate multiparty communication protocols. ♦

End Exercises

§4. Some Number Theory

Before presenting a specific public-key cryptosystem, we need some basic
facts from elementary number theory. They can be found in most elementary
texts on the subject; especially recommended are Hardy and Wright [?] and
Hua [?]. “Number” in this section always means a natural number n ∈ N.

Divisibility. The concept of divisibility is the starting point of number theory:
let m,n ∈ Z. We say m divides n, or n is a divisor of m, denoted m|n, if
there is some a ∈ Z such that n = ma. Non-divisibility of n by m is indicated
by m 6 |n. Note that every integer divides 0; but O divides only itself. A trivial
divisor of n is a divisor m such that |m| = n or |m| = 1. The division property
is this: given a, b ∈ Z, there are unique q, r ∈ Z such that

a = qb + r, (0 ≤ r < |b|).

We call q and r the quotient and remainder of a divided by b. The algorithm to
compute this q and r is called the division algorithm. We shall also indicate
the remainder using the infix notation r = (amod b).

Primes. A number n is prime if it has exactly two trivial divisors. A non-zero
number is composite it is at least one non-trivial divisor. Thus 0, 1 are neither
prime nor composite; 2 is the smallest prime and the only even prime. Usually,
we let p denote a prime. The Fundamental Theorem of Arithmetic says that
every number n ≥ 2 has a unique representation of the form

pe1

1 pe2

2 · · · p
ek

k , (k ≥ 1)

where p1 < p2 < · · · < pk are primes and ei ≥ 1 for all i.

Greatest common divisors. The greatest common divisor GCD(m,n) of two
integers m,n are defined as follows:

GCD(m,n) =

{
0 if m = n = 0
largest common divisor of m,n else.

When there is no confusion, we prefer to write (m,n) for GCD(m,n). Note that
(m,n) = (n,m) and (m, 0) = |m| and 0 ≤ (m,n) ≤ max{|m|, |n|}. We say m,n
are relatively prime (or m is relatively prime to n) if (m,n) = 1. Alternatively,
we say co-prime instead of “relatively prime”.

c© Chee-Keng Yap December 13, 2007



§4. Some Number Theory Lecture XIII Page 10

Euclidean algorithm. Given m ≥ n ≥ 1, the Euclidean algorithm computes
the GCD of m,n via the remainder sequence

m0,m1, . . . ,mk,mk+1 = 0, (k ≥ 1)

where m0 = m,m1 = n and for i ≥ 1,

mi+1 = (mi−1 modmi). (1)

Then mk is the GCD of m,n. We will shortly give a proof of this fact. Schönhager
(1971) has shown how to implemented this algorithm in time M(log m) log log m,
where M(b) = O(b log n log log b) is the time to multiply two b-bit integers.

The Extended Euclidean algorithm on m,n computes a pair of integers
s, t such that

sm + tn = (m,n).

More generally, suppose we want to relate each remainder mi to m,n using the
co-factors si, ti:

mi = sim + tin. (2)

The Euclidean algorithm can be extended to compute two auxilliary co-factor
sequences:

(s0, s1, . . . , sk, sk), (t0, t1, . . . , tk, tk).

For i = 0 and i = 1, these co-factors are easy to specify:

s0 = 1, t0 = 0, s1 = 0, t1 = 1

For i ≥ 1, it is not hard to see that the invariant (2) is preserved if we define

si+1 = si−1 − siqi, ti+1 = ti−1 − tiqi

where qi = ⌊mi−1/mi⌋. Indeed, we may rewrite the basic step (1) of the original
Euclidean algorithm in the same form:

mi+1 = mi−1 −miqi. (3)

In summary: we succinctly describe the generic step of the extended algorithm
as follows: for i ≥ 1,

qi ← ⌊mi−1/mi⌋;
(m, s, t)i+1 ← (m, s, t)i−1 − qi(m, s, t)i.

