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Abstract. In this paper, we present a new algorithm to mesh
surfaces defined by an implicit equation, which is able to isolate
the singular points of the surface, to guaranty the topology in the
smooth part, while producing a number of triangles which is related
to geometric invariants of the surface. We prove its termination and
correctness and give complexity bounds, based on metric entropy
analysis. The method applies to surfaces defined by a polynomial
equation or a spline equation. We use Bernstein bases to represent
the function in a box and subdivide this representation according
to a generalization of Descartes rule, until the problem in each box
boils down to the case where either the implicit object is isotopic to
its linear approximation in the cell or the size of the cell is smaller
than a parameter ε. This ensures that the topology of the implicit
surface is caught within a precision ε. Experimentations on classical
examples from the classification of singularities show the efficiency
of the approach.

§1. Introduction

Several methods have been developed over the last decades to visualize
or to mesh an implicit surface. We mention in particular the following
approaches:

• ray tracing,
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• marching cube,

• marching polygonizer,

• deformation methods,

• subdivision methods.

Used to detect the visibility of objects, “ray tracing” methods [16] compute
the intersection between the ray from the eye of the observer and the first
object of the scene, for each pixel of the image. The rendering is very
good, but the computing time is significant. It depends on the resolution
of the scene to be viewed, and can produce only images in 2 dimensions.
Moreover, computation cannot (a priori) be re-used for other views. Other
techniques, such as particle sampling, also use clouds of points lying on
the surface, to visualize it. See for instance [2]. However, it only yields an
approximation of the surface [28] without the topological structure, nor
with guaranty on the result.

The “marching cube” algorithm [19] developed in order to reconstruct
images in 3 dimensions starting from medical data, is very much used for
visualization of level sets of functions. The principle of this algorithm is
simple: the domain of interest is divided in several cells, generally boxes,
of the same size. At the corners of each cell, the values of the function f
are calculated and a triangular mesh is then deduced according to the sign
of the function at these corners. This triangulation may not capture the
topology of the surface, if it is not supported by additional calculation.
Several triangulations are possible for the same combination of signs. Some
partial solutions exist to avoid some of these ambiguities [18]. The covering
of all the space of study increases the computing time considerably. Indeed
the boxes not cut by the surface are not useful. Despite its defects, the
“marching cube” methods remains a reference for its simplicity and its
easiness of adaptation.

The marching polygonizer method brings a significant improvement
to the marching cube method. The principal idea of this method is to
calculate only the “useful” cells, that is, those which cut the surface. The
algorithm starts from a valid cube (or tetrahedron), and propagate toward
the connected cells, which cut the surface [5], [6], [14], [1]. Thus it is
necessary to start from a cell intersecting the surface. Again, for self
intersecting surfaces or surfaces with singularities, the result might be
erroneous. The algorithm is rather effective, but it does not make it
possible to mesh any surface correctly, if this one has, for example, several
connected components, without using external tools such as “topological
skeleton ” [4].

Deformation methods exploit results from Morse theory, in order to
correctly follow the transformation of the level-sets f(x) = t [1]. See also
[7] for a connected approach, which applies for smooth surfaces. These
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methods assume implicitly that the function is a Morse function, ie. the
critical points that are traversed during the deformation are not degener-
ate. This is not always the case nor is straightforward to check.

We describe here a new subdivision algorithm to mesh an implicit
surface, which is able to isolate the singular points of the surface, to guar-
anty the topology in the smooth part, while producing a number of linear
pieces, related to the Vitushkin variations of the surface. It applies to
surfaces defined by a polynomial equation or a B-spline equation. Our
method has similarities with the one presented in [22], but we go further
by describing a new and guaranteed subdivision criterion. Moreover, we
analyze in detail the complexity of the subdivision algorithm in terms of
the entropy of the surface, which yields a bound on the number of cells
produced by the method in terms of geometric invariants of the surface.
The termination and correctness of the algorithm are proved, in the case
of a smooth surface. Its extension for the treatment of singularities, using
a local conic structure theorem, is briefly mentioned, but the extended
details of this treatment are postponed to another paper.

