

Efficient Implementation of Exact Geometric Computations in CGAL

Sylvain Pion

INRIA Sophia-Antipolis

October 31, 2006

Introduction	Some algorithms and their primitives	Robustness issues	Arithmetic	Conclusion
Plan				

Introduction	Some algorithms and their primitives	Robustness issues	Arithmetic	Conclusion
Dlan				

Plan

Some algorithms and their primitives

Computational Geometry

- Active research domain since 30 years
- Algorithms handle large number of geometric objects
- Emphasis on asymptotic complexity (Real-RAM model)

Application domains: CAD/CAM, GIS, molecular biology, medical imaging...

Examples

• Convex hulls, triangulations, Voronoi diagrams

- Surface reconstruction, meshing
- Boolean operations on polygons, arrangements
- Geometric optimization
- ...

Conclusion

Examples : applications

- Surface reconstruction and meshing
- Surface parameterization
- Surface subdivision

CGAL: Computational Geometry Algorithms Library

- Criteria : adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language : C++ (generic programming)
- v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year
- Open Source : LGPL and QPL (commercialized since 2003)

CGAL: Computational Geometry Algorithms Library

- Criteria : adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language : C++ (generic programming)
- v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year
- Open Source : LGPL and QPL (commercialized since 2003)

CGAL: Computational Geometry Algorithms Library

- Criteria : adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language : C++ (generic programming)
- v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year
- Open Source : LGPL and QPL (commercialized since 2003)

CGAL: Computational Geometry Algorithms Library

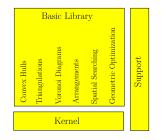
- Criteria : adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language : C++ (generic programming)
- v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year
- Open Source : LGPL and QPL (commercialized since 2003)

CGAL: Computational Geometry Algorithms Library

- Criteria : adaptability, efficiency, robustness
- Contributions are reviewed by an Editorial Board
- Chosen language : C++ (generic programming)
- v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year
- Open Source : LGPL and QPL (commercialized since 2003)

CGAL: Architecture

General architecture : kernel, basic library, support library



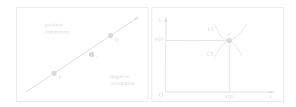
Kernel of geometric primitives

Algorithms are logically split in :

- a combinatorial part (graph building)
- a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

- Basic objects: points, segments, lines, circles...
- Predicates: orientations, coordinate comparisons...
- Constructions: intersection and distance computations...



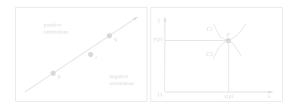
Kernel of geometric primitives

Algorithms are logically split in :

- a combinatorial part (graph building)
- a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

- Basic objects: points, segments, lines, circles...
- Predicates: orientations, coordinate comparisons...
- Constructions: intersection and distance computations...



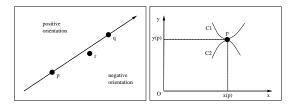
Kernel of geometric primitives

Algorithms are logically split in :

- a combinatorial part (graph building)
- a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

- Basic objects: points, segments, lines, circles...
- Predicates: orientations, coordinate comparisons...
- Constructions: intersection and distance computations...



Introduction	Some algorithms and their primitives	Robustness issues	Arithmetic	Conclusion
Plan				

2 Some algorithms and their primitives

5 Conclusion

・ロト・日本・日本・日本・日本・日本

Delaunay triangulation

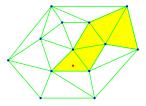
Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, q, r) predicate, sign of:

$$\begin{vmatrix} 1 & px & py \\ 1 & qx & qy \\ 1 & rx & ry \end{vmatrix} = \begin{vmatrix} qx - px & qy - py \\ rx - px & ry - py \end{vmatrix}$$

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

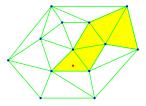


Point location: orientation(p, q, r) predicate, sign of:

$$\begin{vmatrix} 1 & px & py \\ 1 & qx & qy \\ 1 & rx & ry \end{vmatrix} = \begin{vmatrix} qx - px & qy - py \\ rx - px & ry - py \end{vmatrix}$$

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.



