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Abstract  

A general and direct method for computing the Betti numbers of a finite simplicial complex 
in ~;J is given. This method is complete for d ~< 3, where versions of this method run in time 
O(nc~(n) ) and O ( n ) ,  n the number  of simplices. An implementation of the algorithm is applied 
to alpha shapes, which is a novel geometric modeling tool. 
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1. I n t r o d u c t i o n  

The main objective in the area of geometric or solid modeling is the effective speci- 
fication and manipulation of geometric objects using the computer, see e.g. (Hoffmann, 
1980; M~intyl~i, 1988). The case where objects are embedded in R 3 is by far most 
important and has the largest number of applications. Geometric modeling is closely 
related to topics in topology where questions related to continuity and connectivity are 
studied. Given an object in R 3, a typical topological question is how many connected 
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components, how many independent tunnels, and how many voids there are. The num- 
ber of components, tunnels, and voids have concrete interpretations. Examples are the 
number of heavenly bodies in a galaxy, the number of independent closed routes that 
go around obstacles, and the number of portions of a cell occupied by fluid. 

Among the various approaches to modeling a geometric object, we consider simplicial 
complexes, which are collections of simplices that fit together in a natural way to form 
the object. In particular, we relate our findings to filtrations and alpha shapes, see e.g. 
(Edelsbrunner and Mticke, 1994). The alpha shape method starts with a finite point 
set as input data and creates a representative family of geometric objects or shapes in 
an automatic and mathematically well-defined manner. Each shape is obtained from a 
subcomplex of the Delaunay triangulation of the point set, and the entire family of 
shapes forms a filtration, see Section 2. This paper studies the algorithmic question of 
computing the topological connectivity of such objects, which is expressed in terms 
of Betti numbers of their homology groups. In R 3, Betti numbers count connected 
components, independent tunnels, and voids. It is in 3 dimensions where our algorithm 
is complete and will probably find most of its applications. 

In mathematical terminology, a geometric object is a topological space embedded in 
some R a. Computing the homology groups of a topological space is one of the main 
interests in the field of algebraic topology, see e.g. (Alexandroff and Hopf, 1935; Giblin, 
1981; Munkres, 1984; Rotman, 1988). If the simplicial complex is small, then the 
homology group computations can be done by hand. To solve these problems in general, 
a classic algorithm exists and is discussed in length in (Munkres, 1984). It forms 
matrices and reduces them to a canonical form, known as the Smith normal form 
(Smith, 1861), from which one can read off the homology groups of the complex. 
The reduction to Smith normal form is the bottleneck of this algorithm. Starting with 
(Kannan and Bachem, 1979), several methods have been proposed to speed up this part 
of the computation. The only upper bound known on the worst-case running time of 
the classic reduction algorithm is double-exponential in the size of the input. However, 
(Donald and Chang, 1991) has observed that for simplicial complexes that arise in 
geometric design the matrices are sparse, and it is argued that in a probabilistic sense 
the algorithm then runs in time at most quadratic in the size of the complex. 

We describe a more direct method for computing the Betti numbers of the homology 
groups of simplicial complexes in finite dimensions. For simplicial complexes in ]1{ 3 C 
53, the method leads to an algorithm which runs in time O ( n a ( n ) ) ,  where n is the 
number of simplices and a (n)  is the extremely slowly growing inverse of the Ackermann 
function. If the complex is represented so that the simplices incident to a given simplex 
can be accessed in constant time each then this can be improved to time O(n).  To 
ease the discussions, we initially deal with simplicial subcomplexes of a triangulation 
of 53. Later, we show how our algorithm extends to complexes embedded in 53 without 
any structural assumption on the part of 53 not covered by the complex. Section 2 
reviews some concepts from algebraic topology. Sections 3-6 develop the algorithm 
with an analysis and argument to its correctness. Section 7 applies the algorithm to 
the alpha shape approach to solid modeling. (Delfinado and Edelsbrunner, 1993) is a 
more technical version of this paper. In that version, our method's rigorous proof of 
correctness using Mayer-Vietoris sequences appears. 
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2. Concepts  in algebraic topology 

The algorithms presented in this paper are reasonably intuitive and can easily be 
understood without too many technical definitions. However, a better appreciation and 
a deeper understanding could be attained if the reader is familiar with the concepts 
from homology theory presented in this section. Our terminology follows the one in 
(Munkres, 1984). 

2.1. Simplices, simplicial complexes, and triangulations 

For 0 <~ k ~< d, a k-simplex o- in R a is the convex hull of  a set T of  k + 1 affinely 
independent points. The dimension of 0- is dim o- = ITI - 1 = k. For every non-empty 
U c_ T, the simplex 0-' defined by U is a face of o-. We say that d and o- are incident 
if o -' is a face of  0-. In three dimensions we use the terms vertex for 0-simplex, edge 
for 1-simplex, triangle for 2-simplex, and tetrahedron for 3-simplex. 

