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Computational Geometry

Active research domain since 30 years

Algorithms handle large number of geometric objects

Emphasis on asymptotic complexity (Real-RAM model)

Application domains: CAD/CAM, GIS, molecular biology, medical imaging...
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Examples

Convex hulls, triangulations, Voronoi diagrams

Surface reconstruction, meshing

Boolean operations on polygons, arrangements

Geometric optimization

...
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Examples : applications

Surface reconstruction and meshing

Surface parameterization

Surface subdivision
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CGAL: Computational Geometry Algorithms Library

Since 1995 : implement Computational Geometry algorithms.

Criteria : adaptability, efficiency, robustness

Contributions are reviewed by an Editorial Board

Chosen language : C++ (generic programming)

v3.2 : 100 modules, 500.000 code lines, 10,000 downloads/year

Open Source : LGPL and QPL (commercialized since 2003)
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CGAL: Architecture

General architecture : kernel, basic library, support library

Kernel
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Kernel of geometric primitives

Algorithms are logically split in :

a combinatorial part (graph building)

a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

Basic objects: points, segments, lines, circles...

Predicates: orientations, coordinate comparisons...

Constructions: intersection and distance computations...

positive
orientation
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orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Kernel of geometric primitives

Algorithms are logically split in :

a combinatorial part (graph building)

a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

Basic objects: points, segments, lines, circles...

Predicates: orientations, coordinate comparisons...

Constructions: intersection and distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Kernel of geometric primitives

Algorithms are logically split in :

a combinatorial part (graph building)

a numerical part (needs coordinates)

The later calls primitives gathered in the kernel :

Basic objects: points, segments, lines, circles...

Predicates: orientations, coordinate comparisons...

Constructions: intersection and distance computations...

positive
orientation

negative
orientation

p

r

q

x

C2

C1
p

x(p)

y(p)

O

y



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Plan

1 Introduction

2 Some algorithms and their primitives

3 Robustness issues

4 Arithmetic

5 Conclusion



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Point location: orientation(p, q, r) predicate, sign of:˛̨̨̨
˛̨ 1 px py

1 qx qy
1 rx ry

˛̨̨̨
˛̨ =

˛̨̨̨
qx − px qy − py
rx − px ry − py

˛̨̨̨
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Delaunay triangulation

Incremental algorithm in 2 stages: point location and update.

Update: in_circle(p, q, r, s) predicate, sign of:˛̨̨̨
˛̨̨̨ 1 px py px2 + py2

1 qx qy qx2 + qy2

1 rx ry rx2 + ry2

1 sx sy sx2 + sy2

˛̨̨̨
˛̨̨̨
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Voronoi diagramms of points
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Voronoi diagrams of segments
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Voronoi diagrams of circles



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

One of the predicates of the Voronoi diagram of circles

Root comparison techniques [Karavelas, Emiris: SODA’03]
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Arrangements of line segments
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Arrangements of line segments
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Arrangements of circular arcs
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Application: union of polygons in VLSI
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Comparison of abscissa of curve intersections

x

C2

C1

C’1

C’2

p

p’

x(p) x(p’)<?

Algebraic curves, comparisons of algebraic numbers
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Robustness

Algorithms rely on mathematic theorems, like:

p

q r

s

ccw(s, q, r)
ccw(p, s, r) => ccw(p, q, r)
ccw(p, q, s)
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Robustness

Example where floating-point geometry differs from real geometry:
orientation of almost collinear points.

q (24, 24)

p (0.5, 0.5)

r (0.5 + εx, 0.5 + εy)

x=y

[Kettner, Mehlhorn, Schirra, P., Yap, ESA’04]
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Possible consequences on the algorithms

The result can be slightly off

The result can be completely off

The algorithm stops because of an unexpected impossible state

The algorithm loops forever
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Robustness: solutions

Case by case handling : painful, error prone and not mathematically nice

Use exact predicates (Exact Geometric Computing)

Remarks

Floating-point computing fails on [nearly] degenerate cases.

These cases happen often in practice.
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Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Number types

Geometric primitives are parameterized by the arithmetic.

