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Lecture V

THE GREEDY APPROACH

An algorithmic approach is called “greedy” when it makes decisions for each step based on what
seems best at the current step. Moreover, once a decision is made, it is never revoked. It may seem
that this approach is rather limited. Nevertheless, many important problems have special features
that allow correct solutions using this approach. Since we do not revoke our greedy decisions, such
algorithms tend to be simple and efficient.

To make this concept of “greedy decisions” concrete, suppose we have some “gain function
G(x)” which quantifies the gain we expect with each possible decision x. View the algorithm
as making a sequence x1, x2, . . . , xn of decisions, where each xi ∈ Xi for some set Xi of feasible
choices. Greediness amounts to choosing the xi ∈ Xi which maximizes the value G(x).

The greedy method is supposed to exemplify the idea of “local search”. But closer examination
of greedy algorithms will reveal some global information being used. Such global information is
usually minimal. Typically it amounts to some global sorting step. Indeed, the preferred data
structure for delivering this global information is the priority queue.

We begin with a toy version of bin packing and simple problems involving intervals. Next
we discuss the more realistic Huffman tree problem and minimum spanning trees. An abstract
setting for the minimum spanning tree problem is based on matroid theory and the associated
maximum independent set problem. This abstract framework captures the essence of a large
class of problems with greedy solutions.§1. Joy Rides and Bin Packing

We start with a simple example of greedy algorithms which we will call “linear bin packing”.
It is, however, related to a major topic in algorithms called bin packing.

The prototype bin packing problem is to put a set of items into as few bins as possible. Each
item is characterized by its weight, and the bins are identical, with a limited capacity. More
precisely, we are given a multiset set W = {w1, . . . , wn} of positive weights, and a bin capacity
M > 0. We want to partition W into a minimum number of subsets such that the total weight in
each subset is at most M . We may assume that each wi ≤M . E.g., if W = {1, 1, 1, 3, 2, 2, 1, 3, 1}
and M = 5 then one solution is {3, 2} , {2, 3} , {1, 1, 1, 1, 1}, illustrated in Figure 1.

1 2 3 4

· · ·

· · ·

Figure 1: Bin packing solution.

This solution uses 3 bins, and it is clearly optimal, as each bin is filled to capacity. In general,
bin packing is considered a hard problem because all known algorithms for optimal bin packing
is exponential time. But we can turn hard problems into feasible ones by imposing suitable
restrictions. We illustrate this idea with our linearized version of bin packing.© Chee-Keng Yap Basic Version April 2, 2008
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¶1. Amusement Park Problem. Suppose we have a joy ride in an amusement park where
riders arrive in a queue. We want to assign riders into cars, where the cars are empty as they arrive
and we can only load one car at a time. Each car has a weight limit M > 0. The number of riders
in a car is immaterial, as long as their total weight is ≤M pounds. We may assume that no rider
has weight > M . A key constraint in this problem is that we must make a decision for rider as they
arrive at the head of the queue. This is called the online requirement. For instance, if M = 400
and the weights (in pounds) of the riders in the queue are (40, 190, 80, 210, 100, 80, 50, 170), then
we can put the riders into cars in the following groups:

S1 : (40, 190, 80), (210, 100, 80), (50, 170).

Solution S1 uses three cars (the first car has the first 3 riders, the next car has the next 3, and the
last care has 2 riders). It is the solution given by the “greedy algorithm” which fills each car with
as many riders as possible. Here are two other non-greedy solutions:

S2 : (40, 190), (80, 210), (100, 80, 50, 170).

S3 : (40, 190)(80, 210, 100), (80, 50), (170).¶2. Greedy Solution. The algorithm has a simple iterative solution. Let C be a container (or
car) that is being filled, and let W be the cumulative weight of the elements being added to C.
Initially, W ← 0 and C = ∅. If the next weight would make C overfull, we output C. So here is
the code:

⊲ Initialization
C ← ∅, W ← 0.

⊲ Loop
for i = 1 to n + 1

if (i = n + 1 or W + wi > M)
W ← 0, C ← ∅, Output C.

else

W ←W + wi; C ← C ∪ {wi}.

At the conclusion of the for-loop, we would have output a sequence of car loads, representing the
greedy solution.¶3. Correctness. It may not be obvious why this algorithm produces an optimal bin packing.
Here is a proof by induction. Suppose the greedy algorithm outputs k cars with the weights

(w1, . . . , wn1
), (wn1+1, . . . , wn2

), . . . , (wnk−1+1, . . . , wnk
)

where nk = n. This defines a sequence of indices,

1 ≤ n1 < n2 < · · · < nk = n.

Consider any optimal solution with ℓ cars with the weights

(w1, . . . , wm1
), (wm1+1, . . . , wm2

), . . . , (wmℓ−1+1, . . . , wmℓ
)© Chee-Keng Yap Basic Version April 2, 2008
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where
1 ≤ m1 < m2 < · · · < mℓ = n.

Since this is optimal, we have
ℓ ≤ k.

We claim that for i = 1, . . . , ℓ,
mi ≤ ni. (1)

It is easy to see that this is true for i = 1. For i > 1, assume mi−1 ≤ ni−1 by induction hypothesis.
By way of contradiction, suppose that mi > ni. Then

mi−1 ≤ ni−1 < ni−1 + 1 ≤ ni < ni + 1 ≤ mi. (2)

The i-th car in the optimal solution has weight equal to wmi−1+1 + · · · + wmi
, but this weight

(according to (2)) is at least
wni−1+1 + · · ·+ wni

+ wni+1. (3)

But by definition of the greedy algorithm, the sum in (3) must exceed M (otherwise the greedy
algorithm would have added wni+1 to the ith car). This contradiction concludes our proof of (1).

From (1), we have mℓ ≤ nℓ. Since mℓ = n, we conclude that nℓ = n. Since nk = n, this can
only mean ℓ = k. Thus the greedy method is optimal.¶4. Application to Bin Packing. Thus linear bin packing can be solved in O(n) time; if
the weights are arbitrary real numbers, this O(n) bound is based on the real RAM computational
model of Chapter 1. We can use this solution as a subroutine in solving the original bin packing
problem: we just cycle through each of the n! permutations of w = (w1, . . . , wn), and for each
compute the greedy solution in O(n) time. The optimal solution is among them. This yields
an Θ(n · n!) = Θ((n/e)n+(3/2)) time algorithm. Here, we assume that we can generate all n- It is just Stir-

ling’s approxi-
mation for n!

permutations in O(n!) time. This is a nontrivial assumption, but in §7, we will show how to do
this.

We can improve this by a factor of n, since without loss of generality, we may restrict to
permutations that begins with an arbitrary w1 (why?). Since there are (n−1)! such permutations,
we obtain:

Lemma 1. The bin packing problem can be solved in O(n!) = O((n/e)n+(1/2)) time in the real
RAM model.

We can further improve this complexity by another factor of n (Exercise).

Exercises

Exercise 1.1: Suppose you are a cashier at a checkout and has to give change to customers. You
want to give out the minumum number of notes and coins.
(a) What is the greedy algorithm for this?
(b) Assuming a US cashier giving change less than $100. You have bills in denominations
$50, $20, $10, $5, $1 and common coins 25¢, 10¢, 5¢, 1¢. Is your greedy algorithm optimal
here?
(c) Give a scenario in which your greedy algorithm is non-optimal. ♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 1.2: Give a counter example to the greedy algorithm in case the wi’s can be negative.
♦

Exercise 1.3: Suppose the weight wi’s can be negative. How bad can the greedy solution be, as
a function of the optimal number of bins? ♦

Exercise 1.4: There are two places where our optimality proof for the greedy algorithm breaks
down when there are negative weights. What are they? ♦

Exercise 1.5: Consider the following “generalized greedy algorithm” in case wi’s can be negative.
A solution to linear bin packing be characterized by the sequence of indices, 0 = n0 < n1 <
n2 < · · · < nk = n where the ith car holds the weights

[wni−1+1, wni+2, . . . , wni
].

Here is a greedy way to define these indices: let n1 to be the largest index such that
∑n1

j=1 wj ≤ M . For i > 1, define ni to be the largest index such that
∑ni

j=ni−1+1 wj ≤ M .
Either prove that this solution is optimal, or give a counter example. ♦

Exercise 1.6: Give an O(n2) algorithm for linear bin packing when there are negative weights.
HINT: Assume that when you solve the problem for (M, w), you also solve it for each (M, w′)
where w′ is a suffix of w. This is really the idea of dynamic programming (Chapter 7). ♦

Exercise 1.7: Improve the bin packing upper bound in Lemma 1 to O((n/e)n−(1/2)). HINT:
Repeat the trick which saved us a factor of n in the first place. Fix two weights w1, w2. We
need to consider two cases: either w1, w2 belong to the same bin or they do not. ♦

Exercise 1.8: Consider an extension of linear bin packing where we now load two cars at any
one time. For example, for joy rides in a Ferris wheel, this is a realistic scenario. We are
allowed to slightly violate the first-come first-serve policy: a rider can be assigned to the
second car, and the next rider in the queue can be assigned to the first car. But this is the
worst that can happen (people coming behind in the queue can never be ahead by more than
one car). We continue to make the “online requirement”, i.e., we must make a decision for
the ith rider before the i + 1st rider. Let the choice for the ith rider be denote xi ∈ {1, 2, 3}
where xi = 1 (resp., xi = 2) means the ith rider goes into the first (resp., second) car. Also
xi = 3 means we send off the first car, and assign the ith rider to a new car (which is the
new second car). Here is a greedy algorithm: for each i, make xi to be the smallest possible
integer. I.e., load into the first car if possible, otherwise try to load into the second car if
possible, and otherwise send off the first car, and bring in a new car to which we will assign
the i-th rider. Prove or disprove that this strategy is at least as good as the original greedy
algorithm for loading one car. ♦

Exercise 1.9: In the previous problem, we load 2 cars at the same time, and the first-come first-
serve policy is only mildly violated. Now imagine that the 2 cars move along two independent
tracks, say the left track and right track. Now, either car could be sent off before the other.
We still make decision for each rider in an online manner, but our ith decision xi now comes
from the set {L, R, L+, R+}. The choice xi = L or xi = R means we load the ith rider into
the left or right car (resp.), but xi = L+ means that we send off the left car, and put the© Chee-Keng Yap Basic Version April 2, 2008
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i-th rider into a new car in its place. Similarly for xi = R+. Consider the following heuristic:
let C0 > 0 and C1 > 0 be the “residual capacities” of the two open cars. Try to put wi into
the car with the smaller residual capacity. If wi is larger than both C0 and C1, we send off
the car with the smaller residual capacity (and put wi into its replacement car). Prove or
disprove that this strategy will never use more cars than the greedy algorithm in the previous
problem. ♦

Exercise 1.10: Weights with structure: suppose that the input weights are of the form wi,j =
ui + vj and (u1, . . . , um) and (v1, . . . , vn) are two given sequences. So w has mn numbers.
Moreover, each group must have the form w(i, i′, j, j′) comprising all wk,ℓ such that i ≤ k ≤ i′

and j ≤ ℓ ≤ j′. Call this a “rectangular group”. We want the sum of the weights in each
group to be at most M , the bin capacity. Give a greedy algorithm to form the smallest
possible number of rectangular groups. Prove its correctness. ♦

Exercise 1.11: A vertex cover for a bigraph G = (V, E) is a subset C ⊆ V such that for each
edge e ∈ E, at least one of its two vertices is contained in C. A minimum vertex cover is
one of minimum size. Here is a greedy algorithm to finds a vertex cover C:

1. Initialize C to the empty set.
2. Choose from the graph a vertex v with the largest out-degree.

Add vertex v to the set C, and remove vertex v and
all edges that are incident on it from the graph.

3. Repeat step 2 until the edge set is empty.
4. The final set C is a vertex cover of the original graph.

(a) Show a graph G, for which this greedy algorithm fails to give a minimum vertex cover.
HINT: An example with 7 vertices exists.
(b) Let x = (x1, . . . , xn) where each xi is associated with vertex i ∈ V = {1, . . . , n}. Consider
the following set of inequalities:� For each i ∈ V , introduce the inequality

0 ≤ xi ≤ 1.� For each edge (i, j) ∈ E, introduce the inequality

xi + xj ≥ 1.

If a = (a1, . . . , an) ∈ R
n satisfies these inequalities, we call a a feasible solution. If each ai

is either 0 or 1, we call a a 0− 1 feasible solution. Show a bijective correspondence between
the set of vertex covers and the set of 0 − 1 feasible solutions. If C is a vertex cover, let aC

denote the corresponding 0− 1 feasible solution.
(c) Suppose x∗ = (x∗

1, . . . , x
∗
n) ∈ R

n is a feasible solution that minimizes the function f(x) =
x1 + x2 + · · ·+ xn, i.e., for all feasible x,

f(x∗) ≤ f(x).