A collection of  simplices, /C, is a simplicial complex if it satisfies two properties, 
namely (i) if o-~ is a face of  0- and o- E /C then o-' C /C, and (ii) if o'l,o-2 E /C then 
~rl N o-2 is either empty or a face of  both. The largest dimension of  any simplex in/C is 
Ihe dimension of/C. All simplices in this paper have finite dimension, and all complexes 
are finite collections of  simplices. The underlying space of/C, denoted II/C[], is the set of 
all points in R a contained in at least one simplex of/C. A subset/Z C/C is a subcomplex 
of/C if it is a simplicial complex itself. It is proper if 12 4: /C. A particular subcomplex 
of /C is its k-skeleton/C ~k) = {0- E/C [ dim0- ~< k}. For example, the 1-skeleton of /C is 
a simple graph in ~a.  The components of K~ are the equivalence classes of  the transitive 
closure of  the incidence relation./C is connected if it has only one component. Since/C 
is a simplicial complex it is connected iff ~(~) is connected. 

An embedding of a topological space A in another such space ]B is a continuous one- 
to-one map from A to ~ so that its inverse, restricted to the image, is also continuous. 
It is a homeomorphism if the map is also onto, that is, IB is its image. A and B are 
homeomorphic if there is a homeomorphism between A and B. A triangulation of B is 
a simplicial complex, T,  whose underlying space, 117-11, is homeomorphic to B. Clearly, 
the underlying space of  every subcomplex of 7- has an embedding in B. We say the 
subcomplex is embeddable in ~. The d-sphere, Sa, is the set of points x E It~ 't+l with 
unit Euclidean distance from the origin./C is a proper subcomplex of a triangulation of 
~,1 if and only if it is embeddable in R a, e.g. by stereographic projection. 

2.2. Boundar),, cycles, and homology 

Each k-simplex of  a simplicial complex /C can be oriented by assigning a linear 
ordering on its vertices, denoted 0- = [u0, Ul . . . . .  uk]. Two orientations are the same if 
one sequence differs from the other by an even number of  transpositions. The boundary 
of 0- is 

k 

OkO" = Z ( - - I ) i [ U O , U l  . . . . .  ~ti . . . . .  Uk], 

i=0 
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where the hat means that u i is omitted. If  o- is a vertex then 8o0- = 0. So 8h maps 
each oriented k-simplex to a formal sum of oriented ( k -  1 )-simplices. A formal sum 
of integer multiples of  oriented k-simplices is called a k-chain. If  the coefficient of  a 
k-simplex in some k-chain is non-zero we say the simplex belongs to the chain. The 
group of  k-chains is denoted as Ck = Ck(35). The map Oh naturally extends to the 
boundary homomorphism Oh : Ck ~ Ck-i  defined by 

8 k ( Z a j o - j )  =~-~ajOkO'j, 
J J 

where the aj are integers and the o'j are k-simplices of  35. Note that a ( k -  1)-simplex 
can occur in more than one term of this sum, and these terms are combined by adding 
the coefficients. 

A number of  interesting groups can be defined using the boundary homomorphism. 
The group of  k-cycles, Zk = Zk (35), is the kernel of  Oh, that is, the subgroup of  k-chains 
z E Ck with OkZ = 0. The group of  k-boundaries, Bk = Bk(35), is the image of  0k+l, that 
is, the subgroup of  k-chains z E Ck for which there exists a (k + 1)-chain z '  E Ck+l 
with z = Ok+lZ'. It can be shown that OkOk+lZ' = 0 for every (k + 1)-chain z ' ,  so Bk 
is a subgroup of  Zk. A k-cycle z E Zk bounds if it is also in Bk. Finally, the quotient 
group Hk = Hk(35) = ZklBk is the kth homology group of 35. Each element of  Hk is 
a class of  homologous k-cycles. In other words, we treat two cycles the same in Hk if 
they differ by a cycle that bounds. Therefore, we can interpret Hk as a measure of  the 
frequency of  k-cycles that are not k-boundaries. 

It is known, see e.g. (Munkres, 1984) and (Alexandroff and Hopf, 1935, Ch. X, §1), 
that Hk(35) is isomorphic to a direct sum 

Z ~k = Z ® Z ~ . . . ® Z  

with/3k ~> 0 copies of  Z, whenever 35 is embeddable in S 3. Then/3 k =/3k(35) =/3(Hk)  
is called the kth Betti number of  35. 

The homology groups are therefore determined up to isomorphism by their Betti 
numbers. The kth Betti number is the maximal number of  independent k-cycles that 
do not bound. Intuitively, the 0th Betti number, /3 0, is the number of  components or 
connected pieces, the 1st Betti number,/31, is the number of  independent "tunnels", and 
the 2nd Betti number, /32, is the number of  "voids" or closed hollow three-dimensional 
spaces of  II/Cll. 