Regarding the technical aspects, we use Bernstein bases to represent
the function in a box and subdivide this representation according to a
generalization of Descartes’ rule, until the problem in each box boils down
to the case where either the implicit object is proved to be homeomorph
to the computed linear approximation in the cell or the size of the cell is
smaller than ε. This ensures that the topology of the implicit surface is
caught within a precision ε, where ε is a tunable parameter. Experimen-
tations on classical examples from the classification of singularities show
the efficiency of the approach.

§2. Algebraic ingredients

For any point p ∈ R3, and any set A ⊂ R3, dist(p, A) denotes the minimal
Euclidean distance between p and points q ∈ A. We define distx(p, A)
as the minimal Euclidean distance between p and a point q ∈ A with
the same (y, z)-coordinates, if it exists and +∞ otherwise. The distances
disty(p, A), distz(p, A) are defined similarly.

2.1. Representation of polynomials

Let us recall that a univariate polynomial f(x) of degree d can be
represented in the Bernstein basis by:

f(x) =
d∑

i=0

bi Bi
d(x),

where Bi
d(x) = (d

i )x
i(1− x)d−i. The sequence b = [bi]i=0,...,d is called the

set of control coefficients on [0, 1]. The polynomials Bi
d form the Bernstein
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basis on [0, 1]. Similarly, we will say that a sequence b represents the
polynomial f on the interval [a, b] if:

f(x) =
d∑

i=0

bi (d
i )

1
(b− a)n

(x− a)i(b− x)d−i.

The polynomials

Bi
d(x; a, b) := (d

i )
1

(b− a)n
(x− a)i(b− x)d−i

form the Bernstein basis on [a, b]. Hereafter, we are going to consider the
sequence of values b together with the corresponding interval [a, b]. A first
property of this representation is that the derivative f ′ of f , is represented
by the control coefficients:

d∆b := d(bi+1 − bi)06i6d−1.

Another fundamental algorithm that we will use on such a representation
is the de Casteljau algorithm [10]:

b0
i = bi i = 0, . . . , d

br
i = (1− t) br−1

i + t br−1
i+1 (t) i = 0, . . . , d− r

It allows us to subdivide the representation of p into the two sub-represen-
tations on the intervals [a, (1−t)a+tb] and [(1−t)a+tb, b]. For a complete
list of methods on this representation, we refer for instance to [10].

By a direct extension to the multivariate case, any polynomial f(x, y, z)
of degree d1 in x ,d2 in y, d3 in z, can be decomposed as:

f(x, y, z) =
d1∑

i=0

d2∑
j=0

d3∑
k=0

bi,j,kBi
d1

(x; a1, b1) Bj
d2

(y; a2, b2) Bk
d3

(z; a3, b3),

where (Bi
d1

(x; a1, b1) Bj
d2

(y; a2, b2) Bk
d3

(z; a3, b3))0≤i≤d1,0≤j≤d2,0≤k≤d3
is the

tensor product Bernstein basis on the domain D := [a1, b1] × [a2, b2] ×
[a3, b3]. The polynomial f is represented in this basis by the third order
tensor of control coefficients b = (bi,j,k)0≤i≤d1,0≤j≤d2,0≤k≤d3 .

Hereafter, we will denote by a cell , the pair of the box [a1, b1]×[a2, b2]×
[a3, b3] together with the control coefficients b, representing f . The size of
a cell will be max{|b1 − a1|, |b2 − a2|, |b3 − a3|}.

De Casteljau algorithm also applies in the x, y or z-direction. Be-
cause of this tensor product representation, the control coefficients of the
derivative ∂xf(x, y, z) are given by:

d (bi+1,j,k − bi,j,k)0≤i≤d1−1,0≤j≤d2,0≤k≤d3
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and similarly for the derivatives ∂yf , ∂zf .
Notice that the univariate Bernstein representation also extends to a

so-called triangular Bernstein basis. This representation can also be used
in our approach, but we will concentrate on the tensor product one.

2.2. Univariate solver

The subdivision criterion that we are going to use, is based on Descar-
tes’ rule for a univariate polynomial with control coefficients b in the
Bernstein basis. The number of sign changes of a sequence b, also called
the sign variation of b, is denoted hereafter by V (b).

Proposition 1. [10], [26] The number of sign changes V (b) of the control
coefficients b = [bi]i=0,...,d of a univariate polynomial on [0, 1] bounds its
number of real roots in [0, 1] and is equal to it modulo 2.