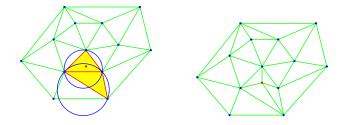
Point location: orientation(p, q, r) predicate, sign of:

$$\begin{vmatrix} 1 & px & py \\ 1 & qx & qy \\ 1 & rx & ry \end{vmatrix} = \begin{vmatrix} qx - px & qy - py \\ rx - px & ry - py \end{vmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

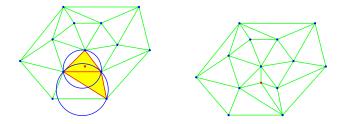


Update: in_circle(p, q, r, s) predicate, sign of:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Delaunay triangulation

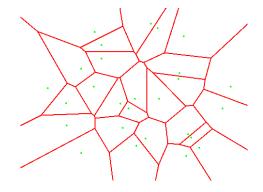
Incremental algorithm in 2 stages: point location and update.



Update: in_circle(p, q, r, s) predicate, sign of:

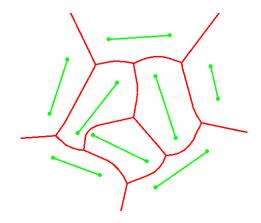
$$\begin{vmatrix} 1 & px & py & px^2 + py^2 \\ 1 & qx & qy & qx^2 + qy^2 \\ 1 & rx & ry & rx^2 + ry^2 \\ 1 & sx & sy & sx^2 + sy^2 \end{vmatrix}$$

Voronoi diagramms of points



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Voronoi diagrams of segments



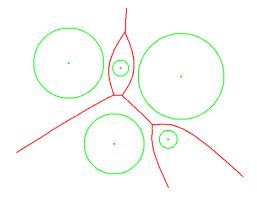
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Robustness issues

Arithmetic

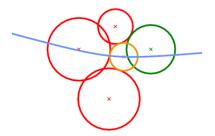
Conclusion

Voronoi diagrams of circles



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● ●

One of the predicates of the Voronoi diagram of circles

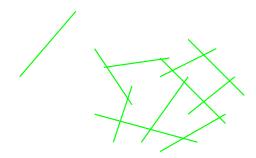


Root comparison techniques

[Karavelas, Emiris: SODA'03]

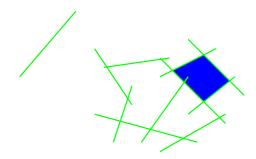
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Arrangements of line segments



<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

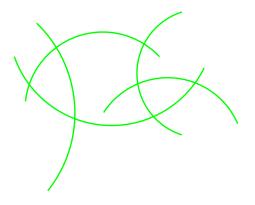
Arrangements of line segments



◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへぐ

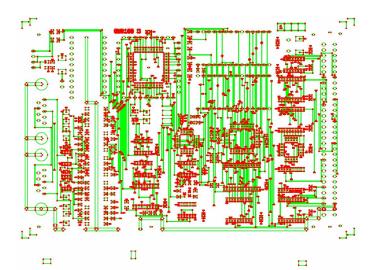
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Arrangements of circular arcs



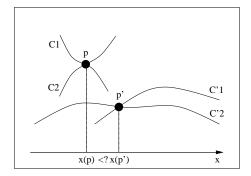
Conclusion

Application: union of polygons in VLSI



(ロトメ団トメミトメミト) 注 のの()

Comparison of abscissa of curve intersections



Algebraic curves, comparisons of algebraic numbers

Introduction	Some algorithms and their primitives	Robustness issues	Arithmetic	Conclusion
Plan				

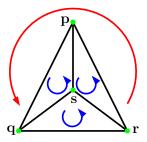
Plan

Some algorithms and their primitives

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Robustness

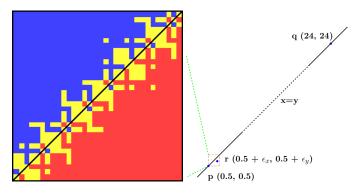
Algorithms rely on mathematic theorems, like:



◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Robustness

Example where floating-point geometry differs from real geometry: orientation of almost collinear points.