Examples .  Consider the simplicial complex 35 determined by all faces of  a tetrahedron. 
The dimension of  )U is three which is the dimension of  the tetrahedron. The skeleton 
subcomplexes of  K~ are shown in Fig. 1. Let z be the 1-chain [a,b] + [b ,c ]  + [c,a]. 
Because 3[a,b ,c]  = [b,c] - [a,c] + [ a ,b ]  = [a,b] + [b ,c ]  + [ c , a ] ,  we say z bounds 
in K~ (2) but it does not bound in K~ (1) which contains no 2-simplices whatsoever, z 
bounds so it must be a 1-cycle, and indeed 3z = ( b -  a) + (c - b) + ( a -  c) = O. 
Therefore, [a,b],  [b,c] and [c,a] each belong to the 1-cycle z. The cycles zj = 
[a,c] + [c,b] + [b,d] + [d,a] and z2 = [a,b] + [b,d] + [d,a] are homologous in 
H1(35 (2)) because z2 - zl = z. However, zl and z2 are not homologous in H1(35 (1)) 



C.J.A. Delfinado, H. Edelsbrunner/Computer Aided Geometric Design 12 (1995) 771-784 775 

E(o) 

!3 0 = 4 

/ 3 1 = 0  

/32 = 0 

4 
E(1) E(~) E(3) 

/3 0 = 1 /3 0 = 1 /3 0 = 1 

~1 = 3 /~1 = 0 /31 = 0 

/3~ = 0 /3 2 = 1 /3 2 = 0 

Fig. 1. /C ~°) is the set of four points forming four components./C ~l) is the complete graph with four vertices, 
consisting of one component and three independent tunnels. KS (2) is /C without the tetrahedron, forming one 
component, no tunnels, and one void. IC =/C (3) has one component but no tunnels nor voids. 

because z does not  bound in /C  ( ) .  Finally,  note  that every 1-cycle in /C  (1) is h o m o l o g o u s  

to a formal  sum of  the independent  1-cycles z, z2 and z3 = [a ,d ]  + [d , c ]  + [ c , a ] .  

Therefore ,  /31 (]C (1)) = 3. 

2.3. Filtrations 

A f i l trat ion is a sequence  o f  s implicial  complexes ,  where  each complex  is a proper  sub- 

complex  o f  its successor.  I f  0-1, o'z . . . . .  or, is a sequence o f  s implices,  t h e n / C l ,  ]C2 . . . . .  

/C,, w i th /C i  = {O-l, 0-2 . . . . .  0-i}, is a filtration, p rovided  each /Ci is a genuine  s implicial  

complex .  We call the sequence o f  s impl ices  the f i l ter  of  the filtration. Fig. 2 i l lustrates 

an example  filtration. 

3. The incremental method 

The input to the me thod  is a filter oh ,  o - 2 , . . . ,  0-m such that the s implicial  complex  

)C =/C,,, is embeddab le  in S 3. Only  to make  the exposi t ion easier, we assume in this and 

_ _  • . .  . -  - . _ _ _ _ .  % - - .  

. . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

Fig. 2. O, a, b, c, ab, d, ac, bc, ad, cd, abc, bd, abd, acd, bcd, abcd is a filter producing the above filtration. 
The last complex in the corresponding filtration contains all faces of a tetrahedron. 
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the next two sections that/C is a subcomplex of  a triangulation of  S 3. The incremental 
method processes the filter to compute the Betti numbers of/C. At each step, the Betti 
numbers of  /~i a re  computed as a function of  the Betti numbers o f /C i - l ,  the simplex 
o'i, and the complex/Ci- i  itself. 

The largest dimension of  any simplex can be at most 3, so except possibly for 
dimensions between 0 and d = 3 inclusive, all Betti numbers o f / C  vanish. In fact, if 
/C is not a complete triangulation of  ~3, /C is embeddable in R 3 and fl3(]C) = 0. To 
compute/3e(/C),  for 0 ~< g ~< 3, we use the following incremental method. 

f o r / ~  := 0 t o  d do bt := 0 e n d f o r ;  
f o r  i := 0 t o  m do 

k := dimo'i;  
i f  o'i belongs to a k-cycle of  ~ i  t h e n  bk := bk + 1 e l s e  bk-i := bk-1 -- 1 e n d i f  

e n d f o r .  

Recall that o-i belongs to a k-cycle of  K~ i if o- i is part of  a k-chain of /Ci  whose 
boundary is 0. Such a k-cycle is necessarily non-bounding because no simplex in/Ci-1 
has o-i as a face by the filter property. If  o-i is a vertex, so dim o'i = 0, then o'i belongs to 
a 0-cycle by definition. Hence, there will be no access to an undefined variable b_j .  The 
above method is complete if we can give a concrete procedure for deciding whether or 
not o-i belongs to a k-cycle of/Ci. We will sloppily refer to this operation as "detecting 
a k-cycle". This will be discussed in the next section. 