Call x∗ an optimum vector. Note that x∗ is not necessarily a 0 − 1 vector. Construct a
graph G = (V, E) where x∗ is not a 0 − 1 feasible solution. HINT: you do not need many
vertices (n ≤ 4 suffices).
(d) Given an optimum vector x∗, define set C ⊆ V as follows: i ∈ C iff xi ≥ 0.5. Show that
C is a vertex cover.
(e) Suppose C∗ is a minimum vertex cover. Show that |C| ≤ 2|C∗|. HINT: what is the
relation between |C| and f(x∗)? Between f(x∗) and |C∗|? REMARKS: using Linear Pro-
gramming, we can find a optimum vector x∗ quite efficiently. The technique of converting
an optimum vector into an integer vector is a powerful approximation techique. ♦© Chee-Keng Yap Basic Version April 2, 2008
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End Exercises§2. Interval Problems

We give other simple examples of greedy algorithms. An important class of such problems
involves intervals. Typically, we think of an interval I as a time interval, representing some
activity. For instance, the half-open interval I = [s, f) where s < f might represent an activity
that starts at time s and finishes at time f . Here, [s, f) is the set {t ∈ R : s ≤ t < f}. Two
activities conflict if their time intervals are not disjoint. We use half-open intervals instead of
closed intervals so that the finish time of an activity can coincide with the start time of another
activitity without causing a conflict. A set S = {I1, . . . , In} of intervals is said to be compatible
if the intervals in S are pairwise disjoint (i.e., the activities in S are mutually conflict-free).

We begin with the activities selection problem, originally studied by Gavril. Imagine you
have the choice to do any number of the following fun activities in one afternoon:

beach 12 : 00− 4 : 00,
swimming 1 : 15− 2 : 45,
tennis 1 : 30− 3 : 20,
movie 3 : 00− 4 : 30,
movie 4 : 30− 6 : 00.

3 : 00 5 : 00 6 : 001 : 0012 : 00 2 : 00 4 : 00

Tennis

Movie 1

Beach

Swim

Movie 2

Figure 2: Set of 5 activities

The corresponding time intervals are visually represented in Figure 2. You are not allowed
to do two activities simultaneously. Assuming that your goal is to maximize your number of fun
activities, which activities should you choose? Formally, the activities selection problem is this:
given a set

A = {I1, I2, . . . , In}

of intervals, to compute a compatible subset of S that is optimal. Here optimality means “of
maximum cardinality”. E.g., in the above fun activities example, an optimal solution would be to
swim and to see two movies. It would be suboptimal to go to the beach. What would a greedy
algorithm for this problem look like? Here is a generic version:

© Chee-Keng Yap Basic Version April 2, 2008
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Generic Greedy Activities Selection:
Input: a set A of intervals
Output: S ⊆ A, a set of compatible intervals
⊲ Initialization

Sort A according to some numerical criterion.
Let (I1, . . . , In) be the sorted sequence.

Let S = ∅.
⊲ Main Loop

For i = 1 to n
If S ∪ {Ii} is compatible, add Ii to S

return(S)

Thus, S is a partial solution that we are building up. At stage i, we consider Ai, to either
accept or reject it. Accepting means to make it part of current solution S. Notice the difference
and similarities between this greedy solution and the one for joy rides.

But what greedy criteria should we use for sorting? Here are some suggestions:� Sort Ii’s in order of non-decreasing finish times. E.g., swim, tennis, beach, movie 1, movie 2.� Sort Ii’s in order of non-decreasing start times. E.g., beach, swim, tennis, movie 1, movie 2.� Sort Ii’s in order of non-decreasing size fi − si. E.g., movie 1, movie 2, swim, beach, tennis.� Sort Ii’s in order of non-decreasing conflict degree. The conflict degree of Ii is the number
of Ij ’s which conflict with Ii. E.g., movie 2, movie 1 or swim, beach or tennis.

We now show that the first criterion (sorting by non-decreasing finish times) leads to an optimal
solution. In the Exercise, we ask you to show show that all the other criteria do not guarantee
optimality.

We use an inductive proof, reminiscent of the joy ride proof. Let S = (I1, I2, . . . , Ik) be the
solution given by our greedy algorithm. If Ii = [si, fi), we may assume

f1 < f2 < · · · < fk.

Suppose S′ = (I ′1, I
′
2, . . . , I

′
ℓ) is an optimal solution where I ′i = [s′i, f

′
i) and again f ′

1 < f ′
2 < · · · < f ′

ℓ.
By optimality of S′, we have k ≤ ℓ. CLAIM: We have the inequality fi ≤ f ′

i for all i = 1, . . . , k.
We leave this proof as an exercise.

Let us now derive a contradiction if the greedy solution is not optimal: assume k < ℓ so that
I ′k+1 is defined. Then

fk ≤ f ′
k ( by CLAIM)

≤ s′k+1 (since I ′k, I ′k+1 have no conflict)

and so I ′k+1 is compatible with {I1, . . . , Ik}. This is a contradition since the greedy algorithm halts
after choosing Ik because there are no other compatible intervals.

What is the running time of this algorithm? In deciding if interval Ii is compatible with the
current set S, it is enough to only look at the finish time f of the last accepted interval. This can
be done in O(1) time since this comparison takes O(1) and f can be maintained in O(1) time.
Hence the algorithm takes linear time after the initial sorting.© Chee-Keng Yap Basic Version April 2, 2008
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activities selection problem. Some of these problems are explored in the Exercises.� Suppose your objective is not to maximize the number of activities, but to maximize the

total amount of time spent in doing activities. In that case, for our fun afternoon example,
you should go to the beach and see the second movie.� Suppose we generalize the objective function by adding a weight (“pleasure index”) to each
activity. Your goal now is to maximize the total weight of the activities in the compatible
set.� We can think of the activities to be selected as a uni-processor scheduling problem. (You
happen to be the processor.) We can ask: what if you want to process as many activities
as possible using two processors? Does our original greedy approach extend in the obvious
way? (Find the greedy solution for processor 1, then find greedy solution for processor 2).� Alternatively, suppose we ask: what is the minimum number of processors that suffices to
do all the activities in the input set?� Suppose that, in addition to the set A of activities, we have a set C of classrooms. We are
given a bipartite graph with vertices A ∪ C and edges is E ⊆ A × C. Intuitively, (I, c) ∈ E
means that activity I can be held in classroom c. We want to know whether there is an
assignment f : A→ C such that (1) f(I) = c implies (I, c) ∈ E and (2) f−1(c) is compatible.
REMARK: scheduling of classrooms in a school is more complicated in many more ways.
One additional twist is to do weekly scheduling, not daily scheduling.

Exercises

Exercise 2.1: We gave four different greedy criteria for the activities selection problem.
(a) Show that the other three criteria are suboptimal.
(b) Actually, each of the four criteria has a inverted version, where we sort in non-increasing
order. Show that each of these inverted criteria are also suboptimal. ♦

Exercise 2.2: Suppose the input A = (I1, . . . , In) for the activities selection problem is already
sorted, by non-decreasing order of their start times, i.e., s1 ≤ s2 ≤ · · · ≤ sn. Give an
algorithm to compute a optimal solution in O(n) time. Show that your algorithm is correct.

♦

Exercise 2.3: Again consider the activities selection problem. We now want to maximize the
total length of all the activities in a S ⊆ A. Here, the length of an activity I = [s, f) is just
f − s. In case S is not compatible, we define its length to be 0. Let Ai,j = {Ii, Ii+1, . . . , Ij}
for i ≤ j and Fi,j be an optimal solution for Ai,j .
(a) Show by a counter-example that the following “dynamic programming principle” fails:

Fi,j = maxi≤k≤j−1Fi,k ∪ Fk+1,j

where max{F1, F2, . . . , Fm} returns the set Fℓ whose length is maximum. (Recall that the
length of Fℓ is zero if it is not feasible.
(b) Give an O(n log n) algorithm for this problem. HINT: order the activities in the set S
according to their finish times, say,

f1 ≤ f2 ≤ · · · ≤ fn.© Chee-Keng Yap Basic Version April 2, 2008
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Consider the set of subproblems Si := {I1, . . . , Ii} for i = 1, . . . , n. Use an incremental
algorithm to solve S1, S2, . . . , Sn in this order. ♦

Exercise 2.4: Give a divide-and-conquer algorithm for the problem in previous exercise, to find
the maximum length feasible solution for a set S of activities. (This approach is harder and
less efficient!) ♦

End Exercises§3. Huffman Code

We begin with an informally stated problem:

(P) Given a string s of characters (or letters or symbols) taken from an alphabet Σ,
choose a variable length code C for Σ so as to minimize the space to encode the string
s.

Before making this problem precise, it is helpful to know the context of such a problem. A computer
file may be regarded as a string s, so problem (P) can be called the file compression problem.
Typically, characters in computer files are encoded by a fixed-length binary code. This is usually
the ASCII standard using either 7 or 8 bits for each character. Note that in this case, each code
word has length at least log2 |Σ|. The idea of using variable length code is to take advantage of
the relative frequency of different characters. For instance, in typical English texts, the letters ‘e’
and ‘t’ are most frequent and it is a good idea to use shorter length codes for them. An example
of a variable length code is Morse code (see Notes at the end of this section).

A (binary) code for Σ is an injective function

C : Σ→ {0, 1}∗.

A string of the form C(x) (x ∈ Σ) is called a code word. The string s = x1x2 · · ·xm ∈ Σ∗ is then
encoded as

C(s) := C(x1)C(x2) · · ·C(xm) ∈ {0, 1}∗.

This raises the problem of decoding C(s), i.e., recovering s from C(s). For a general C and s,
one cannot expect unique decoding. One solution is to introduce a new symbol ‘$’ and use it to
separate each C(xi). If we insist on using binary alphabet for the code, this forces us to convert,
say, ‘0’ to ‘00’, ‘1’ to ‘01’ and ‘$’ to ‘11’. This doubles the number of bits, and seems to be wasteful.¶6. Prefix-free codes. A better solution to unique decoding is to insist that C be prefix-free.
This means that if a, b ∈ Σ and a 6= b, then C(a) is not a prefix of C(b). It is not hard to see
that the decoding problem has a unique solution for prefix-free codes. With suitable preprocessing
(basically to construct the “code tree” for C, defined next) decoding can be done very simply in
an on-line fashion. We leave this for an exercise.

We represent a prefix-free code C by a binary tree TC with n = |Σ| leaves. Each leaf in TC is
labeled by a character b ∈ Σ such that the path from the root to b is represented by C(b) in the© Chee-Keng Yap Basic Version April 2, 2008
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natural way: starting from the root, we use successive bits in C(b) to decide to make a left branch
or right branch from the current node of TC . We call TC a code tree for C. Figure 3 shows two
such trees representing prefix codes for the alphabet Σ = {a, b, c, d}. The first code, for instance,
corresponds to C(a) = 00, C(b) = 010, C(c) = 011 and C(d) = 1.

COST=11+8+3=22 COST=11+6+3=20

cb

d

a
5 3

2 1

8

11

3

cb

a

d
3

11

6

12

3

5

Figure 3: Two prefix-free codes and their code trees: assume f(a) = 5, f(b) = 2, f(c) = 1, f(d) = 3.

Returning to the informal problem (P), we can now interpret this problem as the construction
of the best prefix-free code C for s, i.e., the code that minimizes the length |C(s)| of C(s). It is
easily seen that the only statistics important about s is the number, denoted fs(x), of occurrences
of the character x in s. In general, call a function of the form

f : Σ→ N (4)

a frequency function. So we now regard the input data to our problem as a frequency function
f = fs (4) rather than a string s. Relative to f , the cost of C is defined to be

COST (f, C) :=
∑

a∈Σ

|C(a)| · f(a). (5)

Clearly COST (fs, C) is the length of C(s). Finally, the cost of f is defined by minimization over
all choices of C:

COST (f) := min
C

COST (f, C)

over all prefix-free codes C on the alphabet Σ. A code C is optimal for f if COST (f, C) attains
this minimum. It is easy to see that an optimal code tree must be a full binary tree (i.e., non-leaves
must have two children).

For the codes in Figure 3, assuming the frequencies of the characters a, b, c, d are 5, 2, 1, 3
(respectively), the cost of the first code is 5 · 2 + 2 · 3+ 1 · 3 + 3 · 1 = 22. The second code is better,
with cost 20.

We now precisely state the informal problem (P) as the Huffman coding problem:

Given a frequency function f : Σ→ N, find an optimal prefix-free code C
for f .

Relative to a frequency function f on Σ, we associate a weight W (u) with each node u of the
code tree TC : the weight of a leaf is just the frequency f(x) of the character x at that leaf, and
the weight of an internal node is the sum of the weights of its children. Let Tf,C denote such a
weighted code tree. In general, a weighted code tree is just a code tree together with weights
on each node satisfying the property that the weight of an internal node is the sum of the weights
of its children. For example, see Figure 3 where the weight of each node is written next to it.© Chee-Keng Yap Basic Version April 2, 2008
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The weight of Tf,C is the weight of its root, and its cost COST (Tf,C) defined as the sum of the
weights of all its internal nodes. In Figure 3(a), the internal nodes have weights 3, 8, 11 and so the
COST (Tf,C) = 3 + 8 + 11 = 22. In general, the reader may verify that

COST (f, C) = COST (Tf,C). (6)

We need the merge operation on code trees: if Ti is a code tree on the alphabet Σi (i = 1, 2)
and Σ1 ∩ Σ2 is empty, then we can merge them into a code tree T on the alphabet Σ1 ∪ Σ2 by
introducing a new node as the root of T and T1, T2 as the two children of the root. We also write
T1 + T2 for T . If T1, T2 are weighted code trees, the result T is also a weighted code tree.

We now present a greedy algorithm for the Huffman coding problem:

Huffman Code Algorithm:
Input: Frequency function f : Σ→ N.
Output: Optimal code tree T ∗ for f .
1. Let S be a set of weighted code trees. Initially, S is the set of n = |Σ| trivial trees,

each tree having only one node representing a single character in Σ.
2. while S has more than one tree,

2.1. Choose T, T ′ ∈ S with the minimum and the next-to-minimum weights, respectively.
2.2. Merge T, T ′ and insert the result T + T ′ into S.
2.3. Delete T, T ′ from S.

