
Homework 3
Operating Systems, V22.0202

Fall 2007, Professor Yap

Due: Wed Oct 10

• Please read questions carefully. When in doubt, please ask.

• The written homework is to be submitted in hardcopy during class, but the programming part sent to
us in a single file (as detailed below) by midnite.

Question 1 (5 Points)
Problem 4.2, p.146. How to do context switch between user-level threads. ♦

Question 2 (5 Points)
Problem 4.5, p.147. Multithreaded soluting using user-level threads on a multiprocessor versus unipro-
cessor. Note: you must give the reasoning behind your ”Yes” or ”No” answer. ♦

Question 3 (15 Points)
In Homework 2, we implemented the toy shell. Suppose we want to implement pipes between processes.
Describe what changes needs to be done to your tsh.c program. For simplicity, assume that there is
only one use of the pipe directive “|”.

HINT: you need to use the dup() system call. You need not write out complete programs, but give
explicit code fragments to show how the critical parts are implemented. ♦

Question 4 (70 Points)

• INTRODUCTION. In this programming homework, you are to simulate the concurrent solution
of a computational task using processes.
The task is to to compute the GCD (greatest common divisor) of one or more pairs of numbers.
Given two positive integers m and n, their GCD(m,n) is defined to be the largest number that
divides both m and n. Clearly, GCD(m,n) ≥ 1. For instance, GCD(15, 9) = 3. There is the
well-known Euclidean algorithm for computing GCD. Since GCD(m,n) = GCD(n, m), we may
assume that m ≥ n > 0. Initially, let

m0 = m, m1 = n.

Then Euclid’s algorithm says to compute the sequence of integers,

(m0,m1,m2, . . . ,mk, 0) (1)

where for each i ≥ 2, we define mi+1 = mi−1 mod mi. Recall that the modulo operation a
mod b simply returns the remainder of a divided b. Hence 0 ≤ (a mod b) < b. Thus 0 ≤ mi+1 <
mi for i ≥ 2. Hence the sequence (1) must eventually reach 0. If mk+1 = 0 (for some k ≥ 1) then
it is easy to show that the previous number mk is the GCD.
E.g., for (m,n) = (15, 24), we get the sequence (24, 15, 9, 6, 3, 0) and so k = 4 and m4 =
GCD(15, 9) = 3. A sample program gcd.c for computing gcd is provided here.

• PROBLEM OVERVIEW. Your main program should be called mgcd.c (multiple gcd). The input
to mgcd.c is a sequence of pairs of numbers. If there are k ≥ 1 numbers, then the main process
will spawn bk/2c children processes. Each child process will compute the GCD of one pair of
numbers. However, the child process does not know how to compute the modulo operation. Only
the parent process knows how. Hence the child must submit pairs (a, b) of integers to the parent
who will compute and return the modulus a mod b. When a child process has computed the
GCD of its pair, it exits. When all the children has exited, the parent exit. For instance, if we
type

c© Chee-Keng Yap October 3, 2007

> gcc mgcd.c -o mgcd
> mgcd 24 17 18 10 987654321 123456

then GCD will spawn 3 processes which eventually prints ”1”, ”2” and ”3” (these are the GCD’s
of the three pairs).
We want the parent process to implement the a mod b operation by repeated subtractions. More-
over, the parent should use round robin method to service the children.

• COMMUNICATION. The parent and each child communicates through a two-way pipe (this is
just two pipes, one from parent-to-child, and another from child-to-parent). That is, the child will
write a pair (a, b) of integers in the child-to-parent pipe, and the parent will respond by writing
the integer (a mod b) in the parent-to-child pipe. There are two ways to do this:
(a) One way is for the parent to try to read from each of its ”children-to-parent” pipes in the round-
robin fashion. To accomplish this, the parent must perform what is known as a nonblocking
read. Such a read will never block – even if there is nothing to read. The other kind of reading is
called a blocking read. Note that it is quite acceptable for the child to read the parent-to-child
pipe in a blocking manner.
(b) The other way is to use the signaling mechanism for unix processes. A child can signal the
parent after it has placed a pair (a, b) in the child-to-parent pipe. The parent responds to the
signal by searching through the pipes from each of the children to find a pair (a, b) to work on.
In order to avoid busy waiting, the parent will only do this search in response to a signal.
BUT NOTE THAT WE REQUIRE the non-signaling version (i.e., method (a)) for this homework.

• Finally, you are to create several runs using various sets of input pairs, and give the timing for
these runs.

• Thus, you must know how to:

– set up pipes
– how to read/write from and to pipes
– how to do non-blocking reads
– time the running time of your program.

We will give you all the hints necessary to do the programming part.

• WHAT TO HAND IN: similar to previous homeworks, we want a single tar file containing a
Makefile file, README file, and all necessary programs. You must give your timings and explain
your experiments in the README file. We should be able to duplicate your experiments by
typing ”make time”.

• USEFUL INFORMATION.

– To read an integer from the command line, it is useful to know the atoi() library function
to convert a string of digits into an integer. E.g., the following code fragment converts the
first two arguments of the command line into integers:

int arg1 = atoi(argv[1]);
int arg2 = atoi(argv[2]);

– Here is a routine to set the status flag for files or pipes.
#include <stdio.h>

#include <sys/types.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h> // include all these for convenience

void setFlag(int fd, int flags) {

// flag is a bitvector for bits to turn on

int val;

if ((val = fcntl(fd, F_GETFL, 0)) < 0) // get original bits

c© Chee-Keng Yap October 3, 2007

perror("fcntl F_GETFL error"); // F_GETFL are predefined

val |= flags; // turn on the bits in flag;

if (fcntl(fd, F_SETFL, val) <0) // set the new bits

perror("fcntl F_GETFL error");

}

For the parent to read the ”child2parent pipe” in a nonblocking way, we execute:
setFlag(child2parent[0], O_NONBLOCK); // O_NONBLOCK are predefined

– How do you send a pair of integers, m and n, to the parent on the pipe? Here is a solution
sprintf and sscanf.
1. Child writes the values of m and n in buffer:

sprintf(buf,"%d,%d", m, n);

2. Child writes buf into the pipe to the parent.
3. Parent reads from pipe into its own BUF.
4. Parent use sscanf to decode from BUF:

sscanf(BUF,"%d,%d", &M, &N);
where M, N are integers to hold the values of m and n.

♦

c© Chee-Keng Yap October 3, 2007