3.1. Correctness 

All algorithms in this paper are derivatives of  the incremental method. We give a 
somewhat informal argument for its correctness. A formal proof using Mayer-Vietoris 
sequences can be found in (Delfinado and Edelsbrunner, 1993). 

If  o-i belongs to a k-cycle of/Ci, then the addition of  o- i to K~ i introduces a new set of  
k-cycles. This set is independent from the k-cycles o f /Ci - i  because each new k-cycle 
contains o'i which is absent from /Ci-l. Moreover, the addition of  one of  these new 
cycles to a maximal set of  independent k-cycles of  Hk(]Ci-I ) that do not bound forms 
a maximal set for Hk(/Ci). Hence, the kth Betti number increases by 1, which mirrors 
the action of  the incremental method. 

If  o'i does not belong to a k-cycle of/Ci, then no new k-cycle is introduced. However, 
/Ci and /Ci-1 are simplicial complexes that differ only by o-i. Therefore, the simplices 
belonging to Oo'i are all in /Ci-l. Note that 0Ori is a ( k -  1)-cycle in /Ci-t since 
0OO" i = 0. Furthermore, ~o" i does not bound a k-chain in /Ci-l, for if it does, o'i will 
belong to a k-cycle in /Ci. Hence, the addition of  tri c a u s e s  ~o" i to  bound in /Ci and 
to become homologous to 0. Therefore, the size of  the maximal set of  independent 
( k -  1)-cycles of  Hk-l  ()Ui) that do not bound is one less than that of  Hk-1 (/Ci-l) .  
That is, /3k_ 1 (/Ci) = f lk- t  (/Ci-l)  -- 1, which is the action taken by the incremental 
method. 

We note that the incremental method is correct for all d ~> 0. Unfortunately, we can 
only detect 0-, 1- and (d  - 1 )-cycles, making the method complete only for d ~< 3. 
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R e m a r k  on Eu le r  numbers .  It is interesting to note that the incremental method is 
sufficient to imply a classic theorem on the Euler number of  a simplicial complex. 
Let ~'k denote the number of  k-simplices of /C.  The Euler number of K~ is defined as 

d ,¥ = ~k---0 ( -- 1 ) ~vk. The theorem asserts that 

d 

k=0 

(1) 

see e.g. (Munkres,  1984, Ch. 2, §22). Let ~'~ be the number of  k-simplices o-i ~ /C  so 
t h a t  (7" i belongs to a k-cycle of  ~i .  Hence ~'k = P~ + P~;, where u~ is the number of  
k-simplices o-i that do not belong to any k-cycle of  K;i. Following the computations we 

! 
get flk = l, k - ~'~+l. So 

d d d d 

X :  Z ( - - l ) k v k  = Z ( - - 1 ) k ( v k  + V ~ ' ) :  Z ( - - 1 ) k ( v ~  - v ~ + , ) =  Z ( - - 1 ) k f l k  
k=0 k=0 k--O k=O 

f l  II 0 .  because u 0 : Pd+l : 

4. Supporting data structures 

Vertices trivially belong to 0-cycles, so they do not require any data structure support 
to distinguish between cases. We have good data structures for detecting 1-cycles, and 
for detecting (d  - 1 )-cycles when the simplicial complex of  interest is a subcomplex 
of a triangulation of S d. For d ~< 3 we thus can cover all cases and get an efficient 
algorithm. We first discuss 1-cycles. The solution for 2-cycles is similar and can be 
extended to detecting ( d -  1)-cycles in complexes embedded in ~d. 

4.1. Detecting l-cycles 

Let o-i be a 1-simplex. It belongs to a l-cycle of  K2i iff it belongs to a l-cycle of  
E l  I). /Cl 1) is a graph, and various efficient methods for detecting 1-cycles (cycles) in 
graphs are known, see e.g. (Cormen et al., 1990). For completeness we describe the 
method that fits best into our framework. It is based on a data structure for the so-called 
union-find problem. 

A union-find data structure represents a collection of elements partitioned into a system 
of pairwise disjoint sets. It supports the following types of  operations. 

ADD(u):  Add u as the only element of  a singleton set, {u), to the system. 

F I N D ( u ) :  Determine and return (the name of) the set that contains u. 

UNION(A, B): Replace the sets A and B by their union, A U B. 

In our application, the elements are the vertices of  the 1-skeleton and the sets correspond 
to its components.  Initially, the system is empty. The union-find structure needs to be 
updated only if o-i is a vertex or an edge. Assume the union-find structure represents 
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/c~l) l, and consider the next simplex, o-i. If  o-i is a vertex then ADD(o'i) adds it to the 
system. If  o'i is an edge connecting vertices u and u then we find the corresponding sets, 
A := FIND(u)  and B := F IND(u) .  If  A = B then u and o belong to the same component 
of/C~l] and thus o'i belongs to a l-cycle. Otherwise, O" i does not belong to any 1-cycle 

in /C~ ~). Rather it connects two components which must now be merged. This is done 
by calling UNION(A, B).  

