
Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Efficient Implementation
of Exact Geometric Computations

in CGAL

Sylvain Pion

INRIA Sophia-Antipolis

October 31, 2006



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Computational Geometry

Active research domain since 30 years

Algorithms handle large number of geometric objects

Emphasis on asymptotic complexity (Real-RAM model)

Application domains: CAD/CAM, GIS, molecular biology, medical imaging...



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Examples

Convex hulls, triangulations, Voronoi diagrams

Surface reconstruction, meshing

Boolean operations on polygons, arrangements

Geometric optimization

...



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Examples : applications

Surface reconstruction and meshing

Surface parameterization

Surface subdivision



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

Criteria : adaptability, efficiency, robustness

Contributions are reviewed by an Editorial Board

Chosen language : C++ (generic programming)

v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year

Open Source : LGPL and QPL (commercialized since 2003)



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

Criteria : adaptability, efficiency, robustness

Contributions are reviewed by an Editorial Board

Chosen language : C++ (generic programming)

v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year

Open Source : LGPL and QPL (commercialized since 2003)



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

Criteria : adaptability, efficiency, robustness

Contributions are reviewed by an Editorial Board

Chosen language : C++ (generic programming)

v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year

Open Source : LGPL and QPL (commercialized since 2003)



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

Criteria : adaptability, efficiency, robustness

Contributions are reviewed by an Editorial Board

Chosen language : C++ (generic programming)

v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year

Open Source : LGPL and QPL (commercialized since 2003)



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

Criteria : adaptability, efficiency, robustness

Contributions are reviewed by an Editorial Board

Chosen language : C++ (generic programming)

v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year

Open Source : LGPL and QPL (commercialized since 2003)



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

CGAL: Architecture

General architecture : kernel, basic library, support library

Kernel

S
u
p
p
or

t

Basic Library

C
on

ve
x

H
u
lls

T
ri

an
gu

la
ti

on
s

V
or

on
oi

D
ia

gr
am

s

A
rr

an
ge

m
en

ts

S
p
at

ia
l
S
ea

rc
h
in

g

G
eo

m
et

ri
c

O
p
ti

m
iz

at
io

n



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Kernel of geometric primitives

Algorithms are logically split in :

a combinatorial part (graph building)

a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

Basic objects: points, segments, lines, circles...

Predicates: orientations, coordinate comparisons...

Constructions: intersection and distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Kernel of geometric primitives

Algorithms are logically split in :

a combinatorial part (graph building)

a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

Basic objects: points, segments, lines, circles...

Predicates: orientations, coordinate comparisons...

Constructions: intersection and distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Kernel of geometric primitives

Algorithms are logically split in :

a combinatorial part (graph building)

a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

Basic objects: points, segments, lines, circles...

Predicates: orientations, coordinate comparisons...

Constructions: intersection and distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Update: in_circle(p, q, r, s) predicate, sign of:˛̨̨̨
˛̨̨̨ 1 px py px2 + py2

1 qx qy qx2 + qy2

1 rx ry rx2 + ry2

1 sx sy sx2 + sy2

˛̨̨̨
˛̨̨̨



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Update: in_circle(p, q, r, s) predicate, sign of:˛̨̨̨
˛̨̨̨ 1 px py px2 + py2

1 qx qy qx2 + qy2

1 rx ry rx2 + ry2

1 sx sy sx2 + sy2

˛̨̨̨
˛̨̨̨



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Voronoi diagramms of points



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Voronoi diagrams of segments



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Voronoi diagrams of circles



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

One of the predicates of the Voronoi diagram of circles

Root comparison techniques [Karavelas, Emiris: SODA’03]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Arrangements of line segments



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Arrangements of line segments



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Arrangements of circular arcs



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Application: union of polygons in VLSI



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Comparison of abscissa of curve intersections

x

C2

C1

C’1

C’2

p

p’

x(p) x(p’)<?

Algebraic curves, comparisons of algebraic numbers



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness

Algorithms rely on mathematic theorems, like:

p

q r

s

ccw(s, q, r)
ccw(p, s, r) => ccw(p, q, r)
ccw(p, q, s)



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness

Example where floating-point geometry differs from real geometry:
orientation of almost collinear points.

q (24, 24)

p (0.5, 0.5)

r (0.5 + εx, 0.5 + εy)

x=y

[Kettner, Mehlhorn, Schirra, P., Yap, ESA’04]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Possible consequences on the algorithms

The result can be slightly off

The result can be completely off

The algorithm stops because of an unexpected impossible state

The algorithm loops forever



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Possible consequences on the algorithms

The result can be slightly off

The result can be completely off

The algorithm stops because of an unexpected impossible state

The algorithm loops forever



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness: solutions

Case by case handling : painful, error prone and not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point computing fails on [nearly] degenerate cases.