Thus, by this proposition,

• if V (b) = 0, the number of real roots in [0, 1] is 0;

• if V (b) = 1, the number of real roots in [0, 1] is 1.

This yields the following simple but efficient algorithm:

Algorithm 1.
Input: A precision ε and a polynomial f represented in the Bernstein
basis of an interval [b, a]: f = (b, [a, b]).

• Compute the number of sign changes V (b).

• If V (b) > 1 and |b − a| > ε, subdivide the representation into two
sub-representations b−,b+, corresponding to the two halves of the
input interval and apply recursively the algorithm to them.

• If V (b) > 1 and |b − a| < ε, output the ε/2-root (a + b)/2 with
multiplicity V (b).

• If V (b) = 0, remove the interval [a, b].

• If V (b) = 1, the interval contains one root, that can be isolated
within the precision ε.

Output: list of subintervals of [a, b] containing exactly one real root of f
or of ε-roots with their multiplicities.

In the presence of a multiple root, the number of sign changes of a repre-
sentation containing a multiple root is bigger than 2, and the algorithm
splits the box until its size is smaller than ε.

In order to analyze the behavior of the algorithm, we used a partial
inverse of Descartes’ rule [23] (see also [21]), to show that if f(x) = 0 has
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only simple roots on [a, b], an upper bound of the number of recursion
steps of the algorithm 1 is

l = dlog2

(
1 +

√
3

2s

)
e,

where s is the minimal distance between the complex roots of f .
Notice that this localization algorithm extends naturally to B-splines,

which are piecewise polynomial functions [10].

§3. Toward a guaranteed method

The aim of this section is to describe the method, which allows us
to build a mesh of the surface f(x, y, z) = 0 in a domain D = [a1, b1] ×
[a2, b2] × [a3, b3] ⊂ R

3, having the same topology as the surface. The
set of points (x, y, z) in D such that f(x, y, z) = 0 will be denoted by
S := Z(f) ∩ D. The set of singular points of S (where f = ∂xf = ∂yf =
∂zf = 0) will be denoted by Ssing, the set of smooth (non-singular) points
of S by Ssmooth.

3.1. Description of the algorithm
The general scheme of the meshing algorithm is as follows:

• Represent the polynomial f(x, y, z) in the Bernstein basis adapted
to the domain D = [a1, b1]× [a2, b2]× [a3, b3] as follows:

f(x, y, z) =
d1∑

i=0

d2∑
j=0

d3∑
k=0

bi,j,k Bi
d1

(x) Bj
d2

(y) Bk
d3

(z),

• Subdivide the box into smaller boxes (using de Casteljau algorithm)
until the topology in these boxes can be certified or the size of the
box is smaller than ε.

It leads to the following scheme:

Algorithm 2.
L := [Cell(f,D)];
while (L is not empty)
{
C := first_cell_of(L);
if(topology_guaranty(C) && size(C) < epsilon_smooth )
insert C at the head in the list of solutions;

else if(not(topology_guaranty(C)) && size(C)< epsilon_sing)
insert C at the head in the list of (unmeshed) solutions;

else {
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subdivide the cell C;
insert the new generated cells at the tail of L;
remove C from L;

}
}

The two parameters involved here are:

• εsmooth which is the maximal size of the cells where the topology is
guaranteed,

• εsing, which is the minimal size after which we consider that the cell
contains a singular point.

Hereafter, to simplify the analysis of the algorithm, we will take ε =
εsmooth = εsing. In practice, it could be interesting to have εsmooth > εsing,
in order to compute large boxes in the smooth part and small boxes around
the singularities. This explain why we consider these two parameters.

This subdivision scheme produces a sequence of boxes F , which size is
decreasing. It corresponds to the construction of an octree, level by level.
An advantage of the octree data-structure is the fast localisation of points
and of faces or edges shared by several cells [27].

The subdivision criterion that we are going to use, is based on a
extension of Descartes’ rule for a polynomial with control coefficients
b = (bi,j,k)06i6d1,0 ≤ j ≤ d2, 0 ≤ k ≤ d3 in the Bernstein basis.