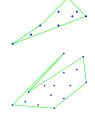


[Kettner, Mehlhorn, Schirra, P., Yap, ESA'04]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Possible consequences on the algorithms

The result can be slightly off



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

The result can be completely off

- The algorithm stops because of an unexpected impossible state
- The algorithm loops forever

Possible consequences on the algorithms

The result can be slightly off

- 4
- The result can be completely off
- The algorithm stops because of an unexpected impossible state
- The algorithm loops forever

Robustness: solutions

• Case by case handling : painful, error prone and not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

- Floating-point computing fails on [nearly] degenerate cases.
- These cases happen often in practice.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Robustness: solutions

- Case by case handling : painful, error prone and not mathematically nice
- Use exact predicates (Exact Geometric Computing)

Remarks

- Floating-point computing fails on [nearly] degenerate cases.
- These cases happen often in practice.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

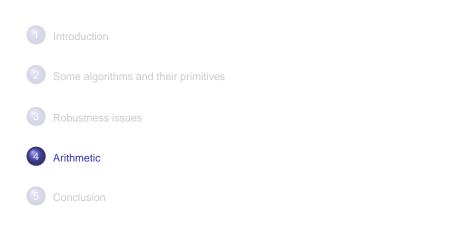
Robustness: solutions

- Case by case handling : painful, error prone and not mathematically nice
- Use exact predicates (Exact Geometric Computing)

Remarks

- Floating-point computing fails on [nearly] degenerate cases.
- These cases happen often in practice.

Introduction	Some algorithms and their primitives	Robustness issues	Arithmetic	Conclusion
Plan				



Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[CORE, LEDA] [CGAL, CORE, SYNAPS]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

[GMP, MPFR, LEDA...]

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[CORE, LEDA] [CGAL, CORE, SYNAPS]

[GMP, MPFR, LEDA...]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[GMP, MPFR, LEDA...]

[CORE, LEDA]

[CGAL, CORE, SYNAPS]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Geometric primitives are parameterized by the arithmetic.

- Multi-precision integers
- Multi-precision rationals
- Multi-precision floating-point
- Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

- Numeric evaluation with separation bounds
- Polynomials, Sturm sequences, resultants...

[CORE, LEDA] [CGAL, CORE, SYNAPS]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

[GMP, MPFR, LEDA...]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generic programming

Parameterization using templates.

```
template < class T >
T min (T a, T b)
{
    if (a < b)
        return a;
    else
        return b;
}
...
min(1, 2);  // instantiates min() with T = int.
min(1.0, 2.0); // instantiates min() with T = double.</pre>
```

Generic programming in CGAL

Several levels of parameterization :

 Algorithms parameterized by the geometry (kernel) template < class Traits >

class Triangulation_3;

Kernels parameterized by the arithmetic (number types)

```
template < class T >
class Cartesian;
```

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel; typedef CGAL::Triangulation_3<Kernel> Triangulation_3;

・ロト・西ト・西ト・日・ うろの

Conclusion

Generic programming in CGAL

Several levels of parameterization :

Algorithms parameterized by the geometry (kernel)

```
template < class Traits >
class Triangulation_3;
```

Kernels parameterized by the arithmetic (number types)

```
template < class T >
class Cartesian;
```

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel; typedef CGAL::Triangulation_3<Kernel> Triangulation_3;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Generic programming in CGAL

Several levels of parameterization :

Algorithms parameterized by the geometry (kernel)

```
template < class Traits >
class Triangulation_3;
```

Kernels parameterized by the arithmetic (number types)

```
template < class T >
class Cartesian;
```

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel; typedef CGAL::Triangulation_3<Kernel> Triangulation_3;

Filtered predicates

Speed-up exact predicates using a filter:

- Iloating-point evaluation with a certificate
- multi-precision arithmetic only when needed