3. Now S has only one tree T ∗. Output T ∗.

By definition, a Huffman tree is a weighted code tree that could be output by this algorithm.
We say “could” because the Huffman code algorithm is not fully deterministic – when two trees have
the same weight, the algorithm does not distinguish between them in its choices. Let us illustrate
the algorithm with perhaps the most famous 12-letter string in computing: hello world!. The
alphabet Σ for this string and its frequency function may be represented by the following two
arrays:

letter h e l o ⊔ w r d !

frequency 1 1 3 2 1 1 1 1 1

Note that the exclamation mark (!) and blank space (⊔) are counted as letters in the alphabet Σ.
The final Huffman tree is shown in Figure 4. The number shown inside a node u of the tree is the
weight of the node. This is just sum of the frequencies of the leaves in the subtree at u. Each leaf
of the Huffman tree is labeled with a letter from Σ.

To trace the execution of our algorithm, in Figure 4 we indicate the order (0, 1, 2, . . . , 16) in
which the nodes were extracted from the priority queue. For instance, the leaves h and e are the
first two to be extracted in the queue. The root is the last (16th) to be extracted from the queue.¶7. Implementation and complexity. The input for the Huffman algorithm may be imple-
mented as an array f [1..n] where f [i] is the frequency of the ith letter and |Σ| = n. The output© Chee-Keng Yap Basic Version April 2, 2008
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Figure 4: Huffman Tree for “hello world!”: weights are displayed inside each node, but ranks
are outside the nodes.

is a binary tree whose leaves are labeled from 1 to n. This algorithm can be implemented using a
priority queue on a set S of binary tree nodes. Recall (§III.2) that a priority queue supports two
operations, (a) inserting a keyed item and (b) deleting the item with smallest key. The frequency
of the code tree serves as its key. Any balanced binary tree scheme (such as AVL trees in Lecture
IV) will give an implementation in which each queue operation takes O(log n) time. Hence the
overall algorithm takes O(n log n).¶8. Correctness. We show that the produced code C has minimum cost. This depends on
the following simple lemma. Let us say that a pair of nodes in TC is a deepest pair if they are
siblings and their depth is the depth of the tree TC . In a full binary tree, there is always a deepest
pair.

Lemma 2 (Deepest Pair Property). For any freqency function f , there exists a code tree T that is
optimal for f , with the further property that some least frequent character, and some next-to-least
frequent character, form a deepest pair.

Proof. Suppose b, c are two characters at depths D(b), D(c) (respectively) in a weighted code
tree T . If we exchange the weights of these two nodes to get a new code tree T ′ where

COST (T )− COST (T ′) = f(b)D(b) + f(c)D(c)− f(b)D(c)− f(c)D(b)

= [f(b)− f(c)][D(b)−D(c)]

where f is the frequency function. If b has the least frequency and D(c) is the depth of the tree T
then clearly

COST (T )− COST (T ′) ≥ 0.

That is, the cost of the tree can only decrease when we move a least frequent characters to the
deepest leaf. Hence if c, c′ are the two characters labeling a deepest pair and and b, b′ are the two
least frequent characters, then by a similar argument, we may exchange the labels b ↔ b′ and
c ↔ c′ without increasing the cost of the code. If the tree is optimal, then this exchange proves
that there is a deepest pair formed by two least frequent characters. Q.E.D.

We are ready to prove the correctness of Huffman’s algorithm. Suppose by induction hypothesis
that our algorithm produces an optimal code whenever the alphabet size |Σ| is less than n. The
basis case, n = 1, is trivial. Now suppose |Σ| = n > 1. After the first step of the algorithm in
which we merge the two least frequent characters b, b′, we can regard the algorithm as constructing© Chee-Keng Yap Basic Version April 2, 2008
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a code for a modified alphabet Σ′ in which b, b′ are replaced by a new character [bb′] with modified
frequency f ′ such that f ′([bb′]) = f(b)+f(b′), and f ′(x) = f(x) otherwise. By induction hypothesis,
the algorithm produces the optimal code C′ for f ′:

COST (f ′) = COST (f ′, C′). (7)

This code C′ is related to a suitable code C for Σ in the obvious way and satisfies

COST (f, C) = COST (f ′, C′) + f(b) + f(b′). (8)

By our deepest pair lemma, and using the fact that the COST is a sum over the weights of internal
nodes, we conclude that

COST (f) = COST (f ′) + f(b) + f(b′). (9)

[More explicitly, this equation says that if T is the optimal weighted code tree for f and T has
the deepest pair property, then by removing the deepest pair with weights f(b) and f(b′), we get
an optimal weighted code tree for f ′.] From equations (7), (8) and (9), we conclude COST (f) =
COST (f, C), i.e., C is optimal.¶9. Representing the Code Tree. When we transmit the Huffman code C(s) for a string s,
we ought also to transmit the corresponding code C. We now address this issue of encoding C.

Assume our alphabet Σ is a subset of {0, 1}t, and s ∈ Σ∗. It is assumed that the receiver knows
t but not Σ. For example, in a realistic situation, t = 8 and Σ is just a subset of the ASCII set.

Let C : Σ→ {0, 1}∗ be an optimal prefix-free code for s. If T = TC is the code tree for C, then
we know that it is a full binary tree with n = |Σ| leaves. Thus T has 2n− 1 internal nodes. We
can represent T as an array AT [0..2n− 2] where the nodes are 0, 1, . . . , 2n− 2 satisfying:� The root is node 0,� If node i is a leaf, then AT [i] = −1.� If node i is an internal node, the i+1 will be the left-child of i and AT [i] gives the right-child

of i.

For instance, the tree in Figure 3(a) is represented by the array of Figure 5.

1 2 3 4 5 60

6 3 − 5 − − −A:

Figure 5: Array A representing Figure 3(a)

Besides the array representation of T , a key issue is how to represent T compactly as a binary
string for the purposes of transmission.

The initial idea is simple: let us prescribe a systematic way to traverse T . Starting from the
root, we always go down the left child first. Each edge is traversed twice, initially downward and
later upward. Then if we spit out a 0 for going down an edge and spit out a 1 for going up an
edge, we would have faithfully described the shape of T . For instance, the first tree in Figure 3
would be represented by the sequence

0010, 0101, 1101 (10)© Chee-Keng Yap Basic Version April 2, 2008
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(where commas are only decorative to help parsing). This scheme uses 2 bits per edge. Since there
are 2n− 2 edges, the representation has 4n− 4 bits.

Next observe that a contiguous sequence of ones can be replaced by a single 1 since we know
where to stop when going upward from a leaf (we stop at the first node whose right child has not
been visited). This takes advantage of the fact that we have a full binary tree. Previously we
used 2n− 2 ones. With this improvement, we only use n ones (corresponding to the leaves). The
representation now has only 3n− 2 bits. Then (10) is now represented by

0010, 0101, 01. (11)

Finally, we note that each 1 is immediately followed by a 0 (since the 1 always leads us to a node
whose right child has not been visited, and we must immediately go down to that child). The only
exception to this rule is the final 1 when we return to the root; this final 1 is not followed by a 0. We
propose to replace all such 10 sequences by a plain 1. Since there are n ones (corresponding to the How about

01→ 1?n leaves), we would have eliminated n− 1 zeros in this way. This gives us the final representation
with 2n− 1 bits. The scheme (11) is now shortened to:

0010, 111. (12)

The final scheme (12) will be known as the compressed bit representation αT of a full binary
tree T . Assume T has more than one node, then αT always begins with a 0 and ends with a 1,
and the shortest such string is 011. If T has only one node, it is natural to represent it as 1. Some
additional simple properties are summarized as follows:

Lemma 3. Let T be a full binary tree T with n ≥ 1 leaves.
(i) |αT | = 2n− 1 with n− 1 zeros and n ones.
(ii) The number of zeros is at least the number of ones in any proper prefix of αT .
(iii) The set S ⊆ {0, 1}∗ of all such compressed bit representation αT forms a prefix-free set.
(iv) There is a simple algorithm taking binary string inputs which checks membership in S.

We leave the proof as an Exercise. Another way to describe the pre-fix free property of the αT

representation is that it is “self-limiting”. This has the following consequence:

Theorem 4. Suppose C : Σ→ {0, 1}∗ is a prefix-free code whose code tree TC is a full binary tree
on n leaves. There is a protocol to transmit a binary string sC of length

(2n− 1) + tn = n(t + 2)− 1

to a receiver so that the code C can be completely recovered from this string. The receiver does not
know C or Σ but knows t ≥ 1 and the fact that Σ ⊆ {0, 1}t.

Proof. The string sC has two parts: the first part is the compressed bit representation αTC
.

The second part is a list of the elements in Σ. The elements in this list are t-bit binary strings,
and they appear in their order as labels of the n leaves of TC . We have |αTC

| = 2n− 1, and the
listing of Σ uses nt bits. This gives the claimed bound of n(t + 2)− 1.

By the pre-fix free property, the receiver can detect the end of αTC
while processing sC . At

the point, the receiver also knows n. Since the receiver knows t, it can also parse each symbol of
Σ in the rest of sC . Q.E.D.

Remarks: The publication of the Huffman algorithm in 1952 by D. A. Huffman was considered
a major achievement. This algorithm is clearly useful for compressing binary files. See “Condi-
tions for optimality of the Huffman Algorithm”, D.S. Parker (SIAM J.Comp., 9:3(1980)470–489,
Erratum 27:1(1998)317), for a variant notion of cost of a Huffman tree and characterizations of
the cost functions for which the Huffman algorithm remains valid.© Chee-Keng Yap Basic Version April 2, 2008



§3. Huffman Code Lecture V Page 15¶10. Notes on Morse Code. In the Morse1 code, letters are represented by a sequence of dots and
dashes: a = · −, b = − · · · and z = − − · ·. The code is also meant to be sounded: dot is pronounced
‘dit’ (or ‘di-’ when non-terminal), dash is pronounced ‘dah’ (or ‘da-’ when non-terminal). So the famous
distress signal “S.O.S” is di-di-di-da-da-da-di-di-dit. Thus ‘a’ is di − dah, ‘z’ is da − da − di − dit.
The code does not use capital or small letters. Here is the full alphabet:

Letter Code Letter Code

A · − B − · · ·

C − · − · D − · ·

E · F · · − ·

G − − · H · · · ·

I · · J · − − −

K − · − L · − · ·

M − − N − ·

O − − − P · − − ·

Q − − · − R · − ·

S · · · T −

U · · − V · · · −

W · − − X − · · −

Y − · − − Z − − · ·

0 − − − − − 1 · − − − −

2 · · − − − 3 · · · − −

4 · · · · − 5 · · · · ·

6 − · · · · 7 − − · · ·

8 − − − · · 9 − − − − ·

Fullstop (.) · − · − · − Comma (,) − − · · − −

Query (?) · · − − · · Slash (/) − · · − ·

BT (pause) − · · · − AR (end message) · − · − ·

SK (end contact) · · · − · −

Note that Morse code assigns a dot to e and a dash to t, the two most frequent English letters. These

two assignments dash any hope for a prefix-free code. So how can do you send or decode messages in

Morse code? Spaces! Since spaces are not part of the Morse alphabet, they have an informal status as

an explicit character (so Morse code is not strictly a binary code). There are 3 kinds of spaces: space

between dit’s and dah’s within a letter, space between letters, and space between words. Let us assume

some unit space. Then the above three types of spaces are worth 1, 3 and 7 units, respectively. These

units can also be interpreted as “unit time” when the code is sounded. Hence we simply say unit without

prejudice. Next, the system of dots and dashes can also be brought into this system. We say that spaces

are just “empty units”, while dit’s and dah’s are “filled units”. dit is one filled unit, and dah is 3 filled

units. Of course, this brings in the question: why 3 and 7 instead of 2 and 4 in the above? Today, Morse

code is still required of HAM radio operators and is useful in emergencies.

Exercises

Exercise 3.1: Give a Huffman code for the string “hello! this is my little world!”. ♦

Exercise 3.2: What is the length of the Huffman code for the string s = “please compress me′′.
Show your hand computation. ♦

Exercise 3.3: Consider the following letter frequencies:

a = 5, b = 1, c = 3, d = 3, e = 7, f = 0, g = 2, h = 1, i = 5, j = 0, k = 1, l = 2, m = 0,

n = 5, o = 3, p = 0, q = 0, r = 6, s = 3, t = 4, u = 1, v = 0, w = 0, x = 0, y = 1, z = 1.

