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Lecture XI

File Systems

§1. Introduction to File Systems

• Computers have different kinds of memory, as typified by the memory hi-
erarchy. Among these, the secondary memory (popularly known as disk
memory) is the most familiar to users. That is because disk memory is
logically organized into a file structure, and this file structure is largely
determined by users: they can create, modify and delete files in this struc-
ture.

Disk memory is non-volatile, meaning that it maintains its information
even after the computer is shut off. Hence it serves as the permanent
repository of data in the computer. In contrast, the main memory is
volatile and must be loaded with information from disk when the computer
starts up.

• Physically, the disk memory is distributed over some geometry that de-
pends on the particular device. Each disk is a stack of platters (like a
CD) ranging from 1.8 to 5.25 inches. Each platter has two sides, called
a cylinder (a somewhat confusing terminology). The surface is divided
into discrete memory units along independent dimensions: it is divided
into concentric circular tracks, and also into sectors by radial lines. These
cylinders are covered with magnetic substrate, so that each unit of mem-
ory can be magnetized in one of two orientations, representing a bit of
information. Thus each memory bit has a physical address given by a
triple (cylinder, sector, track). There is a reading arm that can simulta-
neously read a given sector/track of all the cylinders. Thus, if there are 8
cylinders, then we can view the 8 bits that are read at an instant.

• We will assume the addressable units of memory are byte-size (=8 bits).
Instead of bytes, one could assume other units such as words (= 4 bytes).

Conceptually, we regard physical memory as an linear array of bytes, in-
dexed from 0 to some maximum value. In this linear array, the index of a
byte is called its address.

The view of disk memory as a linear array represents a slight abstraction
beyond the geometry of the disk device. There is a corresponding problem
of translating linear addresses to the device address space (e.g., cylinders,
sectors, tracks) that can be handled by device drivers.

• The main problem of file system implementation is to provide a logical
(or user) view of the physical memory. For our purposes, this logical
view will be a collection of memory units called files which are in turn
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organized into a hierarchical structure. Each file is logically an array of
bytes.

To support this hierarchical structure, we classify files into one of two
types: regular files or directory files. The latter represents a collection
of files (regular or directories).

• Files attributes

1. File name: human readable string

2. Identifier: a number that is the file system

3. Type: ascii, binary, graphics, etc

4. Location: physical address

5. Size

6. Protection:

7. Time, Date, Ownership: creation, last modification, last use, etc.

These file attributes are useful in implementing functions for protection,
security, monitoring and search.

Files can store data of various types: E.g., source, binary, graphics, sound,
etc.

But for the present purposes, these distinctions are irrelevant.

Remark: file name typically has 2 parts (second part is the extension,
indicating type for some systems)

• There is a file directory, also in secondary storage, for this info.

• File Operations:

1. Create: find space, create directory entry

2. Write: depends on current location

3. Read: depends on current location

4. Seek: change the current location

5. Delete:

6. Truncate:

• Open and Close:

Since read/write/seek, etc, has nontrivial initialization cost, most OS re-
quires that we must first OPEN a file before we can do these operations.
Hence we also need to CLOSE a file when done.

There is a list of OPENED files (per process, and system-wide).

The per-process list of OPENED files points to the system-wide list.

We need these info for the per-process opened files:
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1. File pointer: current location

2. File-open count: closes file when it reaches 0

3. Memory location: location in main memory about file

4. Buffer: this is sometimes used to speed up I/O.

5. Access rights:

§2. File Allocation Methods

See section 11.4, p.421, Silbers. (Edn.7)

• We begin with the problem of managing physical memory. Recall that
this is conceptually a linear sequence of bytes.

• Disk memory is partitioned into two parts: “free memory pool” and “al-
located memory”. The latter is presumably used by the file system.

Each byte of memory are either free or allocated, depending on which
partition they belong. There are two basic functions which move bytes
from one partition to the other:

– Alloc(n) will move n contiguous bytes from the free memory pool to
allocated memory. The address of the first of the n bytes is returned.

– Free(ADDR,n) will move n contiguous bytes, starting at address
ADDR, from allocated memory to physical memory pool.

There is an asymmetry in these 2 requests: the Alloc(n) request could fail,
and return a NULL pointer if there is no contiguous n bytes in the free
memory pool. On the other hand, Free(ADDR,n) will always succeed.

• The allocation problem to implement the Alloc/Free functions.

We have seen this problem before, in memory allocation. There is an
obvious solution to this problem, but it leads to serious problems of frag-
mentation. The way out of this dilemma was to allocate only fixed size
units called pages or frames.

We use the analogous solution here: we divide the physical memory into
fixed size units called blocks. Thus blocks is the analogue of pages and/or
frames.

We re-interpret “Alloc(n)” to mean the request for n blocks, or “Free(ADDR,n)”
as request to free n blocks. Now, every block is either free or allocated.

• How to choose block sizes? Typical hardware disk sectors (“disk blocks”)
are typically 512 Bytes. Block sizes tend to be small multiples of this.

Most often, block size ranges from 512B to 4KB.