Multi-precision integers [GMP, MPFR, LEDA...]

Multi-precision rationals

Multi-precision floating-point

Interval arithmetic (single or multi-precision bounds)

Algebraic numbers:

Numeric evaluation with separation bounds [CORE, LEDA]

Polynomials, Sturm sequences, resultants... [CGAL, CORE, SYNAPS]



Introduction Some algorithms and their primitives Robustness issues Arithmetic Conclusion

Generic programming

Parameterization using templates.

template < class T >
T min (T a, T b)
{

if (a < b)
return a;

else
return b;

}

...

min(1, 2); // instantiates min() with T = int.
min(1.0, 2.0); // instantiates min() with T = double.
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Generic programming in CGAL

Several levels of parameterization :

Algorithms parameterized by the geometry (kernel)

template < class Traits >
class Triangulation_3;

Kernels parameterized by the arithmetic (number types)

template < class T >
class Cartesian;

Plugging the 2 layers:

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Triangulation_3<Kernel> Triangulation_3;
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Filtered predicates

Speed-up exact predicates using a filter:

floating-point evaluation with a certificate

multi-precision arithmetic only when needed

Examples

interval arithmetic (dynamic filters),
[Burnikel, Funke, Seel – Brönnimann, Burnikel, P.’98]

or code analysis (static filters) [Fortune’93... Melquiond, P.’05]

Implementation issues:

automatic generation of filtered predicates

cascading several methods
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Filtered predicates : generic implementation

Predicates as generic functors:

template <class Kernel>
class Orientation_2
{

typedef Kernel::Point_2 Point_2;
typedef Kernel::FT Number_type;

Sign
operator()(Point_2 p, Point_2 q, Point_2 r) const
{

return ...;
}

};
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Filtered predicates : generic implementation

template <class EP, class AP, class C2E, class C2A>
class Filtered_predicate
{

AP approx_predicate; C2A c2a;
EP exact_predicate; C2E c2e;

typedef EP::result_type result_type;

template <class A1, class A2>
result_type
operator()(A1 a1, A2 a2) const
{

try {
return approx_predicate(c2a(a1), c2a(a2));

} catch (Interval::unsafe_comparison) {
return exact_predicate(c2e(a1), c2e(a2));

}
}

};

Something similar is done for constructions (harder) [P., Fabri’06]
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Filtered number types
Directed Acyclic Graph (DAG) of operations in memory. Ex:√

x +
√

y −
p

x + y + 2
√

xy

sqrt + *

yx

sqrt

sqrt

*

2

+

+

sqrt

−

Approximation and iterative precision refinement, on demand.
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Filtered predicates: comparisons

Computation time of a 3D Delaunay triangulation.

R5 E M B D

double 40.6 41.0 43.7 50.3 loops

MPF 3,063 2,777 3,195 3,472 214
Interval + MPF 137.2 133.6 144.6 165.1 15.8
semi static + Interval + MPF 51.8 61.0 59.1 93.1 8.9
almost static + semi static
+ Interval + MPF 44.4 55.0 52.0 87.2 8.0

Shewchuk’s predicates 57.9 57.5 62.8 71.7 7.2

CORE Expr 570 3520 1355 9600 173
LEDA real 682 640 742 850 125
Lazy_exact_nt<MPF> 705 631 726 820 67

Important criterium: failure rate of filters.
User interface in CGAL: choice of different kernels.
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Filtered constructions

Additional difficulty: memory storage of geometric objects
Goal: regrouping computations, and less memory
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Points
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Filtered constructions : benchmarks

Generate 2000 random segments, intersect them, compute all orientations of
consecutive intersection points.

Kernel time memory
g++ 4.1

SC<Gmpq> 70 70
SC<Lazy_exact_nt <Gmpq>> 7.4 501
Lazy_kernel<SC <Gmpq>> (2) 3.6 64
Lazy_kernel<SC <Gmpq>> 2.8 64

SC<double > 0.72 8.3
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Implementation of EGC

WIP : Efficient treatment of curved objects of low degree

WIP : Improvement of the treatment of geometric constructions

WIP : Geometric rounding with guarantees

...

Questions ?
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