1Samuel Finley Breese Morse (1791-1872) was Professor of the Literature of the Arts of Design in the University
of the City of New York (now New York University) 1832-72. It was in the university building on Washington
Square where he completed his experiments on the telegraph.© Chee-Keng Yap Basic Version April 2, 2008
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Please determine the cost of the optimal tree. NOTE: you may ignore letters with the zero
frequency. ♦

Exercise 3.4: Give an example of a prefix-free code C : Σ → {0, 1}∗ and a frequency function
f : Σ → N with the property that (i) COST (C, f) is optimal, but (ii) C could not have
arisen from the Huffman algorithm. HINT: you can choose |Σ| = 4. ♦

Exercise 3.5: True or False? If T and T ′ are two optimal prefix-free code for the frequency
function f : Σ→ N, then T and T ′ are isomorphic as unordered trees. Prove or show counter
example. NOTE: a binary tree is an ordered tree because the two children of a node are
ordered. ♦

Exercise 3.6: In the text, we prove that for any frequency function f , there is an optimal code
tree in which there is a deepest pair of leaves whose frequencies are the least frequent and the
next-to-least frequent. Consider this stronger statement: if T is any optimal code tree for f ,
there must be a deepest pair whose frequencies are least frequent and next-to-least frequent.
Prove it or show a counter example. ♦

Exercise 3.7: Let C : Σ → {0, 1}∗ be any prefix-free code whose code tree TC is a full-binary
tree. Prove that there exists a frequency function f : Σ→ N such that C is optimal. ♦

Exercise 3.8: Joe Smart suggested that we can represent a full binary tree on n leaves using
2n− 3 bits, thus saving 2 bits over the scheme in the text.
(a) In what sense is Joe right?
(b) Can you describe some situations where this improvement might be a problem? ♦

Exercise 3.9: The text gave a method to represent any full binary tree T on n leaves using a
binary string αT with 2n−1 bits. Clearly, not every binary string of length 2n−1 represents
a full binary tree. For instance, the first and last bits must be 0 and 1, respectively. Give a
necessary and sufficient condition for a binary tree to be a valid representation. ♦

Exercise 3.10: For any binary full tree T , we have given two representations: the array AT and
the bit string αT . Give detailed algorithms for the following conversion problems:
(a) To construct the array AT from the string αT .
(c) To construct the string αT from the array AT . ♦

Exercise 3.11: Generalize our 2n−1 bit scheme to represent a full binary tree: suppose we want
to represent an arbitrary binary tree, not necessarily full. HINT: there is a bijection between
arbitrary binary trees and full binary trees. ♦

Exercise 3.12: (a) Prove (6).
(b) It is important to note that we defined COST (Tf,C) to be the sum of f(u) where u range
over the internal nodes of Tf,C . That means that if |Σ| = 1 (or Tf,C has only one node which
is also the root) then COST (Tf,C) = 0. Why does Huffman code theory break down at this
point?
(c) Suppose we (accidentally) defined COST (Tf,C) to be the sum of f(u) where u range over
the all nodes of Tf,C . Where in your proof in (a) would the argument fail? ♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 3.13: Below is President Lincoln’s address at Gettysburg, Pennsylvania on November
19, 1863.
(a) Give the Huffman code for the string S comprising the first two sentences of the address.
Also state the length of the Huffman code for S, and the percentage of compression so
obtained (assume that the original string uses 7 bits per character). View caps and small
letters as distinct letters, and introduce symbols for space and punctuation marks. But
ignore the newline characters.
(b) The previous part was meant to be done by hand. Now write a program in your favorite
programming language to compute the Huffman code for the entire Gettysburg address.
What is the compression obtained?

Four score and seven years ago our fathers brought forth on this continent a new nation,

conceived in liberty and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation or any nation so

conceived and so dedicated can long endure. We are met on a great battlefield of that

war. We have come to dedicate a portion of that field as a final resting-place for those

who here gave their lives that that nation might live. It is altogether fitting and

proper that we should do this. But in a larger sense, we cannot dedicate, we cannot

consecrate, we cannot hallow this ground. The brave men, living and dead who struggled

here have consecrated it far above our poor power to add or detract. The world will

little note nor long remember what we say here, but it can never forget what they did

here. It is for us the living rather to be dedicated here to the unfinished work which

they who fought here have thus far so nobly advanced. It is rather for us to be here

dedicated to the great task remaining before us -- that from these honored dead we take

increased devotion to that cause for which they gave the last full measure of devotion

-- that we here highly resolve that these dead shall not have died in vain, that this

nation under God shall have a new birth of freedom, and that government of the people,

by the people, for the people shall not perish from the earth.

♦

Exercise 3.14: Let (f0, f1, . . . , fn) be the frequencies of n + 1 symbols (assuming |Σ| = n + 1).
Consider the Huffman code in which the symbol with frequency fi is represented by the ith
code word in the following sequence

1, 01, 001, 0001, . . . , 00 · · · 01
︸ ︷︷ ︸

n−1

, 00 · · ·001
︸ ︷︷ ︸

n

, 00 · · ·000
︸ ︷︷ ︸

n

.

(a) Show that a sufficient condition for optimality of this code is

f0 ≥ f1 + f2 + f3 + · · ·+ fn,

f1 ≥ f2 + f3 + · · ·+ fn,

f2 ≥ f3 + · · ·+ fn,

. . .

fn−2 ≥ fn−1 + fn.

(b) Suppose the frequencies are distinct. Give a set of sufficient and necessary conditions.
♦

Exercise 3.15: Suppose you are given the frequencies fi in sorted order. Show that you can
construct the Huffman tree in linear time. ♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 3.16: (Representation of Binary Trees) In the text, we showed that a full binary tree
on n leaves can be represented using 2n− 1 bits. Suppose T is an arbitrary binary tree, not
necessarily full. With how many bits can you represent T ? HINT: by extending T into a full
binary tree T ′, then we could use the previous encoding on T ′. ♦

Exercise 3.17: Generalize to 3-ary Huffman codes, C : Σ→ {0, 1, 2}∗, represented by the corre-
sponding 3-ary code trees (where each node has degree at most 3):
(a) Show that in an optimal 3-ary code tree, any node of degree 2 must have leaves as both
its children.
(b) Show that there are either no degree 2 nodes (if |Σ| is odd) or one degree 2 node (if |Σ|
is even).
(c) Show that when there is one degree 2 node, then the depth of its children must be the
height of the tree.
(d) Give an algorithm for constructing an optimal 3-ary code tree and prove its correctness.

♦

Exercise 3.18: Further generalize the 3-ary Huffman tree construction to arbitrary k-ary codes
for k ≥ 4. ♦

Exercise 3.19: Suppose that the cost of a binary code word w is z + 2o where z (resp. o) is the
number of zeros (resp. ones) in w. Call this the skew cost. So ones are twice as expensive
as zeros (this cost model might be realistic if a code word is converted into a sequence of
dots and dashes as in Morse code). We extend this definition to the skew cost of a code C
or of a code tree. A code or code tree is skew Huffman if it is optimum with respect to
this skew cost. For example, see figure 6 for a skew Huffman tree for alphabet {a, b, c} and
f(a) = 3, f(b) = 1 and f(c) = 6.

a b

c

21

1

3 1

62

Figure 6: A skew Huffman tree with skew cost of 21.

(a) Argue that in some sense, there is no greedy solution that makes its greedy decisions
based on a linear ordering of the frequencies.
(b) Consider the special case where all letters of the alphabet has equal frequencies. Describe
the shape of such code trees. For any n, is the skew Huffman tree unique?
(c) Give an algorithm for the special case considered in (b). Be sure to argue its correctness
and analyze its complexity. HINT: use an “incremental algorithm” in which you extend the
solution for n letters to one for n + 1 letters. ♦

Exercise 3.20: (Golin-Rote) Further generalize the problem in the previous exercise. Fix 0 <
α < β and let the cost of a code word w be α · z + β · o. Suppose α/β is a rational number.
Show a dynamic programming method that takes O(nβ+2) time. NOTE: The best result
currently known gets rid of the “+2” in the exponent, at the cost of two non-trivial ideas.

♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 3.21: (Open) Give a non-trivial algorithm for the problem in the previous exercise where
α/β is not rational. An algorithm is “trivial” here if it essentially checks all binary trees
with n leaves. ♦

Exercise 3.22: The range of the frequency function f was assumed to be natural numbers. If the
range is arbitrary integers, is the Huffman theory still meaningful? Is there fix? What if the
range is the set of non-negative real numbers? ♦

Exercise 3.23: (Elias) Consider the following binary encoding scheme for the infinite alphabet
N (the natural numbers): an integer n ∈ N is represented by a prefix string of ⌊lg n⌋ 0’s
followed by the binary representation of n. This requires 1 + 2 ⌊lg n⌋ bits.
(a) Show that this is a prefix-free code.
(b) Now improve the above code as follows: replacing the prefix of ⌊lg n⌋ 0’s and the first 1 by
a representation of ⌊lg n⌋ the same scheme as (a). Now we use only 1+⌊lg n⌋+2 ⌊lg(1 + lg n)⌋
bits to encode n. Again show that this is a prefix-free code. ♦

Exercise 3.24: (Shift Key in Huffman Code) We want to encode small as well as capital letters
in our alphabet. Thus ‘a’ and ‘A’ are to be distinguished. There are two methods to do this.
(I) View the small and capital letters as distinct symbols. (II) Introduce a special “shift”
symbol, and each letter is assumed to be small unless it is preceded by a shift symbol, in
which case the following letter is capitalized. As input string for this problem, use the text
of this question. Punctuation marks are part of this string, but there is only one SPACE
character. Newlines and tabs are regarded as instances of SPACE. Two or more consecutive
SPACE characters are replace by a single SPACE.
(a) What is the length of the Huffman code for our input string using method (I). Note that
the input string begins with “We want to en...” and ends with “...ngle SPACE.”.
(b) Same as part (a) but using method (II).
(c) Discuss the pros and cons of (I) and (II).
(d) There are clearly many generalizations of shift keys, as seen in modern computer key-
boards. The general problem arises when our letters or characters are no longer indivisible
units, but exhibit structure (as in Chinese characters). Give a general formulation of such
extensions. ♦

End Exercises§4. Dynamic Huffman Code

Here is the typical sequence of steps for compressing and transmitting a string s using the
Huffman code algorithm:

(i) First make a pass over the string s to compute its frequency function.

(ii) Next compute a Huffman code tree TC corresponding to some code C.

(iii) Using TC , compute the compressed string C(s).

(iv) Finally, transmit the tree TC (Theorem 4), together with the compressed string C(s), to the
receiver.© Chee-Keng Yap Basic Version April 2, 2008
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The receiver receives TC and C(s), and hence can recover the string s. Since the sender must
process the string s in two passes (steps (i) and (iii)), the original Huffman tree algorithm is
sometimes called the “2-pass Huffman encoding algorithm”. There are two deficiencies with this
2-pass process: (a) Multiple passes over the input string s makes the algorithm unsuitable for
realtime data transmissions. Note that if s is a large file, this require extra buffer space. (b) The
Huffman code tree must be explicitly transmitted before the decoding can begin. We need some
way to encode TC . This calls for a separate algorithm to handle TC in the encoding and decoding
process.

An approach called “Dynamic Huffman coding” (or adaptive Huffman coding) overcomes these
problems: there is no need to explicitly transmit the code tree, and it passes over the string s only
once. In fact, it does not even have to pass over the entire string even once, but can transmit as
much of the string as has been read! This property is important for transmitting continous stream
of data that has no apparent end (e.g., ticker tape, satellite signals). Two known algorithms
for dynamic Huffman coding [6] are the FGK Algorithm (Faller 1973, Gallager 1978, Knuth
1985) and the Lambda Algorithm (Vitter 1987). The dynamic Huffman code algorithm can be
used for data compression: for example, in the Unix utility compress/uncompress. However, this
particular utility has been replaced by better compression schemes.

The key idea here is the “sibling property” of Gallagher. Let T be a full binary tree that is also
a weighted code tree. Recall that full binary tree means that each internal node has 2 children.
Also, weighted code tree just means that each node has a weight and the weight of an internal
node is the sum of the weights of its children. Suppose T has k ≥ 0 internal nodes; it easily follows
that T has k + 1 leaves or 2k + 1 nodes in all. Call such a tree T a pre-Huffman tree. We say
T has the sibling property if its nodes can be ranked from 0 to 2k satisfying:

(S1) (Weights are non-decreasing with rank) If wi is the weight of node with rank i, then wi−1 ≤ wi

for i = 1, . . . , 2k.

(S2) (Siblings have consecutive ranks) The nodes with ranks 2j and 2j + 1 are siblings (for
j = 0, . . . , k − 1).

For example, the nodes of the pre-Huffmann tree in Figure 4 has been given the rankings
0, 1, 2, . . . , 16. We check that this ranking satisfies the sibling property.

Note that node with rank 2k is necessarily the root, and it has no siblings. In general, let r(u)
denote the rank of node u. If the weights of nodes are all distinct, then the rank r(u) is uniquely
determined by Property (S1).

Let T be a weighted code tree. Then T is clearly pre-Huffman. We say T is Huffman if T
can be the output of the Huffman code algorithm. In this definition, we view the Huffman code
algorithm as a nondeterministic process: when two or more nodes have equal weights, the choice
of the next two nodes for merging is regarded as a nondeterministic choice. Hence there can be
many potential output trees.

Lemma 5. Let T be pre-Huffman. Then T is Huffman iff it has the sibling property.

Proof. If T is Huffman then we can rank the nodes in the order that two nodes are merged, and
this ordering implies the sibling property. Conversely, the sibling property determines an obvious
order for merging pairs of nodes to form a Huffman tree. Q.E.D.© Chee-Keng Yap Basic Version April 2, 2008
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Example: the code tree in Figure 4 is Huffman. Since it is Huffman, there must be some
ranking that satisfies the sibling property. Indeed, such a ranking has already been indicated.¶11. Compact Representation of Huffman Tree. Usually, we think Huffman trees as binary
trees. In fact, our algorithms manipulate just the roots of the corresponding binary trees. We can
provide a more compact representation using arrays, by exploiting its Sibling property: let T be a
Huffman tree with k + 1 ≥ 1 leaves. Each of its 2k + 1 nodes may be identified by its rank, i.e., a
number from 0 to 2k. Hence node i has rank i. We use two arrays

Wt[0..2k], Lc[0..2k]

of length 2k+ where Wt[i] is the weight of node i, and Lc[i] is the left child of node i. So Lc[i] + 1
is the right child of node i. In case node i is a leaf, we let Lc[i] = −1. Alternative, we can let Lc[i]
store some representation of a letter of the alphabet Σ (e.g., ASCII code). In this case, we assume
that it is possible to distinguish these two uses of the array Lc.