In order to test whether we have to split a cell, we check if the number
of sign changes in one of the directions x, y, z is 0 or 1 and that the sign
variation of the control coefficients of the derivative in this direction is 0.
More precisely, the sign variation of f in the x direction is the maximum
for all j, k with 0 ≤ j ≤ d2, 0 ≤ k ≤ d3, of the sign variations of the
sequences bj,k = (bi,j,k)0≤i≤d1 .

The stopping criterion that we use is the following:

Definition 2. The cell C is x-regular (resp. y, z-regular) for f , if the
sign variation of b in the x (resp. y, z) direction is 0 or 1 and if the
coefficients of the derivative in this direction have a constant sign.

A similar definition applies to control coefficients of polynomials in two
variables on two-dimensional boxes.

Lemma 1. Let (u, v, w) be any permutation of (x, y, z). Assume that a
(u, v)-facets F of a cell is u-regular for f . Then the topology of the surface
f = 0 on the face F is uniquely determined by its intersection points
(counted with multiplicity) with the edges of the face.

Proof. Since f = 0 has no singular point on F , the trace of f = 0 on F
is a set of arc segments (possibly of length 0) intersecting the edges of the
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face. They project along the u-direction on the other axis (say the v-axis)
as a set of non-overlapping intervals. Consequently, the topology of f = 0
on F , is the same as those of the set of segments connecting the points
of S on the edges, sorted according to their v coordinates and taken by
pairs. This proves that the topology of the surface f = 0 on the facets of
the cell is determined by the its points on the edges. �

Proposition 3. Let (u, v, w) be any permutation of (x, y, z). Assume that
C is u-regular and that the topology of f = 0 on the two (v, w)-facets of C
is known. Then the topology of the surface f = 0 in the box C is uniquely
determined by its intersection points (counted with multiplicity) with the
edges of the box.

Proof. We can assume without loss of generality, that f is u-regular
on F , for u = x or u = y or u = z. According to the previous lemma,
the topology of f = 0 on all the facets of the cell C is determined. As
inside the cell C the surface S is the graph of a function in the u-direction,
and as there are no singular points of f = 0 in C, S ∩ C is topologically
homeomorphic to a set of discs which are determined by the projection of
the segments of the facets, on a (v, w)-plane along the u -direction. This
concludes the proof. �

These lemma and proposition imply that checking the regularity of f
in the box B and on faces, and computing the points of the surface on
the edges of the box allows us to deduce the topology of the surface in
the box. To compute the mesh in a regular cell, we need to compute the
points of S (counted with their multiplicity) on the edges of the boxes.
This is performed by the univariate solver (see algorithm 1).

This criterion implies that in the valid cells, the derivative of f in
one direction is of constant sign and on the two faces transversal to this
direction, another derivative is of constant sign. This may be difficult to
obtain, when a point of the surface where two derivatives vanish is on (or
near) the border of the cell. In order to avoid this situation, we weaken
the criterion and improve the subdivision in the following way:

• We check that a derivative of f in one of the directions x, y, z has a
constant sign in the cell C. If not, the cell is subdivided.

• For the two faces transversal to this direction, we apply the same
algorithm on the faces (in 2 dimensions), in order to get polygons
representing the trace of f = 0 on these faces.

In such a case, the topology of the set S in the cell C is guaranteed: It
is the graph of a function, say in the direction u for which the derivative
has a constant sign. The polygons of f = 0 on all the faces define closed
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curves on the border of C. Applying proposition 3, we are able to compute
the topology of f = 0 in C.

Notice that if precautions are not taken, the trace of f = 0 on the
border of C might be a singular curve. To avoid this situation, we simply
precompute the critical points of S for the projection in the directions
(x, y), (x, z), (y, z). These points are defined by the equations f = ∂xf =
∂yf = 0, f = ∂xf = ∂zf = 0, f = ∂yf = ∂zf = 0. In the case of a
smooth surface, after a generic change of coordinates (or simply a generic
translation) the number of such points is finite (it is bounded by 3 d(d−1)2

where d = deg(f), by Bezout’s theorem). We avoid these points when the
cells are subdivided, by choosing adequately the position of subdivision
(applying de Casteljau algorithm for a value of t in between critical values).
In order to apply recursively the algorithm in dimension 2, we take the
parameters εsmooth = εsing = ε.