These cases happen often in practice.



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness: solutions

Case by case handling : painful, error prone and not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point computing fails on [nearly] degenerate cases.

These cases happen often in practice.



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Robustness: solutions

Case by case handling : painful, error prone and not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point computing fails on [nearly] degenerate cases.

These cases happen often in practice.



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming

Parameterization using templates.

template < class T >
T min (T a, T b)
{

if (a < b)
return a;

else
return b;

}

...

min(1, 2); // instantiates min() with T = int.
min(1.0, 2.0); // instantiates min() with T = double.



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming in CGAL

Several levels of parameterization :

Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

Kernels parameterized by the arithmetic (number types)

template < class T >
class Cartesian;

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming in CGAL

Several levels of parameterization :

Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

Kernels parameterized by the arithmetic (number types)

template < class T >
class Cartesian;

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming in CGAL

Several levels of parameterization :

Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

Kernels parameterized by the arithmetic (number types)

template < class T >
class Cartesian;

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered predicates

Speed-up exact predicates using a filter:

floating-point evaluation with a certificate

multi-precision arithmetic only when needed

Examples

interval arithmetic (dynamic filters),
[Burnikel, Funke, Seel – Brönnimann, Burnikel, P.’98]

or code analysis (static filters) [Fortune’93... Melquiond, P.’05]

Implementation issues:

automatic generation of filtered predicates

cascading several methods



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered predicates : generic implementation

Predicates as generic functors:

template <class Kernel>
class Orientation_2
{

typedef Kernel::Point_2 Point_2;
typedef Kernel::FT Number_type;

Sign
operator()(Point_2 p, Point_2 q, Point_2 r) const
{

return ...;
}

};



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered predicates : generic implementation

template <class EP, class AP, class C2E, class C2A>
class Filtered_predicate
{

AP approx_predicate; C2A c2a;
EP exact_predicate; C2E c2e;

typedef EP::result_type result_type;

template <class A1, class A2>
result_type
operator()(A1 a1, A2 a2) const
{

try {
return approx_predicate(c2a(a1), c2a(a2));

} catch (Interval::unsafe_comparison) {
return exact_predicate(c2e(a1), c2e(a2));

}
}

};

Something similar is done for constructions (harder) [P., Fabri’06]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered number types
Directed Acyclic Graph (DAG) of operations in memory. Ex:√

x +
√

y −
p

x + y + 2
√

xy

sqrt + *

yx

sqrt

sqrt

*

2

+

+

sqrt

−

Approximation and iterative precision refinement, on demand.



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered predicates: comparisons

Computation time of a 3D Delaunay triangulation.

R5 E M B D

double 40.6 41.0 43.7 50.3 loops

MPF 3,063 2,777 3,195 3,472 214
Interval + MPF 137.2 133.6 144.6 165.1 15.8
semi static + Interval + MPF 51.8 61.0 59.1 93.1 8.9
almost static + semi static
+ Interval + MPF 44.4 55.0 52.0 87.2 8.0

Shewchuk’s predicates 57.9 57.5 62.8 71.7 7.2

CORE Expr 570 3520 1355 9600 173
LEDA real 682 640 742 850 125
Lazy_exact_nt<MPF> 705 631 726 820 67

Important criterium: failure rate of filters.
User interface in CGAL: choice of different kernels.



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered constructions

Additional difficulty: memory storage of geometric objects
Goal: regrouping computations, and less memory

P

Q

R

S

T

U

I

I

P Q R S

T U

Intersection

Construction

Segments

Points

Point



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Filtered constructions : benchmarks

Generate 2000 random segments, intersect them, compute all orientations of
consecutive intersection points.

Kernel time memory
g++ 4.1

SC<Gmpq> 70 70
SC<Lazy_exact_nt <Gmpq>> 7.4 501
Lazy_kernel<SC <Gmpq>> (2) 3.6 64
Lazy_kernel<SC <Gmpq>> 2.8 64

SC<double > 0.72 8.3



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Implementation of EGC

WIP : Efficient treatment of curved objects of low degree

WIP : Improvement of the treatment of geometric constructions

WIP : Geometric rounding with guarantees

...

Questions ?


	Introduction
	Some algorithms and their primitives
	Robustness issues
	Arithmetic
	Conclusion