Let us now prove the correctness of the extended Euclidean (and hence the
plain Euclidean) algorithm. Namely, mk = (m,n). From the relation mk =
skm + tkn, we conclude that

(m,n)|mk. (4)

Conversely, mk−1 = qkmk+mk+1 = qkmk implies mk|mk−1. From equation (3),
we see that if mk divides two consecutive members mi,mi+1 of the remainder
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sequence, then it divides the preceding member mi−1. Since mk divides mk−1

and mk, we conclude it divided mk−2. Repeating this argument, we finally see
that mk divides every member of the remainder sequence. In particular, mk

divides m1 = n and m0 = m. Hence mk|(m,n). This, together witn (4) shows
that mk = (m,n), as desired.

The extended Euclidean algorithm shows that the GCD of m,n can be writ-
ten as a linear combination of m and n: sm+tn = (m,n). Note that if (m,n) = 1
then sm+ tn = (m,n) = 1 means that sm ≡ 1( mod n), i.e., s is the inverse of
m modulo n. We conclude: if m,n are co-prime then m has an inverse modulo
n and this can be computed by the extended Euclidean algorithm.

Residue systems. Let n be a number and a, b be integers.

• We say a is congruent to b modulo n, and writes (following Gauss),

a ≡ b( mod n),

if m|(a− b). Alternatively, a ≡ b( mod n) ⇐⇒ (amodn) = (bmodn).
For fixed n, ≡ is an equivalence relation. A complete residue system mod-
ulo n is a set of integers that contains exactly one representative from each
congruence (or equivalence) class. The additive group modulo n,

Zn := {0, 1, . . . , n− 1},

is a complete residue system modulo n. Note that Z0 = ∅ (the empty set).
Another complete residue system modulo n is {−n−1

2 ,−n−3
2 , . . . ,−1, 0, 1, . . . , n−1

2 }
for odd n. For a ∈ Zn, we can write −a for n − a modulo n; clearly
(−1)(−a) ≡ a( mod n) and (−1)a ≡ (−a)( mod n). We also use the
notation

Z
+
n := Zn − {0}.

• The power of congruence is that we can often treat them like equalities.
Some useful properties of congruence include:

a ≡ b( mod n).⇒ .
a

d
≡

b

d
( mod

n

d
)

where d = (a, b, b). Again,

ma ≡ mb( mod n).⇒ .a ≡ b( mod
n

d
)

where d = (m,n). For instance,

2n ≡ 2( mod n).⇒ .2n−1 ≡ 1( mod n)

provided n is odd.
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• If a and n are co-prime and a ≡ b( mod n) then it easily seen that b
and n are also co-prime. Any property such as co-primeness that holds
uniformly for equivalent numbers modulo n is called a modulus n property.
A reduced residue system modulo n is a set of integers that contains exactly
one representative from each equivalence class that is co-prime to n. The
multiplicative group modulo n,

Z
∗

n := {a ∈ Zn : (a, n) = 1},

is a reduced residue system modulo n. Again, Z
∗

0 is the empty set. Also,
Z
∗

1 = {0} (based on a technicality, we might say). It is easy to see that
Z
∗

n is closed under multiplication modulo n; it is a group because the
extended Euclidean algorithm above shows that every element in Z

∗

n has
an inverse. For instance, Z

∗

6 = {1, 5} and Z
∗

5 = {1, 2, 3, 4}. In general, for
n > 1, Z

∗

p = Z
+
p iff n is prime.

• We call a a quadratic residue of n if there exists an x such that a ≡
x2( mod n); otherwise a is a quadratic non-residue. Thus 1 is always a
quadratic residue of n. We may say quadratic residues are those elements
with square-roots. Again, we see that quadratic residuosity of a number
modulo n is a modulus n property.

Euler totient function. The Euler totient function φ(n) is defined as φ(n) =
|Z∗

n|, i.e., φ(n) is the number of co-prime equivalence classes modulo n. We thus
have

φ(0) = 0, φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2.

The following says that φ is a “multiplicative function”:

Fact 1.
(m,n) = 1 implies φ(mn) = φ(m)φ(n).

We leave the proof as an exercise.

Fact 2. For p prime and e ≥ 1,

φ(pe) = pe−1(p− 1).