These adaptations allow us to prove that for a smooth surface and
ε small enough, the algorithm stops with the correct topology. By the
structure of the algorithm, we are able to detect if ε is not small enough.

To prove termination and correctness, we need the following definition
and result on the approximation of a function by the control polygon. Let
K2(f) = maxp∈D ‖H2(f)(p)‖ where H2(f)(p) is the Hessian of f at p. Let
C be a cell of size ε.

Let si,j,k be the points of the regular subdivision associated with the
control coefficients ci,j,k of f on C. Then there exists γ2(d) = γ2(d1, d2, d3)
depending of d1 = degx(f), d2 = degy(f), d3 = degz(f) such that

|f(si,j,k)− ci,j,k| < γ2(d)K2(f)ε2. (1)

See eg. [24], [25], [20] for a proof and more details on this result. We
denote κ2(f) = γ2(d)K2(f).

First, we analyze the cells which are rejected by the algorithm. We
denote Γf (r) = {p ∈ D, |f(p)| 6 r}.

Proposition 4. Let C be a cell of size ε, outside Γf (κ2(f)ε2). Then the
control coefficients of f on C are of constant sign.

Proof. As C is outside Γf (κ2(f)ε2), f does not vanish in C, so that it
has a constant sign. Assume, without loss of generality, that f > 0 so that
f > κ2(f)ε2 > 0 in C. Then by (1), we have

ci,j,k = f(si,j,k)− (f(si,j,k)− ci,j,k) > κ2(f)ε2 − κ2(f)ε2 = 0.

�
In consequence, such a cell will not be kept by the algorithm.

Theorem 1. If the surface S defined by f(x, y, z) = 0 is smooth in D,
then the algorithm 2 stops for εsmooth > εsing small enough, and output a
mesh homeomorphic to S.
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Proof. By equation (1), for ε := εsmooth small enough, the cells C which
are kept by the algorithm intersect Γf (κ2(f)ε2).

Let us denote by x0 a point of Γf (κ2(f)ε2) ∩ C. For any x ∈ C, we
have

|f(x)− f(x0)| ≤ κ1(f) ||x− x0||∞ ≤ κ1(f)ε

where κ1(f) = maxp∈D ||(∂xf(p), ∂yf(p), ∂zf(p))||1. As x0 ∈ Γf (κ2(f)ε2),
we have

|f(x))| ≤ κ1(f)ε + κ2(f)ε2,

which implies that C ⊂ Γf (κ1(f)ε+κ2(f)ε2). As S is smooth, for ε small
enough, we have

Γf (κ1(f)ε + κ2(f)ε2)
∩ Γ∂xf (κ2(∂xf)ε2) ∩ Γ∂yf (κ2(∂yf)ε2) ∩ Γ∂zf (κ2(∂zf)ε2) = ∅.

This implies, for ε small enough, for any cell C of size ε kept by the
algorithm and for all x ∈ C, either |∂xf(x)| > κ2(∂xf)ε2 or |∂yf(x)| >
κ2(∂yf)ε2 or |∂zf(x)| > κ2(∂zf)ε2. By equation (1), either ∂x(f) or ∂y(f)
or ∂z(f) has its Bernstein coefficients of the same sign in C. A similar
proof applies for the trace of f on the transversal faces, since we have
avoided the critical sections, for which the trace of f on the face is singu-
lar. Consequently, for εsmooth and εsing small enough the algorithm stops
on cells, in which the topology of f is guaranteed. �

3.2. Complexity analysis

In this section, we analyze the behavior of the algorithm as the size of
the cells goes to 0. Let A be a subset of the surface S in the domain D.

Definition 5. We denote by C(ε, A) the minimal union of cells of size
6 ε in the octree, covering A. Let N(ε, A) be the number of cells involved
in C(ε, A).

In order to analyze the number of boxes N(ε, A), we connect it to the
following notion [11], [29]:

Definition 6. (ε-entropy) For any set A in R3, let E(ε, A) be the min-
imum number of closed balls of radius ε, covering A.