4.2. Detecting 2-cycles 

To detect 2-cycles we assume that /C is a subcomplex of  a triangulation 7" = 
{0-1,0"2 . . . . .  0-m . . . . .  O'n} of  S 3, and that the ordering of  the simplices forms a fil- 
ter. For 0 ~< i ~< n, define ]~i  = 7" --  ](~i. Note that ]~i is in general not a simplicial 
complex. However, it satisfies the reverse of  property (i) ,  namely ( i ' )  if o J is a face of  
o- and 0-' E/C then o- E/C. This can be used to characterize the 2-cycles of/Ci in terms 
of  the components of  a graph. Let V be the set of  tetrahedra of  ~i, and let E be the set 
of  pairs of  tetrahedra, {a, b}, so that a A b is a triangle in )~i. The graph Gi with node 
set V and arc set E is termed the dual graph of/~i.  

Let o- i be a triangle, o- i belongs to a 2-cycle in ](~i i f f  Gi has one more component than 
Gi- i. So this means that o" i belongs to a 2-cycle in ](~i iff it does not belong to a 1-cycle 
in Gi-i. Adding a simplex to/Ci- l  means removing the same simplex from ~i -1 .  Hence 
it appears that the dual graph must be maintained through a sequence of  node and arc 
removals, which is computationally more expensive than a similar sequence of  node and 
arc insertions. For this reason we reverse the processing order of  the filter and obtain 
the empty complex by starting with 7" and removing a simplex at a time. This is done 
only for detecting 2-cycles and does not affect other computations. 

The data structure used to represent Gi, and thus/~i, is again a union-find structure. Its 
elements are the nodes of  Gi (the tetrahedra of /~i) ,  and the sets in the system represent 
the components of  Gi. Initially, i = n, Gn = (0, 0), and the system that represents Gn is 
empty. The representation of  go (the dual graph of  7" = 7" - ~) is built by processing 
the simplices o-n down to O'l. Of course, only tetrahedra and triangles have any effect 
on the data structure. 

TO go f rom Gi to Gi - I  we add the simplex Or i to ]~i. If  O" i is a tetrahedron then 
ADD(O-i) adds it to the system. In the forward direction this corresponds to removing 
an isolated node of  Gi-l to obtain Gi. If  o'i is a triangle then an arc connecting the 
two incident tetrahedra is added to Gi, resulting in Gi-l .  Using two FIND operations, 
we can test whether or not the two tetrahedra belong to the same component of  Gi. 
If  they do then no further action is required. Otherwise, the two tetrahedra belong to 
two different components of  Gi, represented by two sets A v~ B in the system. These 
two sets are merged by calling UNION(A, B).  In the forward direction this corresponds 
to splitting a component. The communication between the main algorithm, which runs 
forward, and the 2-cycle detection mechanism, which runs backward, is based on marks 
left with triangles o'i that belong to a 2-cycle of  ]~i. These are the triangles that cause 
the execution of  a UNION operation. 
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5. Details of the algorithm 

779 

After establishing the ingredients in Sections 3 and 4, we put things together to obtain 
the algorithm in complete detail. We do this only for d = 3 dimensions. Already in 4 
dimensions we lack an efficient algorithm for detecting 2-cycles, and we cannot even 
compute the 1 st homology group because this requires detecting 1- and 2-cycles. For the 
moment, assume that the input consists of  a triangulation of  ~3 of which the simplicial 
complex of  interest is a subcomplex. 

5.1. The incremental algorithm 

Let T = {crl,cr2 . . . . .  o-,} be a triangulation of S 3, and for 0 ~< i ~< n define )Ui = 
{O-l,Cr2 . . . . .  o'i}, as before. We assume that each K~ i is a simplicial complex. The 
complex of  interest is KS = KSm, with m ~< n. 

The first phase of  the algorithm marks every simplex, oi, that belongs to a cycle of  thc 
same dimension in K~i. Each vertex belongs to a 0-cycle, so all vertices get marked. To 
mark the appropriate edges we process the simplices in forward direction and maintain 
a union-find structure for )U} 1). An edge is marked iff it does not cause a UNION 
operation. For marking the appropriate triangles we process the simplices in backward 
direction, from or, down to o'1. A union-find structure representing the dual graph, Gi, 
of ]~i  = 7 -  - -  KSi is maintained, and a triangle is marked iff it causes a UNION operation. 
Finally, the only tetrahedron that belongs to a 3-cycle at the time it is processed is (r,,. 
This is the only tetrahedron that gets marked. 