In proof, note that if q = pe then x ∈ Zq − Z
∗

q iff p|x. But there are exactly
pe−1 such values of x, so |Z∗

q | = |Zq| − pe−1 = pe−1(p− 1).
Using the last two facts, we obtain a simple formula for φ(n) provided we

have a factorization of n. For instance, if n = 25 · 3 · 53 then φ(n) = 25(2− 1) ·
2 · 52(5− 1) = 2852.

Fact 3 (Fermat-Euler Theorem).

(m,n) = 1 implies mφ(n) ≡ 1( mod n).
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In proof, suppose a1, . . . , aφ(n) is a reduced system modulo n and (m,n) = 1.
Then we see that ma1, . . . ,maφ(n) is also a reduced system modulo n. Thus,
modulo n, we have

φ(n)∏

i=1

ai ≡

φ(n)∏

i=1

mai ≡ mφ(n)

φ(n)∏

i=1

ai.

But each ai is invertible and so can be can cancelled in this equivalence, giving
1 ≡ mφ(n)( mod n), as desired.

Corollary 1 (Fermat’s little theorem). If p is prime, mp−1 ≡ 1( mod p) for
m ∈ Z

+
p .

Solving Linear Congruences. Consider the following congruence

12x ≡ 9 mod 15 (5)

to be solved for x. It is easy to see that x = 2 is a solution. Next consider solve
the following:

12x ≡ 5 mod 15.

It may take a moment of searching to conclude that this congruence has no
solution. [In proof, suppose it has a solution. Then 12x + 15z = 5 for some
z ∈ Z. Since 3 divides the left-hand side 12x + 15z, it must divide the right-
hand side 5. This is a contradiction.] In general, we want to solve the linear
congruence

ax ≡ b( mod n) (6)

where a, b ∈ Zn. The following lemma tells us when a solution exists.

Lemma 2. Let d = (a, n). The congruence (6) is solvable if and only if d|b.

Proof. (⇒) The argument proceeds as in the example above. Suppose (6)
has a solution. Then b = ax+nz for some z ∈ Z. Since d divides the right-hand
side ax + nz, it must divide the left-hand side b.
(⇐) Suppose d|b. Then we can express a, b, n as

a = a′d, b = b′d, n = n′d.

Consider the modified congruence

a′x′ ≡ b′( mod n′).

Multiplying both sides by (a′)−1, the inverse of a′ modulo n′, we obtain x′ ≡
b′(a′)−1( mod n′). Thus x′ = b′(a′)−1 + n′z for some z ∈ Z. If we multiply
this equation by a = a′d, we obtain ax′ = a′db′(a′)−1 + a′dn′z = b + a′nz. This
shows that x′ is a solution to (6). Q.E.D.

As a corollary of the proof, we get
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Corollary 3. If (6) has a solution, then the solution is given by

x = (b′(a′)−1 modn′)

where a′ = a/d, b′ = b/d, n′ = n/d and (a′)−1 is the inverse of a′ modulo n′.

In example (5), d = (12, 15) = 3 and hence a′ = 12/3 = 4, b′ = 9/3 = 3
and n′ = 15/3 = 5. Hence (a′)−1 = 4 since a′ · 4 ≡ 1( mod 5). The solution is
therefore x = b′(a′)−1 modn′ = 3 · 4mod 5 = 2.

Next, notice that the (5) in fact has three distinct solutions: x = 2, 9, 14. In
general, we have:

Lemma 4. The equation ax ≡ b( mod n), if it has any solutions, has exactly
d = (a, n) solutions. In fact, modulo n, these d solutions are congruent to

x0 + in/d, (i = 0, 1, . . . , d− 1)

where x0 is any solution.

Proof. From the corollary, we know that if there is a solution, then d|b. As
before, let b = b′d, a = a′d, n = n′d. For any solution x0, write

xi := x0 + in′ (i = 1, 2, . . . , d− 1).

It is easy to check that each xi is also a solution: axi = ax0+ain′ ≡ b+a′in ≡ b(
mod n). We note that each of the xi’s are also distinct solutions modulo n. To
see this, suppose 0 ≤ i < j < d and xi ≡ xj( mod n). This implies n|(xi − xj)
or n|(i− j)n′. This gives the contradiction that d|(i− j) since i− j < d.