Sometimes, there is an additional fragment size, which is between 512
Bytes and block size. A file would use the regular block sizes for all but
the last one.
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Yet another variation is to allow any power of 2 of disk block sizes. This
means we can have the sizes 512B, 1KB, 2KB, 4KB, etc.

• We next give some standard solutions to the Free/Alloc problem.

SOLUTION ONE: FreeList.

The simplest solution to the Free/Alloc problem is this: keep all the free
blocks is a singly linked list called the FreeList. See figure.

FIGURE: free-list

Alloc and Free are easily solved: for instance, we can assume that Alloc()
returns a linked list of n blocks. Free() simply appends the freed blocks
(assumed to be a linked list) to the FreeList.

• Issues: to get n blocks, we need to read n blocks from disk. This is
inefficient, since it is often sufficient to return the addresses of n blocks.

• SOLUTION TWO: Organize the free blocks into a B-tree. Thus, all the
internal nodes of the B-tree are “directory blocks”, meaning that they
hold a number of addresses of blocks.

This is essentially the approach taken by the NTFS (New Technology
File System) of Microsoft, replacing the FAT system of previous Window
systems.

Technically, they use a B+ tree, meaning that the leaves are linearly linked.

• SOLUTION THREE: Suppose a block can store A addresses. So we can
use a free block as an index block, meaning that it will store some number
a ∈ {0, 1, . . . , A} of addresses of other free blocks.

E.g., block size is 4KB and block addresses are 4 bytes, then A = 1024.
In the B-Tree solution, a is either 0 or some number between A/2 and A.

In Unix, we use the last address to point to another index block (or to
NULL).

• SOLUTION FOUR: The FAT (File Allocation Table) solution. This table
has as many entries as there are blocks in the system. The ith entry is
either 0 (meaning it is in-use) or it points to another free block (or NULL).

The FAT solution was used by early Microsoft OS. It gives much faster
access to files, but it introduces the problem of large file tables. For
instance, a 120 GB disk with 4KB blocks will have 30M entries.

§3. Unix File Systems

We will go into the details of the Unix file system.

• As noted above, there are two views of files: the physical and the logical
(or user) view. Physically, the disk is a sequence of blocks.

• Consider the physical blocks.
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1. Block 0 is the boot block (or boot control or boot partition block).
If we want to boot an OS from this partition, this block is used.
Otherwise it can be empty.

2. Block 1 called the superblock. Contains number of blocks, size
of blocks, free-block count, free-block pointers, i-node count, i-node
pointers, etc. Note: i-node is also called File Control Block (FCB).

3. Block 2 to some Max are the blocks for i-nodes (see below).

4. The rest are data-blocks.

• Logically, a file is a sequence of blocks. There are two main kinds of files:
regular files and directory files. There is a third, non-disk files. See
below.

• There is an i-node (short for index node for each file. It contains the
following information about a (regular) file:

1. user ID and group ID of owner of file,

2. time of last modification and access,

3. number of hard links to file,

4. mode (read/write/execute permissions),

5. type of file (regular, directory, symbolic link, char/block/socket dev),

6. 12 pointers to data blocks on disk. Thus, access to the first 48KB
(= 12 × 4 K) of data is very fast.

7. 3 additional indirect block pointers: single indirect, double indirect,
and triple indirect.

Since each block holds 4K bytes, and each pointer is 4 bytes, the first
single indirect can access 4MB of data. The second can access 4GB.
The triple indirect is not used, since current systems address space
of 32-bit cannot go beyond 4GB.

Normal users refer to files by their names and path. The System uses
i-nodes to refer to files.

Q: As user, how do you get the i-node number of a file?

A: Type ”ls -i file-name”

• A directory file is just a sequence of variable length triples: (length, inode-
ptr, file-name).

Each triple corresponds to a file in the directory. The inode-ptr refers to
the i-node of the file, and file-name can be up to 255 chars long. The
length refers to this file-name length.

The first two entries in the file refers to ”.” and ”..”.
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• Given a path, there is the obvious sequential algorithm to search directo-
ries (starting from / or from current directory).

To avoid infinite loops, we cound the number of symbolic liks encountered
and stop when a limit (8) is reached. REMARK: can’t a hard link cause
infinite loop too? If so, hard links should be counted as well.

• LINKS:

Hard link are directory entries, like ordinary entries. So each hard link
has a corresponding i-node.

Symbolic links: such links do not creat a new i-node, only an entry in
some directory.

Hard links has no effect on the search algorithm, but symbolic links affect
the search algorithm as follows. When our search reaches a symbolic link,
we start the search all over, starting from the head of a path name that
is associated with the symbolic link!

Q: How to you verify that on your unix that hard links creates a new
i-node but symbolic links does not?

A: Create a symbolic and hard link to some file ”foo” and look at their
inodes:
@ ln -s foo symfoo
@ ln foo hardfoo
@ ls -i foo symfoo hardfoo

• HOW TO HANDLE NON-DISK FILES.

There are 3 main types: block device, char device, or sockets. We call
appropriate drivers to handle them.

• Opening and Closing files.