The second phase counts the marked and unmarked simplices and derives the Betti 
numbers as simple sums of  these numbers. This is done by scanning the simplices once 
more, in forward direction. 

b0 := bl := be := b3 := 0; 
:for i : =  1 t o  m do 

k := dim o-i; 
i f  o5 is marked t h e n  bk := bk + 1 e l s e  bk-i := bk-i  -- 1 e n d i f  

endf or. 

The only case where we get b3 4= 0 is when KS contains all tetrahedra of  7- and thus is 
a triangulation of ~3. If  KS is embeddable in R 3 then KS va 7- and we can drop b3 from 
the algorithm. 

5.2. The analysis 

The vertices, edges, triangles, and tetrahedra in 7- cause different actions in the 
algorithm. Let Uk be the number of  k-simplices in 7-, for 0 ~< k ~< 3. Observe that 
2u3 = v2 >~ vl ~> 2v0. Since n = v 0 + v l  + v 2 + v 3  we have n ~< 3v2 and n ~< 6v3, 
that is, at least one third of  all simplices are triangles and at least one sixth of  them are 
tetrahedra. 

It is clear that phase 2 of  the algorithm takes only O(n)  time. Similarly, the vertices 
and tile last tetrahedron can be marked in time O(n) .  The forward process, which marks 
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edges, executes a sequence of  v0 ADD operations, 2Vl FIND operations, and at most 
v0 - 1 UNION operations. Using a standard implementation of  the union-find structure 
this takes time O( (v0 + Vl )a (vo ,  vl ) ) ,  where a ( x ,  y)  is the extremely slowly growing 
inverse of  Ackermann's function, see e.g. (Cormen et al., 1990). Similarly, the backward 
process, which marks triangles, executes v3 ADD operations, 2v2 FIND operations, and 
at most v3 - 1 UNION operations. This takes time O((v3 + v2)a(v3,  v2)) .  Recall the 
customary notation a(  x ) = a(  x, x ) . 

5.1. Let 1C be a subcomplex of  a triangulation 7- of  S 3, with [7-[ = n. The possibly 
non-vanishing Betti numbers of  IC, t9o, 191,192,193, can be computed in time O(nce(n) ) 
and storage O( n). 

6. Improvements of the algorithm 

If  /(7 is a subcomplex of  a triangulation of  S 2 then no backward computation is 
necessary. Hence, there is no need to consider any of  the simplices that do not belong 
to /C. The result can then be improved to time O(mo~(m)) and storage O(m) .  The 
following improvements are possible for complexes embedded in 53. 

6.1. Using depth-first search 

Consider the case where the simplicial complex is represented by a data structure so 
that for a given o- the simplices incident to o- can be accessed in constant time. An 
example of  such a data structure is the adjacency-list representation which is common 
for graphs. The nodes are elements of  a linear array. An arc is given as an index pair, so 
the incident nodes can be found in constant time by array look-up. The arcs incident to a 
node are represented by a linear list whose address is stored with the node. Given a node 
it is thus possible to access the incident arcs in constant time per arc. For our purpose 
it will be sufficient to have an adjacency-list representation for 7 -~1), the 1-skeleton of  
T,  and for Go, the dual graph of/C0 = T.  

Depth-first search is a standard graph search method that takes constant time per arc 
(edge or triangle) and can distinguish between arcs that complete a cycle and arcs that 
connect to a new node, see e.g. (Cormen et al., 1990). Using the data structure for T ~1) 
we can use depth-first search to properly mark the edges of  7-. Using the data structure 
for G0 we can use depth-first search to properly mark its triangles. It is important to 
notice that the two depth-first searches are not coordinated with each other. Indeed, to 
achieve O(n )  running time the search of  7-~1) needs the freedom to visit the edges 
in any order it pleases. Similar for Go. As a minimum amount of  ccordination, the 
vertices and edges of /C are to be visited before those of/C. Similarly, the tetrahedra and 
triangles o f /C  are to be visited before those of  K. We obtain a filter by alternating the 
two sequences of  the first search and the reversed two sequences of  the second search. 
This filter is properly labeled and contains/C as a prefix. The Betti numbers can now 
be computed by traversing this filter and counting marked and unmarked simplices as 
before. This leads to the following improvement of  5.1. 
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6.1. Let 1C be a subcomplex of a triangulation 7- of S 3, with IT[ = n, and assume the 
l-skeleton and the dual graph of "T are given by their adjacency-list representations. 
Then the Betti numbers of KS can be computed in time and storage O(n).  

Remark .  The improvement with depth-first search sacrifices the ability to prescribe 
the order of  the simplices. This ability is crucial for our application to alpha shapes 
discussed in the next section. 