Finally, we must show that there are no other solutions. Let y = xi + δ
(0 < δ < n′) be another solution (modulo n, any other solution must have this
form for some i). Thus ay ≡ b + aδ ≡ b( mod n). This means n|aδ, or n′|a′δ.
Since (a′, n′) = 1, this means n′|δ, contradiction. Q.E.D.

Finite Groups. We have introduced two finite groups: the additive group
Zn and the multiplicative group Z

∗

n. Lagrange’s index theorem for finite groups
says that if H is a subgroup of G then |H| divides |G|. We call |G|/|H| the
index of H in G, denoted G : H.

Fact 4. Z
∗

n is a cyclic group iff n = 2, 4, pe or 2pe, where p is an odd prime
and e ≥ 1.

A generator g ∈ Z
∗

n of the cyclic group is called a primitive root of n. If
g is such a generator, then the discrete logarithm or index of x ∈ Z

∗

n (to base
g, modulo n) is the number i ∈ Z

∗

n such that gi ≡ x( mod n). We write
indg,n(x) = i for this index. If g, n are understood or irrelevant, we simply
write indn(x) or ind(x).

Fact 5 (Discrete logarithm theorem). If g is a primitive root of n then gx ≡ gy(
mod n) iff x ≡ y( mod φ(n)).
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Chinese remainder theorem. Let m =
∏k

i=1 mi where the mi are co-prime
in pairs. Define the map

f : Zm → Zm1
× · · · × Zmk

where f(b) = (b1, . . . , bk) where b ≡ bi( mod mi) for all i. The Chinese remain-
der theorem says that f is an isomorphism of rings:

f(−b) = −f(b)

f(b + c) = f(b) + f(c)

f(b · c) = f(b) · f(c).

The right-hand side of these equations needs to be clarified since they describe
operation on k-vectors. The operations are to be applied in a componentwise
manner, and for the ith component, the operations are modulo mi. Both f and
f−1 can be computed in polynomial time.

Exercises

Exercise 4.1:
(i) Say that a ∈ Z

∗

p belongs to exponent m if, modulo p, am ≡ 1 and ai 6≡ 1
for i = 1, . . . ,m − 1. Give a polynomial time algorithm to determine the
exponent of any number a ∈ Z

∗

p. Thus we can verify in polynomial time
if a is a primitive root of p.
(ii) Give a method to find a primitive root of p. HINT: if a belongs to
exponent m and a′ belongs to exponent m′ and m′ ≤ m < p, find b
belonging exponent > m. ♦

Exercise 4.2: (a) The Fibonacci numbers, Fn, n ≥ 0, are defined by the recur-
rence

Fn+1 = Fn + Fn−1, n ≥ 1, F0 = 0, F1 = 1.

Clearly Fn can be evaluated, by using this recurrence, in T (n) = O(n)
arithmetic operations. Show a method that is asymptotically faster than

O(n). What is T (n) for your method? HINT: let M =

(
0 1
1 1

)
. How

are the entries in Mn related to the Fibonacci numbers?
(b) Given two numbers F̃0 > F̃1 > 0 we can define the sequence F̃2, F̃3, . . .
where F̃n+1 = F̃n−1− F̃n. This defines a decreasing sequence of numbers.
We want an algorithm to check if there exists an n > 0 such that F̃n = 1
and F̃n+1 = 0. If such an n exists, the algorithm returns this n, otherwise
it returns 0. Note that if such an n exists, then F̃i = Fn−i for all i =
0, . . . , n. Describe a method that has the same asymptotic complexity as

in PART (i). HINT: N =

(
−1 1
1 0

)
is the inverse of the matrix M . ♦

End Exercises
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§5. The RSA cryptosystem

So far, we have been using facts about public-key systems without actually
showing that they exist. We now present one such cryptosystem which was
suggested in 1976 by Rivest, Shamir and Adleman [?]. It is necessary to assume
that T = ZN for some arbitrary but large integer N . For instance, N may be
2300. This is not a serious restriction, since if the user has a larger message, it
can be broken down into blocks of lg N bits. The pair of keys SA, PA that a
prospective participant (call her Alice) must choose is obtained as follows:

• Pick a pair of primes p, q such that pq > N (in our example where N has
300 bits, we can let p, q each be more than 150 bits).