We will first show that N(ε, A) is of the same order than the entropy
E(ε, A) of A ⊂ R3:

Proposition 7. E(ε, A) 6 N(ε, A) 6 γ0E(ε, A) where γ0 = µ(4
√

3)
where µ(r) is the minimal number of balls of radius 1, covering a ball
of radius r.
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Proof. Since a cell of size ε is covered by a ball of radius ε, and C(ε, A)
covers A, we have E(ε, A) 6 N(ε, A).

Since the Hausdorff distance between A and C(ε, A) is at most the
length

√
3 ε of the diagonal of the cube, we have (see [29])

E(2
√

3ε, C(ε, A)) 6 E(
√

3 ε, A).

On the other hand, N(ν,A) 6 E(ν
2 , C(ν,A)) since a cell of size ν, cannot

be covered by a single ball of radius ν
2 , so that we have:

N(ε, A) 6 E(
ε

2
, C(ε, A)) 6 µ(4

√
3)E(2

√
3 ε, C(ε, A))

since E( ν
λ , A) ≤ µ(λ)E(ν,A) for λ > 0, ν > 0. We deduce that

N(ε, A) 6 µ(4
√

3)E(
√

3 ε, A) 6 µ(4
√

3)E(ε, A),

since E(
√

3 ε, A) ≤ E(ε, A) �

Next we will use the relations between the ε-entropy and the Vitushkin
variations, defined as follows:

Definition 8. For any set S ⊂ R3, let V0(S) be the number of connected
components of S, and

Vi(S) = c(i)
∫

L∈G3−i

V0(S ∩ L) dL,

where Gk is the Grassmannian of affine spaces of dimension k in R3, dL
is the canonical measure on G3−i, and c(i) = 1∫

L∈G3−i

V0([0, 1]i ∩ L) dL
,

(so that Vi([0, 1]i) = 1 and c(3) = 1).

Our aim is now to relate the number of boxes produced by the algo-
rithm to geometric invariants of the surface, such as the variations Vi(S):

Theorem 2. Suppose that the surface S ⊂ D defined f(x, y, z) = 0, is
smooth in D. Then the number N of cells produced by the algorithm for
ε = εsmooth is bounded by

N 6 γ0

(
V0(S) +

1
ε
V1(S) +

1
ε2

V2(S)
)

. (2)

where γ0 ∈ R>0 is a universal constant.
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Proof. We use the following property [15], [29]:

E(ε, S) 6

(
V0(A) +

1
ε
V1(S) +

1
ε2

V2(S) +
1
ε3

V3(S)
)

,

and the property that V3(S) = 0 since S is of dimension 2.
Now by proposition 7, we have

N(ε, S) 6 γ′0

(
V0(S) +

1
ε
V1(S) +

1
ε2

V2(S)
)

.

By proposition 4, in every cell outside Γf (κ2(f)ε2), the Bernstein co-
efficients of f have the same sign. Thus such a cell is not kept by the
algorithm. Consequently, we have

N ≤ N(ε, Γf (κ2(f)ε2)).

As S is smooth in D, the function x ∈ D 7→ dist(x,S)
|f(x)| is well defined and

bounded by a constant κ1(f).
Thus, for ε small enough

Γf (κ2(f)ε2)) ⊂ Sε = {x ∈ D; dist(x, S) < ε}

We deduce that
N ≤ N(ε, Sε) ≤ 27N(ε, S),

since by surrounding each of the cells covering S, by its 26 neighbors cells
we cover the points of Sε at distance ε from S. This proves inequality (2),
with γ0 = 27γ′0. �
Notice that we can link V1(S) to the curvature of S, since there exists a
universal constant c1 such that

V1(S) 6 c1

∫
Ssmooth

|k1(p)|+ |k2(p)|dp,

where k1(p), k2(p) are the principal curvatures of S at p.
Similarly, we have

V2(S) = Area(S).

See [29], [17] for more details.

3.3. Singularities
In our framework the treatment of singular points is a delicate task, al-

though certifying the topology of a tame set (ie. algebraic, semi-algebraic,
subanalytic or more generally a set definable in some o-minimal structure)
near one of its points is formally possible, since such a set has locally
around each of its points a cone-like topology. In some small enough ball
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centered at the special point p, our set as the same topology as the cone
of vertex p constructed on the intersection of the set and the boundary of
the ball.