6.2. Non- triangulated complex complement 

Up until now, we have assumed that KS = KSm is a subcomplex of a triangulation of  
S 3. Now, we relax this requirement and assume only KS embedded in 1R 3 is given, and 
its complement has no explicit representation. One way to solve this problem is to first 
construct a compatible triangulation of  the complement. We refer to (Bern, 1993) for an 
algorithm that constructs such a triangulation. What follows is a description of  another 
solution. For this, assume that KS is represented so that for each edge, e, the triangles 
incident on e can be enumerated in the order they wrap around e, in constant time per 
triangle. The data structure used in (Edelsbrunner and M~cke, 1994) is an example of  
a representation that satisfies this requirement. 

Observe that the incremental algorithm, as described earlier, uses a triangulation of  
the complement of /C only to mark triangles that belong to 2-cycles. To do this without 
using a complement triangulation, we build a multigraph 3,t. Each node of  M is an 
ordered pair (t, s). t is a triangle of  KS and s C { + , - }  corresponds to one of  the two 
sides of t. (t, s) is not a node of  M if t is incident on a tetrahedron of  KS on side s of 
t. A way to distinguish the sides of  a triangle is its orientation. The edges of  KS are then 
processed. For any two consecutive triangles t t and t" around an edge e, if t t and t" are 
not incident on a common tetrahedron of  KS, then ( / ,  s ~) and ( t ' ,  s ' )  are joined by an 
arc of  M .  The values of  s ~ and s" follow from the orientations of  t p, t" and e. If e is 
incident on only one triangle t, then an arc joins (t, + )  and ( t , - ) .  If  e is incident on 
no triangle, no arc is introduced by e. Observe that the components of  M correspond 
to connected surface pieces of  IIKSI]. 

The next step is to do a depth-first search of  3,4. With no increase in time complexity, 
the components of  A.4 can be identified. For each component, the nodes in the component 
can each be made to point to a representative node. This creates the sets for the union 
find data structure, .Adm, for .A4. 

We can now perform the reverse traversal of the filter, starting with o-,n..A4,, takes 
the place of  the union-find data structure for Gm described in Section 4. If  a tetra- 
hedron (ri is processed, a new set is added to M i  with elements ( t , s ) ,  t a triangle 
in the boundary of  o-i and oi on the s side of  t. When a triangle o'i is visited, if 
FIND ( ( O'i, 2_ ) ) @ FIND ( ( O'i, --  ) ) ,  then U N I O N  ( ( O'i, + ) ,  ( O-i, -- ) ) is performed and cri 
is marked. Otherwise, ori is left unmarked. 

After this step, the algorithm can proceed as before. Note that if only the Betti 
numbers of  KS are of  interest, then /30(KS) can be computed by performing a depth-first 
search of the l-skeleton, KS(I), of  KS. To compute/32(KS), create the graph N'. The nodes 
of  .A/are the triangles of  KS and two nodes are connected by an arc if the triangles share 



782 C.J.A. Delfinado. H. Edelsbrunner/Computer Aided Geometric Design 12 (1995) 771-784 

an edge. Like/C (1), the number of components of N" can be computed by performing a 
depth-first search. Then, it is clear that fl2(1C) is just the number of components of A,,l,,, 
minus the number of components of N'. Finally, /31 (](£) is computed using the Euler 
formula and the values of/30(/C) and fl2(/C). We get the following result. 

6.2. Let 1C be embedded in I~ 3 and let m be the number of  simplices in 1C. I f  for  each 
edge e C ]C, the triangles incident on e can be enumerated in the order they wrap 
around e in O( 1 ) time per triangle, then the Betti numbers of  IC can be computed 
in time and storage O(m).  Also, the Betti numbers of  all ]~i in the filtration can be 
computed in time O ( m a ( m )  ) and storage O(m).  

7. Signatures for alpha shapes 

The incremental algorithm is useful especially when the Betti numbers of all simpli- 
cial complexes in a filtration need to be computed. A case when this happens is in the 
computation of the Betti number signatures for alpha shapes, A comprehensive discus- 
sion of the family of a-shapes of a finite point set is beyond the scope of this paper. 
As a substitute we refer the reader to papers on two-dimensional (Edelsbrunner et al., 
1983) and three-dimensional (Edelsbrunner and Mticke, 1994) a-shapes. Computing 
Betti numbers for a-shapes is our main motivation for developing the algorithms in this 
paper. 

7.1. A brief description of  three-dimensional a-shapes 

Let S be a finite point set in R 3, with IS[ ) 4, and let 79 = D(S)  be its Delaunay 
triangulation, see e.g. (Edelsbrunner, 1987). Provided the points are in general position, 
D is indeed a simplicial complex. Commonly, it is defined so that its underlying space, 
117911, is the convex hull of S. It is more convenient for us to add a point "at infinity" 
and connect it to all simplices on the boundary of the convex hull of S. The resulting 
simplicial complex is a triangulation of ~3, which we denote by T. 