• Compute n = pq and φ(n) = (p− 1)(q − 1).

• Pick an odd number e < φ(n) such that GCD(e, φ(n)) = 1. This is easy:
randomly pick an odd number e′ less than φ(n), and compute the d =
GCD(e′, φ(n)). Then let e = e′/d.

• Compute d, the multiplicative inverse of e mod φ(n).

• Now set PA := (e, n) and SA := (d, n). We define the permutations P̂A, ŜA

as follows:

P̂A(M) = Me modn, ŜA(M) = Md modn

for all M ∈ T. Note that ‘e’ and ‘d’ denote (respectively) ‘encode’ and
‘decode’.

It is not hard to see that if n has B bits then the encoding and decoding
functions can be performed in O(B3) time. Why are the encoding and decoding
functions inverses of each other? To see this,

P̂A(ŜA(M)) = ŜA(P̂A(M))
= (Med modn)
= (M1+cφ(n) modn) (for some c ∈ Z).
≡ M mod n.

This equivalence follows from the Fermat-Euler theorem if (M,n) = 1. What if
(M,n) > 1? In that case, we claim:

M1+cφ(n) = M1+c(p−1)(q−1) ≡M( mod p)

There are two cases: if (M,p) = 1, this follows by Fermat’s little theorem, and
if p|M then the asserted equivalence is the trivial 0 ≡ 0( mod p). The same
argument holds when we replace p with q: (Med modn) ≡ M( mod q). By
the Chinese remainder theorem, we conclude that (Med modn) ≡M( mod n).
Since 0 ≤M < n, this implies (Med modn) = M , as desired.

c© Chee-Keng Yap December 13, 2007



§5. The RSA cryptosystem Lecture XIII Page 17

Worked Example. Let N = 210. To use this system, the user must pick a
pair p, q of primes, each at least 5 bits long (bigger than 32).

Suppose Alice picks p = 47 and q = 59, so that n = 2773 and φ(n) = 2668.
She then chooses d = 27. Using the extended Euclidean algorithm, he computes
e = 1087. Thus, his public key is (n, e) = (2668, 1087) and his private key is
(n, d) = (2668, 27).

Similarly, Bob picks p = 37 and q = 31 so that n = 1147 and φ(n) = 1080.
He then chooses (d, e) = (7, 463).

Now, Alice wishes to send the message 294 to Bob. She first applies her
secret key to encode 294 as 2941087 mod 2773 = 1061. Then she applies Bob’s
public key to encode 1061 as 1061463 mod 1147 = 391.

When Bob receives 391, he applies his secret key and then Alice’s public key
to recover the message. Check that Bob will recover the message sent.

Other Issues.
(A) Security of RSA. In what sense is the RSA system secure? It is clearly not
absolutely secure against an enemy that has “exponential” computing power,
or enough computing power to factor numbers. This is because the secret key
can be determined once we factor n = pq. Basically, proving the security of
the RSA system should amount to showing that the function f : PA 7→ SA is
not computationally tractable (non-polynomial time computable). This is not
known. It is clear that the function f can be reduced to either the factorization
of integers or the efficient computation of the Euler φ-function. In fact, Miller [?]
has shown that factorization and computing the φ-function are polynomial-time
equivalent. But it is not known if computing f is polynomial-time equivalent
to the factorization of integers. The function ŜA illustrates the concept of
a “trapdoor function”, which is any function that (i) is easy to compute with
special knowledge (the trapdoor key, SA), and (ii) is difficult to compute without
this knowledge.
(B) Integrity of the Public Key File. We need a trusted authorithy to
handle the public key file. A user needs to know that a pair (A,PA) in the file
(for some user A) is trustworthy. We do not want B to insert a pair (A,PB)
into the public key file, fooling us to send a message to A that B can wire-tap
and read! In some applications, we need some kind of identity authentication
or identify registration. E.g., A is just a name (string identifier) in the Public
Key File, and in mass market applications, it would be very confusing if A can
be accidentally confused with another well-known identity. For instance, in a
listing of companies, we expect a company named “IBM” to be nothing else
but the Big Blue. Of course, this problem is already solved by the concept of
trade-marks.