After we found the i-node of the file, we allocate a open-file structure
for this i-node. An index into the open-file (structure) table is what
we call a file descriptor. This open-file table is PER PROCESS.

• A directory name cache can be used to hold recent directory-to-inode
translations, to speed up file access.

There is a in-core list of i-nodes. All currently open files have a copy of
their i-node here.

• It turns out, we want an intermediate structure between open-file structure
and the i-node. The current position of an open file is one information
that does not belong to either i-node or the per-process open-file structure.
Hence we store this information in an entry of the system-wide open-
file (structure) table. This entry, in turn, points to the i-node. It can
also keep track of the number of processes that has opened this file. (See
Fig A.7 of Appendix A)
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Let us illustrate a situation where we need this intermediate structure.
Suppose a process P0 opens a file F1, and then fork two processes: P1 to
write some head info into F1, followed by P2 to write additional info into
F2. Note that P0’s open-file structure for F1 will be inherited by P1 and
P2 through the fork.

Now, after P1 has done its work, the updated location should be accessible
to P2. But this information, if stored in P1’s open-file table, would not be
accessible to P2. But if both of them points to the ”system-wide open-file
structure”, then P2 can continue where P1 left off!

• Clustering Schemes. It is best to allocate an i-node and its data blocks
from the smake locality in a disk. FreeBSD has a concept called cylinder
group (cylinder refers to a locality on the disk). Each cylinder block
has a superblock, array of inodes and data blocks, just as in a partition.
All cylinder blocks have the same superblock. Block allocation can use
such information to allocate free blocks to preserve locality (and other
considerations). See p.908 of Appendix A.

• Free Space Management. There are three basic methods:

(1) The simplest method is to keep a linked list of all the free blocks.

(2) We could also use bitvectors to track the free blocks.

(3) Finally, we could let each free block store a sequence of pairs (ADDR,
NUM) where ADDR is the address of NUM free contiguous blocks.

FIGURE illustrating (3).

Let us discuss scheme (3): Which of these free blocks should recursively be
used to store similar information? If ALL the free blocks are used in this
way, then we cannot easily give away the current free block to requests for
blocks. An intermediate solution is to just use the last two free blocks for
recursively storing such free-block information.

Advantage: we have a branching factor of two, but all but two of the free
blocks in the current direct can be directly given away.

If a free block is released (by file delete), this free block can often be
inserted directly at the root. This is most efficient.

• Solution to Thrashing in (3): keep the first two blocks in memory, writing
out a full block only after we have 1.5 blocks of memory!

• File Consistency Problem. Suppose the computer crashes. The open-
file table is generally lost. We need to check the consistency of the file
system. The loss of an i-node, a directory block, or a free-list block is
most serious. To deal with this, most OS has a utility program to check
consistency of a file system. In Unix, it is called ”fsck” and Windows
it is called ”scandisk”. We normally run this utility on system reboot,
especially after a crash. In Unix, we need to check consistency of two
things: block structure and file structure.
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Let us first consider block consistency: we will consider the problem under
the assumption that free blocks are kept in a free-list. Basically, every
block must exactly once, either in the free list or referenced by some i-
node. Suppose b is the block number and free[b] and inode[b] indicates
how many times b appears in either list. Then we have the following states:

– free[b] + inode[b] = 1: b is consistent

– free[b] + inode[b] = 0: b is missing

– free[b] > 1: b is duplicated in free list

– inode[b] > 1: b is duplicated in file system list

So our algorithm begins by initializing free[b] = inode[b] = 0 for all b.
Then we go through the free list, and increment free[b] for each b that we
find in the free list. We also go through the file hierararchy, and for each
i-node, we look for all the blocks pointed to via this i-node.

PRESUMABLY, there is enough main memory for storing the free[b] and
inode[b] arrays.

In case of inconsistency, we need to take some action: if a block is missing,
we add it to the free list. If it is duplicated in the inode list, we duplicate
the data in the block (by getting blocks from the free list), and modify the
inodes that point to these blocks. If it is duplicated in the free list (either
because free[b] > 1 or (free[b] = 1 and inode[b] > 0), we can fix the free
list.

Next consider checking consistency of the file system: This is basically a
check that the number of hard links to an inode is correct. We simply
recompute this number for each inode.

Finally, it is possible to combine both block consistency and file consis-
tency check into one single algorithm.

§4. Virtual File Systems

• File systems can become very general when it has to deal with

– Raw disk (for database applications, etc)

– Dual boots of different OS

– Different file systems mounted together

– Network file systems

– etc

• This calls for a Virtual File System organization.

– There are 3 layers.

– Layer 1 has the basic interface of open(), read(), write(), close().
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– Concept of vnode: unique identifer and kernel object for each direc-
tory or file.

§5. Network File Systems

• Sect 11.9 of Silbers.

Exercises

Exercise 5.1: What are the trade-off issues in choosing block sizes? ♦

Exercise 5.2: Suppose you have a file named f0 and you do:

ln f0 f1

ln -s f0 f2

ls -i f0 f1 f2

What do you expect to see from the last command? ♦

End Exercises
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