This is a consequence of the existence of Whitney stratifications for
these sets and of general properties of topological uniform finiteness. Let
us be more precise.

Let p ∈ S be a singular point of S and let βp : S 3 q → ‖q−p‖∞ where
‖ · ‖∞ is the infinity norm. Note that the set β−1

p (r) = {q ∈ S, βp(q) = r}
is the intersection of S with the faces of a box centered at p and of size
2r. This map βp is semi-algebraic, so that the following theorem applies:

Theorem 3. [12]; [13] There exists ε0 ∈ R>0 such that for each 0 < r ≤
ε0, (β−1

p (ε0), β−1
p ([0, ε0])), (β−1

p (r), β−1
p ([0, r])) and (β−1

p (r)×{1}, β−1
p (r)×

[0, 1]/ ≡) are homeomorphic, where ≡ is defined on β−1
p (r) × [0, 1] by

(x, t) ≡ (y, s) ⇔ t = s = 0.

In other words, for a sufficiently small cell C centered at a singular
point p of S, the topology of S in the cell β−1

p (r), r ≤ ε0 is the same
as those of the cone of vertex p, “lying” on the curve β−1

p (ε0) given by
the intersection of S with the facets of C. In order to compute a coherent
mesh in such a case, we compute the star-triangulation whose vertex is a
singular point of the surface in the cell, and which basis is the piecewise-
linear approximation of the curve of intersection of the surface with the
boundary of the box. We will describe this meshing method near singular
points in a forthcoming paper.

§4. Experimentation

We present here some experimentations on surfaces related to the classi-
fication of singularities [3]. The implementation is available in the library
axel (Algebraic Software-Components for gEometric modeLing)1. The
table reports on the number of triangles, of cells including the singular
one denote by nt (represented by boxes in the pictures) and the timing.
The tests have been run on a Pentium IV 2.4 Ghz workstation. We con-
sider a smooth case, a case with finitely many singular points, with a
self intersection curve and with the singular points containing an isolated
curve arc2. The parameters used for the subdivision are εsmooth = 2−5 |D|
and εsing = 2−8 |D|. The pictures show the corresponding mesh. In order
to get a better rendering we could compute the normal at points on the
surface. This is direct from the implicit equation, but is not done in the
following visualization. Notice also that once the topology is certified, the
triangulation can be improved in the smooth boxes, according to geometric
criteria [9], [8].

1http://www-sop.inria.fr/galaad/software/axel
2More examples can be found at http://www-sop.inria.fr/galaad/data/surface/
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Equation:
x4 − 5 x2 + y4 − 5 y2 + z4 − 5 z2

+11.8 = 0
Nb of triangles: 8881
Nb of cells: 4165
Time (s): 1.53 s

Equation:
32 x8 − 64 x6 + 40 x4 − 8 x2 + 1 + 32 y8

−64 y6 + 40 y4 − 8 y2 + 32 z8 − 64 z6

+40 z4 − 8 z2 = 0
Nb of triangles: 45680
Nb of cells: 14555 + 594 nt
Time (s): 8.13 s

Equation:
−4 z3 y2 − 27 y4 + 16 x z4 − 128 x2 z2

+144x y2 z + 256 x3 = 0
Nb of triangles: 21354
Nb of cells: 7752 + 4684 nt
Time (s): 53.39 s

Equation:
−2749.231165 x3 z y2 − 1832.820776 y z2 x2

+648 z x2 y2 − 1620 z2 x2 y2

+1832.820776 y z3 x2 − 4123.846747 y4 x z
+916.4103882 z3 x y2 + 64 z3 + 432 z5 − 216 z6

−729 x6 − 729 y6 − 144 z2 x2 − 288 z4

−144 z2 y2 + 324 z4 x2 + 324 z4 y2

+324 z x4 + 324 z y4 + 610.9402588 y3 z2

−810 z2 y4 − 610.9402588 y3 z3 − 2187 x4 y2

−2187 x2 y4 + 1374.615582 x5 z
−305.4701294 z3 x3 = 0
Nb of triangles: 26184
Nb of cells: 7924 + 1616 nt
Time (s): 9.66 s

Acknowledgments: We would like to thanks specially L. Deschamps,
for his help in the implementation of a first prototype of this algorithm.
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