Exercises

Exercise 5.1: Generalize the argument that (Med modn) = M . Suggest a
cryptographic application for the choice of n = pqr where p, q, r are dis-
tinct primes. ♦
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Exercise 5.2: The following are consecutive prime numbers:

p0 = 65, 521; p1 = 65, 537; p2 = 65, 539; p3 = 65, 543; p4 = 65, 551; p5 = 65, 557

Note that p1 = 216 + 1 is the F4 a Fermat prime. Let N = 232 =
4, 294, 967, 296. GRADING NOTE: in the following, please organize to
explicitly show all your computations, so that we only need to verify your
steps.]
(a) Using these prime numbers, construct a pair (PA, SA) of public and
private keys for Alice; similarly construct (PB , SB) for Bob.
(b) Compose and send the following messages using the RSA scheme and
the keys constructed in part (a). You may use any appropriate protocol
(A, B, AB or BA or something else). Use the simplest protocol possible.
If a particular task is impossible to solve, then argue why. Recall that you
may need to exploit the ability of plaintext to “self-authenticate”. If the

• General Alice wants to send a message to all her troups to lay down
their arms.

• Informer Alice wants to tell the FBI agent Bob that her brother stole
the Rembrandt and the loot is to be found in their basement. But
she wants to remain anonymous.

• Tycoon Alice is in her hideout in Bermuda and wants her Wall Street
stockbroker Bob to sell all her shares of Microsoft.

• Gangster Alice wants to make a deal with arch-enemy gangster Bob:
she will tell Bob where to find his favorite lost poodle if he tells Alice
who killed her brother.

♦

Exercise 5.3: Class Project: implement an RSA system and send each other
secret messages. To reduce the number of messages, we may divide the
class into groups of 2 or 3 students. Make the following assumptions. Each
pair of keys (n, e), (n, d) has the property that n is more than 128 bits (but
less than 130 bits). One way to ensure this is to generate n = pq where p
and q are each 65 bits long. We suggest that you should program in some
programming language that already has a bigInteger package. Messages
or plaintexts is an arbitrary ascii string (stored as a file).

(a) Write a program called CONVERT that takes such a file, and output
another file that contains the original string broken up into blocks of 16
characters (the last block can be padded with blanks). Each of these
blocks are interpreted as a 16-digit base 28 number. This number is then
written out as a decimal string. The output of CONVERT is a sequence of
lines, each line holding the decimal string representing a block. In general,
an ascii file that contains one (arbitrary length) decimal integer per line
is said to be in STANDARD FORM.
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(b) Write another program UNCONVERT that takes the output of convert
and reconstructs the original plaintext.

(c) Write a program CRYPT that takes a key of the form (n, e) and a file
in STANDARD FORM and outputs another file in STANDARD FORM,
where each integer in the input has now been encrypted using the key
(n, e). Note that CRYPT can be used for encrypting as well as decrypting
in the RSA system.

(d) Write a program to generate keys generate pair of keys (n, e), (n, d)
suitable for the RSA system (and conforming to our requirements above).
To generate prime numbers, use the primality testing algorithms in the
next lecture (XIX). Generate one such pair for yourself, and publish one
of them for your class to read.

(e) Send to all the other groups of the class a secret message using either
the AB- or BA-protocol. Inform your class instructor of your messages.

(f) When you receive ciphertexts from the other groups, decrypt them.
The Fundamental Assumption of Cryptography says that you can unam-
biguously recover the message even though you are not told whether the
AB- or BA-protocol is used. Inform your class instructor of the messages
you received.

♦

End Exercises Exercises

Exercise 5.4: ♦

End Exercises
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