For each non-negative real a, the a-complex of S is a subcomplex of 79 and therefore 
also of T. The a-shape of S is the underlying space of the a-complex. It is defined 
so that for a = 0 we get the point set S itself, and for sufficiently large a we get the 
convex hull of S, see (Edelsbrunner and Mticke, 1994). Although a shape is defined for 
every non-negative real a,  there are only finitely many different subcomplexes of 79 and 
therefore only finitely many different a-shapes. It is convenient to index the a-shapes 
and a-complexes by position. Let s be the number of different a-complexes, denoted 
CI,C2 . . . . .  C,. For 1 ~< i ~< s, the a-shape that corresponds to the ith a-complex is 
3i =/tCill. With increasing index the corresponding a-value also grows. 

For convenience, define Co = ~ and Cs+l = T. The sequence CO,el . . . . .  Cs+l of 
simplicial complexes is a filtration which is a scattered subsequence of the filtration 
] ~ 0 , / ~ 1  . . . . .  ]~n = T,  where ]~i = {O-I,O'2 . . . . .  O-i} , see (Edelsbrunner and Mticke, 
1994). We assume that the simplices of T are ordered so that each /Ci is indeed a 
simplicial complex. For each simplex o'i C T,  let ,t(i) be the smallest index g so that 
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O-i ~ C~. This means CA(i) is the smallest a-complex that contains /Ci, and C2ui~ = 1Ci 
iff ~(i)  4= A ( i +  1). 

7.2. Computing signatures 

The implementation of  three-dimensional a-shapes reported in (Edelsbrunner and 
Mticke, 1994) includes a small number of  signature functions that follow the evolution 
of the a-shape as a increases from 0 to +oc.  Let [s] denote the set {1,2 . . . . .  s}. By 
a signature function we mean a function f :  [s] --~ R that maps each index t c [s] 
to a wdue f (g )  in some range R. For reasons of  usefulness the function should be 
delined so that f ( 6 )  expresses some properly of the a-shape St. For example, f ( t )  
could express a combinatorial property, such as the number of  triangles bounding S~, 
or a metric property, such as the surface area of  S~. 

In this section we are interested in three topological signature functions that count the 
number of  components, independent tunnels, and voids of  St. For 0 <~ k <~ 2 define 

/3k : [s/  ~ g 

so that/3k(6) is the kth Betti number of  S~. The homology groups of St  and C~ are the 
same, so /3k(g) = /3(Hk(C~)) .  Each signature function, /3 k, is represented by a linear 
array, bk [ l. .s ]. 

We can now modify the algorithm of Section 5 to compute the signature functions/30, 
/3 L, and/32 of  all a-shapes of  S. Phase 1, which marks the simplices, is exactly the same 
as in Section 5. The only change in phase 2 is that for some values of i the computed 
Betti numbers need to be stored in the appropriate elements of the three arrays. 

b0 [ l l  : = b t [ 1 ]  : = b 2 [ l ]  :=0;  
~:= I; 
f o r  i ::= 1 t o  n do 

k := dim cri; 
i f  cri is marked t h e n  bk[g] := b~[g] + 1 e l s e  bk_ 1 [6] : =  bk-1 [ ~ f ]  - -  1 e n d i f :  
i f  g < s and A(i) 4: ~ . ( i+  1) t h e n  

bo[g+ 1] : = b 0 [ g ] ; b l [ 6 + l ]  : = b t [ g ] ; b z [ g + l ]  : = b 2 [ g ] ; 6 : = 6 + l  
endif 

endf or. 

Clearly, the asymptotic complexity of  this algorithm is the same as of  the algorithm in 
Section 5. We thus obtain the main result of  this section. 

7.1. The signature functions that map g E [s] to the Oth, 1st, and 2nd Betti numbers of 
$~ cart be computed in time O(na(n)  ) and storage O(n). 

8. Discussion 

This paper presents an incremental method for computing the Betti numbers of a 
topological space represented by a simplicial complex. It is complete and has an efficient 
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implementat ion for simplicial  complexes embeddable in 1R 3 or g3. The algorithm is 
an example of  how algorithmic techniques developed for graphs can be applied and 
extended to complexes of  dimension higher than one. It is to be hoped that this is 
a step towards a revived interest in algorithmic problems in algebraic topology. As 
demonstrated in this paper, these algorithms do not necessarily have algebraic flavor. 
Indeed, we see our algori thm as evidence that combinatorial algorithms can outperform 
algebraic methods designed to solve the same problems. 

The O ( n o ~ ( n ) )  t ime implementation of  the three-dimensional algorithm has been 
coded and incorporated into a software package on alpha shapes. This is available via 
anonymous ftp from f t p .  n c s a .  uS.ue, edu. Given a finite point set in IR 3, the program 
computes signatures, displayed as graphs of  one-dimensional functions, that show the 
Betti numbers of  the evolving o~-shape. 

The most interesting unanswered question concerns data structures that give a com- 
plete and an efficient implementation of  our incremental method for simplicial complexes 
not embeddable  in 5 3. 
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