For instance, the Huffman tree in Figure 4 will be represented by the following arrays:

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lc h e ⊔ w r d ! o 0 2 4 6 ℓ 8 10 12 15

Wt 1 1 1 1 1 1 1 2 2 2 2 3 3 4 5 7 12

NOTE: The array Lc[0..2k] can be viewed as an array representation of a full binary tree; it should
be contrasted to the the array AT [0..2k] which we introduced earlier to also represent a full binary
tree T . The array AT is a top-down approach, with AT [0] representing the root. But the array Lc
is a bottom-up approach, with Lc[2k] representing the root.¶12. The Restoration Problem. The key problem of dynamic Huffman tree is how to restore
Huffman-ness under a particular kind of perturbation: let T be Huffman and suppose the weight
of a leaf u is incremented by 1. So weights of all the nodes along the path from u to the root are
similarly incremented. The result is a pre-Huffman tree T ′, but it may not be Huffman any more.
The problem is to restore Huffman-ness in such a tree T ′.

Consider the following algorithm for restoring Huffman-ness in T . For each node v in T , let
R(v) denote its rank in the original tree T . If we use the convention that v is identified with an
integer from 0 to 2k, then R(v) = v. Let u be the current node. Initially, u is the leaf whose weight
was incremented. We use the following iterative process:

Restore (u)
⊲ u is a node whose weight is to be incremented
While (u is not the root) do

Find the node v with the largest rank R(v)
subject to the constraint Wt[v] = Wt[u].

If (v 6= u)
Swap u and v. ⊳ This really swap the subtrees rooted at u and v.

Wt[u]++. ⊳ Increment the weight of u
u← parent(u). ⊳ Reset u

Wt[u]++. ⊳ Now, u is the root© Chee-Keng Yap Basic Version April 2, 2008
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Swapping needs to be explained: imagine the nodes of T are stored in a linear list

(v0, v1, . . . , v2k)

in the order of their ranks: R(vi) = i. Swapping u and v means that their ranks are exchanged; so
their positions in this list are swapped. Thus the rank of the current node u is strictly increased by
such swaps. Each node u has three pointers, u.left, u.right and u.parent. When we swap u and
v, their siblings may have changed (recall that rank 2j and rank 2j + 1 nodes must be siblings).
So the child pointers of u.parent and v.parent must be changed appropriately. However, u.left
and u.right do not change. Alternatively, if the Huffman tree is represented by the two arrays
Wt[0..2k] and Lc[0..2k] above, the swapping u and v is rather easy: assume that the ranks of u
and v are represented by themselves (i.e., u, v ∈ {0, 1, . . . , 2k + 2}, then we simply exchange their
positions in these arrays:

Swap(u, v) ≡ Lc[u] ↔ Lc[u]; Wt[v] ↔ Wt[v].

Let us consider an example to see how Restore works, using the famous string “hello
world!”. Suppose we have just completely processed this string, and the current Huffman tree T is
given in Figure 4. Let the next character to be transmitted be ⊔. Let u be the node corresponding
to ⊔. So Wt[u] is incremented. So we call Restore(u). We use the representation of T by the
arrays Lc, Wt above: in this case u is the node (whose rank is) 2 (or v2, for clarity). It has weight
Wt[v2] = 1 and so we must find the largest ranked node with weight 1, namely node v6. Swapping
v2 with v6, and then incrementing the weight of v6, we get:

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lc h e ! w r d ⊔ o 0 2 4 6 ℓ 8 10 12 15

Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3 4 5 7 12

After first swap v u

Next, u is set to the parent of node of rank 6, namely v11. This has weight 3, and so we must
swap it with the element v12 which is the highest ranked node with weight 3. After swapping v11

and v12, we increment the new v12. The following table illustrates the remaining changes:

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lc h e ! w r d ⊔ o 0 2 4 ℓ 6 8 10 12 15

Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3+1 4 5 7 12

After second swap v u

Lc h e ! w r d ⊔ o 0 2 4 ℓ 6 8 10 12 15

Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3+1 4 5 7+1 12

No third swap u = v

Lc h e ! w r d ⊔ o 0 2 4 ℓ 6 8 10 12 15

Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3+1 4 5 7+1 12+1

No final swap u = v© Chee-Keng Yap Basic Version April 2, 2008



§4. Dynamic Huffman Code Lecture V Page 23¶13. The 0-Node: How to add a new letter. Our dynamic Huffman code tree T must
be capable to expanding its alphabet. E.g., if the current alphabet is Σ = {h, e} and we next
encounter the letter l, we want to expand the alphabet to Σ = {h, e, l}. For this purpose, we
introduce in T a special leaf with weight 0. Call this the 0-node. This node does not represent
any letters of the alphabet, but in another sense, it represents all the yet unseen letters. We might
say that the 0-node represents the character ‘∗’. Upon seeing a new letter like l, we take three
steps: to update T :

1. First, we “expand” the 0-node by giving it two children. Its left child is the new 0-node, and
its right child u is a new leaf representing the letter l.

2. Next, we must give ranks to all the nodes: the new 0-node has rank 0, the new leaf u has
rank 1, and all the previous nodes have their ranks incremented by 2. In particular, the
original 0-node will have rank 2.

3. Finally, we must update the weights. The weight of the new 0-node is 0, and the weight of
u is 1. We must now increase the weight of all the nodes along the path from the old 0-node
to the root: this is done by calling Restore on the old 0-node.¶14. Interface between Huffman Code and Canonical Encoding. Let Σ denote the set

of characters in the current Huffman code. We view Σ as a subset of a fixed universal set U
where U ⊆ {0, 1}N . Call U the canonical encoding. In reality, U might be the set of ASCII
characters with N = 8. A more complicated example is where U is some unicode set. We assume
the transmitter and receiver both know this global parameter N and the set U . In the encoding
process, we assume that each character of the string comes from U . Upon seeing a letter x, we must
decide whether x ∈ Σ (i.e., in our current Huffman tree), and if so, what is its current Huffman
code. If |U | is not too large (e.g., |U | = 28), we can provide an array C[1..2N ] such that C[x] maps
to a leaf of the Huffman tree. For instance, if C[x] is the 0-node, this means x is not in Σ. If |U |
is large, we can use hashing techniques. Even though we know the leaf, it requires some work to
obtain the corresponding Huffman code. [This is the encoding problem – but the Huffman code
tree is specially designed for the inverse problem, i.e., decoding problem.] One way to solve this
encoding problem is assume that our Huffman tree has parent pointer. In terms of our Lc, Wt
array representation, we now add another array P [0..2k] for parent pointers.

Here now is the dynamic Huffman coding method for transmitting a string s:

© Chee-Keng Yap Basic Version April 2, 2008
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Dynamic Huffman Transmission Algorithm:
Input: A string s of indefinite length.
Output: The dynamically encoded sequence representing s.
⊲ Initialization

Initialize T to contain just the 0-node.
⊲ Main Loop

while s is non-empty
1. Remove the next character x from the front of string s.
2. Let u = C[x] be the leaf of T that corresponds to x.
3. Using u, transmit the code word for x.
4. If u is not the 0-node, and Call Restore(u).
5. Else ⊳ x is a new character
6. Expand the 0-node to have two children, both with weight 0;
7. Let u be the right sibling, representing the character x

and the left sibling represent the new 0-node.
8. Call Restore(u).

Signal termination, using some convention.

Decoding is also relatively straightforward. We are processing a continuous binary sequence,
but we know where the implicit “breaks” are in this continuous sequence. Call the binary sequence
between these breaks a word. We know how to recognize these words by maintaining the same
dynamic Huffman code tree T as the transmission algorithm. For each received word, we know
whether it is (a) a code word for some character, (b) signal to add a new letter to the alphabet
Σ, or (c) the canonical representation of a letter. Thus the receiver can faithfully reproduce the
original string s.

REMARKS: It can be shown that the FGK Algorithm transmit at most 2H2(s)+4|s| bits. The
Lambda Algorithm of Vitter ensures that the transmitted string length is ≤ H2(s) + |s| − 1 where
H2(s) is the number of bits transmitted by the 2-pass algorithm for s, independent of alphabet
size. Another approach to dynamic compression of strings is based on the move-to-front heuristic
and splay trees [1] (see Lecture VI).¶15. Unicode The Unicode is an evolving standard for encoding the characters sets of most human
languages (including dead ones like Egyption hieroglyphs). Here, we must make a basic distinction between
characters (or graphemes) and their many glyphs (or graphical renderings). The idea is to assign a unique
number, called a code point, to each character. Typically, we write such a number as U+XXXXXX where
the X’s are hexadecimal. As usual, leading zeros are insignificant. For instance the first 128 code points in
Unicode, U+0000 to U+007F, correspond to the ASCII code. The code points below U+0020 are control
characters in ASCII code. But there are many subtle points because human languages and writing are
remarkably diverse. Characters are not always atomic objects, but may have internal structure. Thus,
should we regard é as a single Unicode character, or as the character “e” with a combining acute “´”?
(Answer: both solutions are provided in unicode.) If combined, what kinds of combinations do we allow?
Coupled with this, we must meet the needs of computer applications: computers use unprintable or control
characters, but should these be characters for Unicode? (Answer: of course, this is part of ASCII.)

There are other international standards (ISO) and these have some compatibility with Unicode. For
instance, the first 256 code points corresponds to ISO 8859-1. There are two methods for encoding in
Unicode called Unicode Transformation Format (UTF) and Universal Character Set (UCS). These leads
to UTF-n, UCS-n for various values of n. Let us just focus on one of these, UTF-8. This was created by
K.Thompson and R.Pike, which is a de facto standard in many applications (e.g., electronic mail). It has
a basic 8-bit format with variable length extensions that uses up to 4 bytes (32 bits). It is particularly
compact for ASCII characters: only 1 byte suffices for the 128 US-ASCII characters. A major advantage© Chee-Keng Yap Basic Version April 2, 2008
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of UTF-8 is that a plain ASCII string is also a valid UTF-8 string (with the same meaning of course).
Here is UTF-8 in brief:

1. Any code point below U+0080 is encoded by a single byte. Thus, U+00XY where X < 8 can be
represented by the single byte XY that has a leading 0-bit.

2. Code points between U+0080 to U+07FF uses two bytes. The first byte begins with 110, second
byte begins with 10.

3. Code points between U+0800 to U+FFFF uses three bytes. The first byte begins with 1110, re-
maining two bytes begin with 10.

4. Code points between U+100000 to U+10FFFF uses four bytes. The first byte begins with 11110,
remaining three bytes begin with 10.

Exercises

Exercise 4.1: In this question, we are asking for three numbers. But you must summarize to
show intermediate results of your computations. Assume that the alphabet Σ is a subset of
{0, 1}8 (i.e., ASCII code).
(a) What is the length of the (static) Huffman code of the string “Hello, world!”?
(b) How many bits does it take to transmit the Huffman code for the string of (a)?
(c) How many bits would be transmitted by the Dynamic Huffman code algorithm in sending
the string “Hello, world!”? ♦

Exercise 4.2:
(a) Please reconstruct the Huffman code tree T from the following representation:

r(T ) = 0000, 1111, 0011, 011d, mrit, yo

CONVENTIONS: the commas in r(T ) are just decorative, and meant to help you parse the
string. Other than 0/1 symbols, the letters d, m, i, etc, stands for 8-bit ASCII codes. The
leftmost leaf in the tree is the 0-node, and its label (namely ’∗’) is implicit. The remaining
leaves are labeled by 8-bit ASCII codes for d, m, r, i, t, y, o, in left-to-right order.
(b) Here is a string encoded using this Huffman code:

0001, 1110, 1001, 1001, 0111, 1011, 10

Decode the string.
(c) Assume that the leaves of the Huffman tree in (a) has the following frequencies (or
weights):

f(∗) = 0, f(d) = f(m) = f(i) = f(t) = d(y) = 1, f(r) = f(o) = 2.

Assign a rank (i.e., numbers from 0, 1, . . . , 14) to the nodes of the tree in (a) so that the
sibling property is obeyed. Redraw this tree with the ranking listed next to each node. Also,
write the arrays L[0..14] and W [0..14] which encodes this ranking of the Huffman tree. Recall
that these arrays encode the left-child relation and weights (frequencies), respectively.
(d) Suppose that we now insert a new letter ⊔ (blank space) into the weighted Huffman
code tree of (c). Draw the new Huffman tree with updated ranking. Also, show the updated
arrays L[0..16] and W [0..16].
(e) Give the Huffman code for the string “dirty room”. What is the relation between this
string and the one in (b)? ♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 4.3: Give a careful and efficient implementation of the dynamic Huffman code. Assume
the compact representation of Huffman tree using the arrays W and L described in the text.