Examples

- interval arithmetic (dynamic filters), [Burnikel, Funke, Seel – Brönnimann, Burnikel, P.'98]
- or code analysis (static filters)

[Fortune'93... Melquiond, P.'05]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Implementation issues:

- automatic generation of filtered predicates
- cascading several methods

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Filtered predicates : generic implementation

Predicates as generic functors:

```
template <class Kernel>
class Orientation_2
{
  typedef Kernel::Point_2 Point_2;
  typedef Kernel::FT Number_type;
  Sign
  operator()(Point_2 p, Point_2 q, Point_2 r) const
  {
    return ...;
  }
};
```

- _ , , , _ _ [P., Fabri'06]

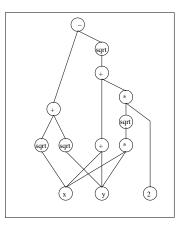
Filtered predicates : generic implementation

```
template <class EP, class AP, class C2E, class C2A>
class Filtered predicate
      approx_predicate; C2A c2a;
  AP
  ΕP
      exact predicate;
                           C2E c2e;
  typedef EP::result type result type;
  template <class A1, class A2>
  result type
  operator()(A1 a1, A2 a2) const
    try {
      return approx_predicate(c2a(a1), c2a(a2));
     catch (Interval::unsafe_comparison) {
      return exact_predicate(c2e(a1), c2e(a2));
};
```

Something similar is done for constructions (harder)

Filtered number types

Directed Acyclic Graph (DAG) of operations in memory. Ex: $\sqrt{x}+\sqrt{y}-\sqrt{x+y+2\sqrt{xy}}$



Filtered predicates: comparisons

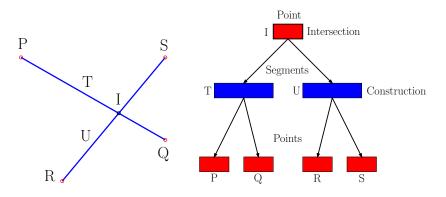
Computation time of a 3D Delaunay triangulation.

	R5	E	M	В	D
double	40.6	41.0	43.7	50.3	loops
MPF	3,063	2,777	3,195	3,472	214
Interval + MPF	137.2	133.6	144.6	165.1	15.8
semi static + Interval + MPF	51.8	61.0	59.1	93.1	8.9
almost static + semi static					
+ Interval + MPF	44.4	55.0	52.0	87.2	8.0
Shewchuk's predicates	57.9	57.5	62.8	71.7	7.2
CORE Expr	570	3520	1355	9600	173
LEDA real	682	640	742	850	125
Lazy_exact_nt <mpf></mpf>	705	631	726	820	67

Important criterium: failure rate of filters. User interface in CGAL: choice of different kernels.

Filtered constructions

Additional difficulty: memory storage of geometric objects Goal: regrouping computations, and less memory



▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

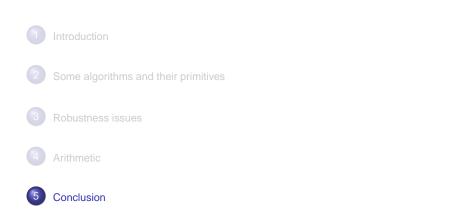
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Filtered constructions : benchmarks

Generate 2000 random segments, intersect them, compute all orientations of consecutive intersection points.

Kernel	time q++ 4.1	memory
SC <gmpq> SC<lazy_exact_nt<gmpq>> Lazy_kernel<sc<gmpq>> (2) Lazy_kernel<sc<gmpq>></sc<gmpq></sc<gmpq></lazy_exact_nt<gmpq></gmpq>	70 7.4 3.6 2.8	70 501 64 64
SC <double></double>	0.72	8.3

Introduction	Some algorithms and their primitives	Robustness issues	Arithmetic	Conclusion
Plan				



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Implementation of EGC

- WIP : Efficient treatment of curved objects of low degree
- WIP : Improvement of the treatment of geometric constructions
- WIP : Geometric rounding with guarantees
- ...

Questions ?