♦

Exercise 4.4: Consider 3-ary Huffman tree code. State and prove the Sibling property for this
code. ♦

Exercise 4.5: A previous exercise (1.2) asks you to construct the standard Huffman code of Lin-
coln’s speech at Gettysburg.
(a) Construct the optimal Huffman code tree for this speech. Please give the length of Lin-
coln’s coded speech. Also give the size of the code tree (use Exercise 1.5).
(b) Please give the length of the dynamic Huffman code for this speech. How much im-
provement is it over part (a)? Also, what is the code tree at the end of the dynamic coding
process? ♦

Exercise 4.6: The correctness of the dynamic Huffman code depends on the fact that the weight
at the leaves are integral and the change is +1.
(a) Suppose the leave weights can be any positive real number, and the change in weight is
also by an arbitrary positive number. Modify the algorithm.
(b) What if the weight change can be negative? ♦

End Exercises§5. Matroids

An abstract structure that supports greedy algorithms is matroids. We first illustrate the
concept.¶16. Graphic matroids. Let G = (V, S) be a bigraph. A subset A ⊆ S is acyclic if it does
not contain any cycle. Let I be the set of all acyclic subsets of S. The empty set is a acyclic and
hence belongs to I. We note two properties of I:

Hereditary property: If A ⊆ B and B ∈ I then A ∈ I.

Exchange property: If A, B ∈ I and |A| < |B| then there is an edge e ∈ B − A such that
A ∪ {e} ∈ I.

The hereditary property is obvious. To prove the exchange property, note that the subgraph
GA := (V, A) has |V | − |A| (connected) components; similarly the subgraph GB := (V, B) has
|V | − |B| components. If every component U ⊆ V of GB is contained in some component of
U ′ of GA, then |V | − |B| < |V | − |A| implies that some component of GA contains no vertices,
contradiction. Hence assume U ⊆ V is a component of GB that is not contained in any component
of GA. Let T := B ∩

(
U
2

)
. Thus (U, T ) is a tree and there must exist an edge e = (u−v) ∈ T such

that u and v belongs to different components of GA. This e will serve for the exchange property.© Chee-Keng Yap Basic Version April 2, 2008
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Figure 7: A bigraph with edge costs.

For example, in figure 7 the sets A = {a−b, a−c, a−d} and B = {b−c, c−a, a−d, d−e} are
acyclic. Then the exchange property between A and B is witnessed by the edge d−e ∈ B \A, since
adding d−e to A will result in an acyclic set.¶17. Matroids. The above system (S, I) is called the graphic matroid corresponding to graph
G = (V, S). In general, a matroid is a hypergraph or set system

M = (S, I)

where S is a non-empty set, I is a non-empty family of subsets of S (i.e., I ⊆ 2S) such that I
has both the hereditary and exchange properties. The set S is called the ground set. Elements
of I are called independent sets; other subsets of S are called dependent sets. Note that the
empty set is always independent.

Another example of matroids arise with numerical matrices: for any matrix M , let S be its
set of columns, and I be the family of linearly independent subsets of columns. Call this the
matrix matroid of M . The terminology of independence comes from this setting. This was the
motivation of Whitney, who coined the term ‘matroid’.

The explicit enumeration of the set I is usually out of the question. So, in computational
problems whose input is a matroid (S, I), the matroid is usually implicitly represented. The above
examples illustrate this: a graphic matroid is represented by a graph G, and the matrix matroid
is represented by a matrix M . The size of the input is then taken to be the size of G or M , not of
|I| which can exponentially larger.¶18. Submatroids. Given matroids M = (S, I) and M ′ = (S′, I ′), we call M ′ a submatroid
of M if S′ ⊆ S and I ′ ⊆ I. There are two general methods to obtain submatroids, starting from a
non-empty subset R ⊆ S:
(i) Induced submatroids. The R-induced submatroid of M is

M |R := (R, I ∩ 2R).

(ii) Contracted2 submatroids. The R-contracted submatroid of M is

M ∧R := (R, I ∧R)

where I ∧R := {A∩R : A ∈ I, S−R ⊆ A}. Thus, there is a bijective correspondence between the
independent sets A′ of M ∧ R and those independent sets A of M which contain S − R. Indeed,
A′ = A ∩R. Of course, if S −R is dependent, then I ∧R is empty.

2Contracted submatroids are introduced here for completeness. They are not used in the subsequent development
(but the exercises refer to them).© Chee-Keng Yap Basic Version April 2, 2008
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We leave it to an exercise to show that M |R and M ∧R are matroids. Special cases of induced
and contracted submatroids arise when R = S − {e} for some e ∈ S. In this case, we say that
M |R is obtained by deleting e and M ∧R is obtained by contracting e.¶19. Bases. Let M = (S, I) be a matroid. If A ⊆ B and B ∈ I then we call B an extension of
A; if A = B, the extension is improper and otherwise it is proper. A base of M (alternatively:
a maximal independent set) is an independent set with no proper extensions. If A ∪ {e} is
independent and e 6∈ A, we call A ∪ {e} a simple extension of A and say that e extends A. If
R ⊆ S, we may relativize these concepts to R: we may speak of “A ⊆ R being a base of R”, “e
extends A in R”, etc. This is the same as viewing A as a set of the induced submatroid M |R.¶20. Ranks. We note a simple property: all bases of a matroid have the same size. If A, B are
bases and |A| > |B| then there is an e ∈ A−B such that B ∪ {e} is a simple extension of B. This
is a contradiction. Note that this property is true even if S has infinite cardinality. Thus we may
define the rank of a matroid M to be the size of its bases. More generally, we may define the
rank of any R ⊆ S to be the size of the bases of R (this size is just the rank of M |R). The rank
function

rM : 2S → N

simply assigns the rank of R ⊆ S to rM (R).¶21. Problems on Matroids. A costed matroid is given by M = (S, I; C) where (S, I) is a
matroid and C : S → R. is a cost3 function. The cost of a set A ⊆ S is just the sum

∑

x∈A C(x).
The maximum independent set problem (abbreviated, MIS) is this: given a costed matroid
(S, I; C), find an independent set A ⊆ S with maximum cost. A closely related problem is the
maximum base problem where, given (S, I; C), we want to find a base B ⊆ S of maximum
cost. If the costs are non-negative, then it is easy to see the MIS problem and the maximum base
problem are identical. The following algorithm solves the maximum base problem:

Greedy Algorithm for Maximum Base:
Input: matroid M = (S, I; C) with cost function C.
Output: a base A ∈ I with maximum cost.
1. Sort S = {x1, . . . , xn} by cost.

Suppose C(x1) ≥ C(x2) ≥ · · · ≥ C(xn).
2. Initialize A← ∅.
3. For i = 1 to n,

put xi into A provided this does not make A dependent.
4. Return A.

The steps in this abstract algorithm needs to be instantiated for particular representations of
matroids. In particular, testing if a set A is independent is usually non-trivial (recall that matroids
are usually given implicitly in terms of other combinatorial structures). We discuss this issue for
graphic matroids below. It is interesting to note that the usual Gaussian algorithm for computing
the rank of a matrix is an instance of this algorithm where the cost C(x) of each element x is unit.

Let us see why the greedy algorithm is correct.

3Recall our convention that costs may be negative. If the costs are non-negative, we call C a a “weight function”.© Chee-Keng Yap Basic Version April 2, 2008
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Lemma 6 (Correctness). Suppose the elements of A are put into A in this order:

z1, z2, . . . , zm,

where m = |A|. Let Ai = {z1, z2, . . . , zi}, i = 1, . . . , m. Then:
1. A is a base.
2. If x ∈ S extends Ai then i < m and C(x) ≤ C(zi+1).
3. Let B = {u1, . . . , uk} be an independent set where C(u1) ≥ C(u2) ≥ · · · ≥ C(uk). Then k ≤ m
and C(ui) ≤ C(zi) for all i.

Proof. 1. By way of contradiction, suppose x ∈ S extends A. Then x 6∈ A and we must have
decided not to place x into the set A at some point in the algorithm. That is, for some j ≤ m,
Aj ∪ {x} is dependent. This contradicts the hereditary property because Aj ∪ {x} is a subset of
the independent set A ∪ {x}.
2. Suppose x extends Ai. By part 1, i < m. If C(x) > C(zi+1) then for some j ≤ i, we must
have decided not to place x into Aj . This means Aj ∪ {x} is dependent, which contradicts the
hereditary property since Aj ∪ {x} ⊆ Ai ∪ {x} and Ai ∪ {x} is independent.
3. Since all bases are independent sets with the maximum cardinality, we have k ≤ m. The result
is clearly true for k = 1 and assume the result holds inductively for k − 1. So C(uj) ≤ C(zj) for
j ≤ k − 1. We only need to show C(uk) ≤ C(zk). Since |B| > |Ak−1|, the exchange property says
that there is an x ∈ B − Ak−1 that extends Ak−1. By part 2, C(zk) ≥ C(x). But C(x) ≥ C(uk),
since uk is the lightest element in B by assumption. Thus C(uk) ≤ C(zk), as desired. Q.E.D.

From this lemma, it is not hard to see that an algorithm for the MIS problem is obtained by
replacing the for-loop (“for i = 1 to n”) in the above Greedy algorithm by “for i = 1 to m” where
xm is the last positive element in the list (x1, . . . , xm, . . . , xn).¶22. Greedoids. While the matroid structure allows the Greedy Algorithm to work, it turns
out that a more general abstract structure called greedoids is tailor-fitted to the greedy approach.
To see what this structure looks like, consider the set system (S, F ) where S is a non-empty finite
set, and F ⊆ 2S. In this context, each A ∈ F is called a feasible set. We call (S, F ) a greedoid
if

Accessibility property If A is a non-empty feasible set, then there is some e ∈ A such that
A \ {e} is feasible.

Exchange property: If A, B are feasible and |A| < |B| then there is some e ∈ B \ A such that
A ∪ {e} is feasible.

Exercises

Exercise 5.1: Consider the graphic matroid in figure 7. Determine its rank function. ♦

Exercise 5.2: The text described a modification of the Greedy Maximum Base Algorithm so that
it will solve the MIS problem. Verify its correctness. ♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 5.3:
(a) Interpret the induced and contracted submatroids M |R and M ∧ R in the bigraph of
figure 7, for various choices of the edge set R. When is M |R = M ∧R?
(b) Show that M |R and M ∧R are matroids in general. ♦

Exercise 5.4: Show that rM (A∪B)+ rM (A∩B) ≤ rM (A)+ rM (B). This is called the submod-
ularity property of the rank function. It is the basis of further generalizations of matroid
theory. ♦

Exercise 5.5: In Gavril’s activities selection problem, we have a set A of intervals of the form
[s, f). Recall that a subset S ⊆ A is said to be compatible if S is pairwise disjoint. Does
the set of compatible subsets of A form a matroid? If yes, prove it. If no, give a counter
example. ♦

End Exercises§6. Minimum Spanning Tree¶23. The Minimum Base Problem. Consider the minimum base problem for a costed
matroid (S, I; C) where C is a cost function C : S → R. The cost of a set B ⊆ S is given by
∑

x∈B C(x). So we want to compute a base B ∈ I of minimum cost. A greedy algorithm is easily
derived from the previous Greedy Algorithm for Maximum Base: we only have to replace the
for-loop (“for i = 1 to n”) by “for i = n downto 1”. We leave the justification for an exercise.

The minimum spanning forest problem is an instance of the minimum base problem. Here
we are given a costed bigraph

G = (V, E; C)

where C : E → R. In the previous section, we show that the set I of acyclic sets of G is a
matroid. An acyclic set T ⊆ E of maximum cardinality is called a spanning forest; in this case,
|T | = |V | − c where G has c ≥ 1 components. The cost C(T ) of any subset T ⊆ E is given by
C(T ) =

∑

e∈T C(e). An acyclic set is minimum if its cost is minimum. It is conventional to make
the following simplification:

The input bigraph G is connected.

In this case, a spanning forest T is actually a tree, and the problem is known as the minimum
spanning tree (MST) problem. The simplification is not too severe: if our graph is not
connected, we can first compute its connected component (another basic graph problem that has
efficient solution) and then apply the MST algorithm to each component. Alternatively, it is not
hard to modify an MST algorithm so that it applies even if the input is not connected.

Consider the bigraph in figure 7 with vertices V = {a, b, c, d, e}. One such MST is
{b−c, d−e, a−c, a−e}, with cost 6. It is easy to verify that there are six MST’s, as shown in
figure 8.© Chee-Keng Yap Basic Version April 2, 2008
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Figure 8: MST’s of a bigraph.¶24. Generic MST Algorithm. The greedy method for minimum bases is applicable to the
MST problem. The minimum base algorithm, restated for MST, is called Kruskal’s algorithm.
Here is the description: order the m edges of the input G so that

C(e1) ≤ C(e2) ≤ · · · ≤ C(em) (13)

and for each i = 1, . . . , m in turn, we accept ei provided it does not create a cycle with the
previously accepted edges. Kruskal’s algorithm can be viewed as an instance of a schema for the
greedy MST algorithms:

Generic Greedy MST Algorithm
Input: G = (V, E; C) a connected bigraph with edge costs.
Output: S ⊆ E, a MST for G.

S ← ∅.
for i = 1 to |V | − 1 do

1. Greedy Step: find an e ∈ E − S that is “good for S”.
2. S ← S + e.
Output S as the minimum spanning tree.

NOTATION: it is convenient to write “S +e” for “S∪{e}” in this discussion. Likewise, “S−e”
shall denote the set “S \ {e}”.

What does it mean for “e to be good for S”? It is based on some greedy criterion. A necessary
condition is that S + e must be contained in some MST. But we will usually want additional© Chee-Keng Yap Basic Version April 2, 2008
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properties in order to be able maintain or update our greedy criterion.¶25. Some Greedy MST Criteria. Let us say that e is a candidate for S if S + e is acyclic.
If U is a connected component of G′ = (V, S), and e = (u, v) is a candidate such that u ∈ U or
v ∈ U then we say that e extends U . Note that if e extends U then the graph G′′ = (V, S + e)
will not have U as a component. The following are 4 notions of what it means for “e is good for
S”:� (Simple) S + e is extendible to some MST.� (Kruskal) Edge e has the least cost among all the candidates.� (Boruvka) Suppose we maintain the set of all connected components of G′ = (V, S). There

is a component U of G′ = (V, S) such that e has the least cost among all the candidates that
extend U .� (Prim) This has, in addition to Boruvka’s condition, the requirement that the graph G′′ =
(V, S + e) has only one non-trivial component. [A component is trivial if it has only a single
vertex.]

This first criterion is computational ineffective. The remaining three criteria are named for
the inventors of three well-known MST algorithms. In reality, there are additional algorithmic
techniques that are needed before we finally achieve the best realization of these ideas:� (Kruskal) How can we quickly tell if S + e is acyclic? We will need the union-find data

structure of Chapter 13.� (Boruvka) We must maintain for each component, the least cost edge that merges it to an-
other component. Again we need the Union Find data structure. A key feature of Boruvka’s
algorithm is that we can select the good edges in “phases” where each phase calls for a pass
through the set of remaining edges. This feature can be exploited in parallel algorithms. We
explore these ideas in the Exercise.� (Prim) Because of its additional restriction to one non-trivial connected component, Prim’s
algorithm is easier to implement than Boruvka’s. We shall do this below. But the best
version of Prim’s algorithm is taken up in Chapter 6 (amortization techniques).

Let us call those sets S ⊆ E that may arise during the execution of the generic MST algorithm
simply-good, Boruvka-good, Kruskal-good or Prim-good, depending on which of the above
criteria is used. The correctness of these algorithms amounts to showing that “X-good implies
simply-good” where X = Kruskal, Boruvka or Prim. From general matroid theory in the previous
section, we already know that Kruskal’s algorithm is correct. Let us now show the correctness of the
algorithm of Boruvka. By definition, Prim-good implies Boruvka-good, and so Prim’s algorithm is
also correct. Indeed, Kruskal-good also implies Boruvka-good, so this yields an alternative proof
of correctness for Kruskal’s algorithm.

Lemma 7 (Correctness of Boruvka’s Algorithm). Boruvka-good sets are simply-good.

Proof. We use induction on the size |S| of Boruvka-good sets S. Clearly if S = ∅, then S is
Boruvka-good and this is clearly simply-good. Next suppose S = S′ +e where S′ is Boruvka-good.© Chee-Keng Yap Basic Version April 2, 2008
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We need to prove that S is simply-good. By definition of Boruvka-goodness, there is a component
U of the graph G′ = (V, S′) such that e has the least cost among all edges that extend U . By
induction hypothesis, we may assume S′ is simply-good. Hence there is a MST T ′ that contains S′.
If e ∈ T ′, then we are done (as T ′ would be a witness to the fact that S = S′ + e is simply-good).
So assume e 6∈ T ′.

e

e′

V − U

v1

U

vi+1

v

vi

vk

u

Figure 9: Extending a component U by e = (u, v).

Write e = (u, v) such that u ∈ U and v 6∈ U . Hence T ′ + e contains a unique closed path of the
form

Z := (u−v−v1−v2− · · · −vk−u).

There exists some i = 0, . . . , k such that vi 6∈ U and vi+1 ∈ U . Write

Z = (u−v−v1− · · · −vi−vi+1− · · · −u)

(where v = v0 and u = vk+1 in this notation). Let e′ := (vi−vi+1). Note that T := T ′ + e− e′ is
acyclic and is a spanning tree. Moreover, C(e) ≤ C(e′), by our choice of e. Hence C(T ) ≤ C(T ′).
Since C(T ′) is minimum, so is C(T ). This shows that S is simply-good, as S contains T . Q.E.D.¶26. Good sets of vertices. Let us extend the notion of “goodness” to sets of vertices. For
any set S ⊆ E of edges, let V (S) denote the set of those vertices that are incident on some edge
of S. We say a set U ⊆ V is X-good if there exists an X-good set S ⊆ E such that U = V (S).
Here, X is equal to ‘simply’, ‘Prim’, ‘Kruskal’ or ‘Boruvka’. By this definition, no singleton would
be good. Instead, we define goodness for singletons thus: a singleton {v} is defined to be X-good
if there exists u such that {u, v} is X-good by the previous definition.¶27. Hand Simulation of MST Algorithms. Students are expected to understand those
aspects of Kruskal’s and Prim’s algorithms that are independent of their ultimate realizations via
efficient data structures. That is, you must do “hand simulations” where you act as the oracle for
queries to the data structures. For Kruskal’s algorithm, this is easy – we just list the edges by
non-decreasing weight order and indicate the acceptance/rejection of successive edges.

For Prim’s algorithm, we just maintain an array d[1..n] assuming the vertex set is V =
{1, . . . , n}. We shall maintain a subset S ⊆ V representing the set of vertices which we know
how to connect to the source node 1 in a MST. The set S is “Prim good”. Initially, let S = ∅
and d[1] = 0 and d[v] = ∞ for v = 2, . . . , n. In general, the entry d[v] (v ∈ V \ S) represents the
“cheapest” cost to connect vertex v to the MST on the set S. Our simulation consists in building
up a matrix M which is a n× n matrix, where the 0th row representing the initial array d. Each
time the array d is updated, we rewrite it as a new row of a matrix M .© Chee-Keng Yap Basic Version April 2, 2008
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At stage i ≥ 1, suppose we pick a node vi ∈ V \ S where d[vi] = min{d[j] : j ∈ V \S}. We add
vi to S, and update all the values d[u] for each u ∈ V \ S that is adjacent to vi. The update rule
is this:

d[u] = min{d[u], COST [vi, u]}.

The resulting array is written as row i in our matrix.

Let us illustrate the process on the graph of Figure 10. The vertex set is V =
{v1, v2, . . . , v11, v12}. The cost of an edge is the sum of the costs associated to each vertex. E.g.,
C(v1, v4) = C(v1) + C(v4) = 1 + 6 = 7. The final matrix is the following:

Stage 1 2 3 4 5 6 7 8 9 10 11 12

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 X 3 1 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 X 6 3
3 X 6
4 X 8
5 X 7
6 X 6 6
7 3 X 3 2
8 1 1 X 2
9 X
10 6 X
11 X
12 X

Conventions in this matrix: We mark the newly picked node in each stage with an ‘X’. Also,
any value that is unchanged from the previous row may be left blank. Thus, in stage 2, the node
3 is picked and we update d[v4] using d[v4] = min{d[v4], COST [v3, 4]} = min{7, 6} = 6.

The final cost of the MST is 37. To see this, each X corresponds to a vertex v that was picked,
and the last value of d[v] contributes to the cost of the MST. E.g., the X corresponding to vertex
1 has cost 0, the X corresponding to vertex 2 has cost 3, etc. Summing up over all X’s, we get 37.

Remarks: Boruvka (1926) has the first MST algorithm; his algorithm was rediscovered by
Sollin (1961). The algorithm attributed to Prim (1957) was discovered earlier by Jarńık (1930).
These algorithms have been rediscovered many times. See [5] for further references. Both Boruvka
and Jarńık’s work are in Czech. The Prim-Jarńık algorithm is very similar in structure to Dijkstra’s
algorithm which we will encounter in the chapter on minimum cost paths.

Exercises

Exercise 6.1: We consider minimum spanning trees (MST’s) in an undirected graph G = (V, E)
where each vertex v ∈ V is given a numerical value C(v) ≥ 0. The cost C(u, v) of an edge
(u−v) ∈ E is defined to be C(u) + C(v).
(a) Let G be the graph in figure 10. Compute an MST of G using Boruvka’s algorithm.
Please organize your computation so that we can verify intermediate results. Also state the
cost of your minimum spanning tree.
(b) Can you design an MST algorithm that takes advantage of the fact that edge costs has
the special form C(u, v) = C(u) + C(v)? ♦© Chee-Keng Yap Basic Version April 2, 2008
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Figure 10: The house graph: The cost of edge vi−vj is defined as C(vi) + C(vj), where C(v) is
the value indicated next to v. E.g. C(v1−v4) = 1 + 6 = 7.

Exercise 6.2: Suppose G is the complete bipartite graph Gm,n. That is, the vertices V are
partitioned into two subsets V0 and V1 where |V0| = m and V1| = n and E = V0 × V1. Give
a simple description of an MST of Gm,n. Argue that your description is indeed an MST.
HINT: transform an arbitrary MST into your description by modifying one edge at a time.

♦

Exercise 6.3: Let Gn be the bigraph whose vertices are V = {1, 2, . . . , n}. The edges are defined
as follows: for each i ∈ V , if i is prime, then (1, i) ∈ E with weight i. [Recall that 1 is not
considered prime, so 2 is the smallest prime.] For 1 < i < j, if i divides j then we add (i, j)
to E with weight j/i.
(a) Draw the graph G19.
(b) Compute the MST of G18 using Prim’s algorithm, using node 1 as the source vertex.
Please use the organization described in the appendix below.
(c) Are there special properties of the graphs Gn that can be exploited? ♦

Exercise 6.4: Let G = (V, E; W ) be a connected bigraph with edge weight function W . Fix a
constant M and define the weight function W ′ where W ′(e) = M −W (e) for each e ∈ E.
Let G′ = (V, E; W ′). Show that T is a maximum spanning tree of G iff T is a minimum
spanning tree of G′. NOTE: Thus we say that the concepts of maximum spanning tree and
minimum spanning tree are “cryptomorphic versions” of each other. ♦

Exercise 6.5: Describe the rule for reconstructing the MST from the matrix M using in our
hand-simulation of Prim’s Algorithm. ♦

Exercise 6.6: Hand Simulation of Kruskal’s Algorithm on the graph of Figure 10. This exercise
suggests a method for carry out the steps of this algorithm. The edges in sorted order are
shown in the table below.

Next, we now consider each edge in turn. We maintain a partition of V = {1, . . . , 12} into
disjoint sets. Let L(i) denote the set containing vertex i. Initially, each node is in its own set,
i.e., L(i) = {i}. Whenever an edge i−j is added to the MST, we merge the corresponding
sets L(i) ∪ L(j). E.g., in the first step, we add edge 1−3. Thus the lists L(1) = {1}
and L(3) = {1} are merged, and we get L(1) = L(3) = {1, 3}. To show the computation
of Kruskal’s algorithm, for each edge, if the edge is “rejected”, we mark it with an “X”.
Otherwise, we indicate the merged list resulting from the union of L(i) and L(j): Please fill
in the last two columns of the table (we have filled in the first 4 rows for you).© Chee-Keng Yap Basic Version April 2, 2008
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Sorting Order Edge Weight Merged List Cumulative Weight

1 1-3: 1 {1, 3} 1
2 6-11: 1 {6, 11} 2
3 10-11: 1 {6, 10, 11} 3
4 6-10: 2 X 3
5 7-11: 2
6 11-12: 2
7 1-2: 3
8 3-8: 3
9 6-7: 3
10 7-10: 3
11 2-5: 6
12 3-4: 6
13 5-7: 6
14 5-12: 6
15 9-10: 6
16 1-4: 7
17 4-6: 7
18 8-9: 8
19 4-5: 10
20 4-9: 11

♦

Exercise 6.7: This question considers two concrete ways to implement Kruskal’s algorithm. Let
V = {1, 2, . . . , n} and D[1..n] be an array of size n that represents a forest G(D) with vertex
set V and edge set E = {(i, D[i]) : i ∈ V }. More precisely, G(D) is an directed graph that
has no cycles except for self-loops (i.e., edges of the form (i, i)). A vertex i such that D[i] = i
is called a root. The set V is thereby partitioned into disjoint subsets V = V1 ∪V2 ∪ · · · ∪Vk

(for some k ≥ 1) such that each Vi has a unique root ri, and from every j ∈ Vi there is a path
from j to ri. For example, with n = 7, D[1] = D[2] = D[3] = 3, D[4] = 4, D[5] = D[6] = 5
and D[7] = 6 (see Figure 11). We call Vi a component of the graph G(D) (this terminology
is justified because Vi is a component in the usual sense if we view G(D) as an undirected
graph).

3

1 2

V1

4

V2

5

6

7

V3

Figure 11: Directed graph G(D) with three components (V1, V2, V3)

(i) Consider two restrictions on our data structure: Say D is list type if each component
is a linear list. Say D is star type if each component is a star (i.e., each vertex in the
component points to the root). E.g., in Figure 11, V2 and V3 are linear lists, while V1 and V2

are stars. Let ROOT(i) denote the root r of the component containing i. Give a pseudo-code
for computing ROOT(i), and give its complexity in the 2 cases: (1) D is list type, (2) D is
star type.
(ii) Let COMP(i) ⊆ V denote the component that contains i. Define the operation© Chee-Keng Yap Basic Version April 2, 2008
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MERGE(i, j) that transforms D so that COMP(i) and COMP(j) are combined into a new
component (but all the other components are unchanged). E.g., the components in Figure 11
are {1, 2, 3}, {4} and {5, 6, 7}. After MERGE(1, 4), we have two componets, {1, 2, 3, 4} and
{5, 6, 7}. Give a pseudo-code that implements MERGE(i, j) under the assumption that i, j
are roots and D is list type which you must preserve. Your algorithm must have complexity
O(1). To achieve this complexity, you need to maintain some additional information (perhaps
by a simple modification of D).
(iii) Similarly to part (ii), implement MERGE(i, j) when D is star type. Give the complex-
ity of your algorithm.
(iv) Describe how to use ROOT(i) and MERGE(i, j) to implement Kruskal’s algorithm for
computing the minimum spanning tree (MST) of a weighted connected undirected graph H .
(v) What is the complexity of Kruskal’s in part (iv) if (1) D is list type, and if (2) D is star
type. Assume H has n vertices and m edges. ♦

Exercise 6.8: Give two alternative proofs that the suggested algorithm for computing minimum
base is correct:
(a) By verifying the analogue of the Correctness Lemma.
(b) By replacing the cost C(e) (for each e ∈ E) by the cost c0−C(e). Choose c0 large enough
so that c0 − C(e) > 0. ♦

Exercise 6.9: Let G be a bigraph G with distinct weights. Give a direct argument for the (a)
and (b).
(a) Prove that the MST of G must contain that the edge of smallest weight.
(b) Prove that the MST of G must contain that the edge of second smallest weight.
(c) Must it contain the edge of third smallest weight? ♦

Exercise 6.10: Show that every MST can be obtained from Kruskal’s algorithm by a suitable
re-ordering of the edges which have identical weights. Conclude that when the edge weights
are unique, then the MST is unique. ♦

Exercise 6.11: Student Joe wants to reduce the minimum base problem for a costed matroid
(S, I; C) to the MIS problem for (S, I; C′) where C′ is a suitable transformation of C.
(a) Student Joe considers the modified cost function C′(e) = 1/C(e) for each e. Construct
an example to show that the MIS solution for C′ need not be the same as the minimum base
solution for C.
(b) Next, student Joe considers another variation: he now defines C′(e) = −C(e) for each e.
Again, provide a counter example. ♦

Exercise 6.12: Extend the algorithm to finding MIS in contracted matroids. ♦

Exercise 6.13: If S ⊆ E is Prim-good, then clearly G′ = (V (S), S) is clearly a tree. Prove that
S is actually an MST of the restricted graph G|V (S). ♦

Exercise 6.14:
(a) Enumerate the X-good sets of vertices in figure 7. Here, X is ‘simply’, ‘Kruskal’, ‘Boru-
vka’ or ‘Prim’.
(b) Characterize the good singletons (relative to any of the three notions of goodness). ♦© Chee-Keng Yap Basic Version April 2, 2008
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Exercise 6.15: This question will develop Boruvka’s approach to MST: for each vertex v, pick
the edge (v−u) that has the least cost among all the nodes u that are adjacent to v. Let P
be the set of edges so picked.
(a) Show that n/2 ≤ P ≤ n − 1. Give general examples to show that these two extreme
bounds are achieved for each n.
(b) Show that if the costs are unique, P cannot contain a cycle. What kinds of cycles can
form if weights are not unique?
(c) Assume edges in P are picked with the tie breaking rule: among the edges v−ui (i =
1, 2, . . .) adjacent to v that have minimum cost, pick the ui that is the smallest numbered
vertex (assume vertices are numbered from 1 to n). Prove that P is acyclic and has the
following property: if adding an edge e to P creates a cycle Z in P + e, then e has the
maximum cost among the edges in Z.
(d) For any costed bigraph G = (V, E; C), and P ⊆ E, define a new costed bigraph denoted
G/P as follows. First, two vertices of V are said to be equivalent modulo P if they are
connected by a sequence of edges in P . For v ∈ V , let [v] denote the equivalence class of v.
The vertex set of G/P is {[v] : v ∈ V }. The edge set of G/P comprises those ([u]−[v]) such
that there exists an edge (u′−v′) ∈ E where u′ ∈ [u] and v′ ∈ [v]. The cost of ([u]−[v]) is
defined as min{C(u′, v′) : u′ ∈ [u], v′ ∈ [v], (u′−v′) ∈ E}. Note that G/P has at most n/2
vertices. Moreover, we can pick another set P ′ of edges in G/P using the same rules as before.
This gives us another graph (G/P )/P ′ with at most n/4 vertices. We can continue this until
V has 1 vertex. Please convert this informal description into an algorithm to compute the
cost of the MST. (You need not show how to compute the MST.)
(e) Determine the complexity of your algorithm. You will need to specify suitable data
structures for carrying out the operations of the algorithm. (Please use data structures that
you know up to this point.) ♦

Exercise 6.16: (Tarjan) Consider the following generic accept/reject algorithm for MST.
This consists of steps that either accept or reject edges. In our generic MST algorithm, we
only explicitly accept edges. However, we may be implicitly rejecting edges as well, as in the
case of Kruskal’s algorithm. Let S, R be the sets of accepted and rejected edges (so far). We
say that (S, R) is simply-good if there is an MST that contains S but not containing any
edge of R. Note that this extends our original definition of “simply good”. Prove that the
following extensions of S and R will maintain minimal goodness:
(a) Let U ⊆ V be any subset of vertices. The set of edges of the form (u, v) where u ∈ U and
v 6∈ U is called a U -cut. If e is the minimum cost edge of a U -cut and there are no accepted
edges in the U -cut, then we may extend S by e.
(b) If e is the maximum cost edge in a cycle C and there are no rejected edges in C then we
may extend R by e. ♦

Exercise 6.17: With respect to the generic accept/reject version of MST:
(a) Give a counter example to the following rejection rule: let e and e′ be two edges in a
U -cut. If C(e) ≥ C(e′) then we may reject e′.
(b) Can the rule in part (a) be fixed by some additional properties that we can maintain?
(c) Can you make the criterion for rejection in the previous exercise (part (b)) computation-
ally effective? Try to invent the “inverses” of Prim’s and Boruvka’s algorithm in which we
solely reject edges.
(d) Is it always a bad idea to only reject edges? Suppose that we alternatively accept and
reject edges. Is there some situation where this can be a win? ♦

Exercise 6.18: Consider the following recursive “MST algorithm” on input G = (V, E; C):
(I) Subdivide V = V1 ⊎ V2.© Chee-Keng Yap Basic Version April 2, 2008
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(II) Recursive find a “MST” Ti of G|Vi (i = 1, 2).
(III) Find e in the V1-cut of minimum cost. Return T1 + e + T2.
Give a small counter-example to this algorithm. Can you fix this algorithm? ♦

Exercise 6.19: Is there an analogue of Prim and Boruvka’s algorithm for the MIS problem for
matroids? ♦

Exercise 6.20: Let G = (V, E; C) be the complete graph in which each vertex v ∈ V is a point
in the Euclidean plane and C(u, v) is just the Euclidean distance between the points u and
v. Give efficient methods to compute the MST for G. ♦

Exercise 6.21: Fix a connected undirected graph G = (V, E). Let T ⊆ E be any spanning tree
of G. A pair (e, e′) of edges is called a swappable pair for T if
(i) e ∈ T and e′ ∈ E \ T (Notation: for sets A, B, their difference is denoted A \ B = {a ∈
A : a 6∈ B})
(ii) The set (T \ {e}) ∪ {e′} is a spanning tree.
Let T (e, e′) denote the spanning tree (T \ {e})∪ {e′} obtained from T by swapping e and
e′ (see illustration in Figure 12(a), (b)).

e e′

(b) T (e, e′)

e e′

(a) T

e′

e
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u1
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(c) Path P (u0, uℓ).
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Figure 12: (a) A swappable pair (e, e′) for spanning tree T . (b) The new spanning tree T (e, e′)
[NOTE: tree edges are indicated by thick lines]

(a) Suppose (e, e′) is a swappable pair for T and e′ = (u, v). Prove that e lies on the unique
path, denoted by P (u, v), of T from u to v. In Figure 12(a), e′ = (1−5) = (5−1). So the
path is either P (1, 5) = (1−2−3−5) or P (5, 1) = (5−3−2−1).
(b) Let n = |V |. Relative to T , we define a n× n matrix First indexed by pairs of vertices
u, v, where First[u, v] = w means that the first edge in the unique path P (u, v) is (u, w).
(In the special case of u = v, let First[u, u] = u.) In Figure 12(a), First[1, 5] = 2 and
First[5, 1] = 3. Show the matrix First for the tree T in Figure 12(a). Similarly, give the
matrix First for the tree T (e, e′) in Figure 12(b).
(c) Describe an O(n2) algorithm called Update(First, e, e′) which updates the matrix First
after we transform T to T (e, e′). HINT: For which pair of vertices (x, y) does the value
of First[x, y] have to change? Suppose e′ = (u′, v′) and P (u′, v′) = (u0, u1, . . . , uℓ) is as
illustrated in Figure 12(c). Then u′ = u0, v

′ = uℓ, and also e = (uk, uk+1) for some 0 ≤ k < ℓ.
Then, originally First[u0, uℓ] = u1 but after the swap, First[u0, uℓ] = uℓ. What else must
change?
(d) Analyze your algorithm to show that that it is O(n2). Be sure that your description in
(c) is clear enough to support this analysis. ♦© Chee-Keng Yap Basic Version April 2, 2008
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End Exercises§7. Generating Permutations

In §1, we saw how the general bin packing problem can be reduced to linear bin packing. This
reduction depends on the ability to generate all permutations of n elements, in O(n!) time. Since
there are many uses such a permutation generator, we will take a small detour to address this
interesting topic. A survey of this classic problem is given by Sedgewick [4]. Perhaps the oldest
incarnation of this problem is the “change ringing problem” of bell-ringers in early 17th Century
English churches [3]. This calls for ringing a sequence of n bells in all n! permutations.

The problem of generating all permutations efficiently is representative of an important class of
problems called combinatorial enumeration. For instance, we might want to general all size k
subsets of a set, all graphs of size n, all convex polytopes with n vertices, etc. Such an enumerations
would be considered optimal if the algorithm takes O(1) time to generate each member.

It is good to fix some terminology. A n-permutation of a finite set X is a surjective function
p : {1, . . . , n} → X . Surjectivity of p implies n ≥ |X |. The function p may be represented by a
sequence (p(1), p(2), . . . , p(n)). Here we are interested in the case n = |X |, i.e., permutation of
distinct elements. We use a path-like notation for permutations, writing “(p(1)− · · ·−p(n))” for
the permutation (p(1), p(2), . . . , p(n)).

Let Sn denote the set of all permutations of X = {1, 2, . . . , n}; each element of Sn is called an
n-permutation. Note that |Sn| = n!. E.g., the following is a listing of S3:

(1−2−3), (1−3−2), (3−1−2); (3−2−1), (2−3−1), (2−1−3). (14)

Two n-permutations π = (x1− · · · −xn) and π′ = (x′
1− · · · −x′

n) are said to be adjacent (to each
other) if there is some i = 2, . . . , n such that xi−1 = x′

i and xi = x′
i−1, and for all other j, xj = x′

j .
Indeed, we write π′ = Exchi(π) in this case. E.g., π = (1−2−4−3) and π′ = (1−4−2−3) are
adjacent since π′ = Exch3(π). An adjacency ordering of a set S of permutations is a listing of
the elements of S such that every two consecutive permutations in this listing are adjacent. For
instance, the listing of S3 in (14) is an adjacency ordering.

[Figure: Adjacency Graph for 3-permutations]

We need another concept: if π = (x1− · · · −xn−1) is an (n−1)-permutation, and π′ is obtained
from π by inserting the letter n into π, then we call π′ an extension of π. Indeed, if n is inserted just
before the ith letter in π, then we write π′ = Exti(π) for i = 1, . . . , n. The meaning of “Extn(π)”
should be clear: it is obtained by appending ‘n’ to the end of the sequence π. Note that there are n
extensions of π. E.g., if π = (1−2) then the three extensions of π are (3−1−2), (1−3−2), (1−2−3).¶28. The Johnson-Trotter Ordering. Among the several known methods to generate
all n-permutations, we will describe one that is independently discovered by S.M.Johnson and
H.F.Trotter (1962), and apparently known to 17th Century English bell-ringers [3]. The two main
ideas in the Johnson-Trotter algorithm are (1) the n-permutations are generated as an adjacency
ordering, and (2) the n-permutations are generated recursively. Suppose let π is an (n − 1)-
permutation that has been recursively generated. Then we note that the n extensions of π can
given one of two adjacency orderings. It is either

UP (π) : Ext1(π), Ext2(π), . . . , Extn(π)© Chee-Keng Yap Basic Version April 2, 2008
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or the reverse sequence

DOWN(π) : Extn(π), Extn−1(π), . . . , Ext1(π).

E.g., UP (1−2−3) is equal to

(4−1−2−3), (1−4−2−3), (1−2−4−3), (1−2−3−4).

Note that if π′ is another (n−1)-permutation that is adjacent to π, then the concatenated sequences

UP (π); DOWN(π′)

and
DOWN(π); UP (π′)

are both adjacency orderings. We have thus shown:

Lemma 8 (Johnson-Trotter ordering). If π1, . . . , π(n−1)! is an adjacency ordering of Sn−1, then
the concatenation of alternating DOWN/UP sequences

DOWN(π1); UP (π2); DOWN(π3); · · · ; DOWN(π(n−1)!)

is an adjacency ordering of Sn.

For example, starting from the adjacency ordering of 2-permutations (π1 = (1−2), π2 = (2−1)),
our above lemma says that DOWN(π1), UP (π2) is an adjacency ordering. Indeed, this is the
ordering shown in (14).

Let us define the permutation graph Gn to be the bigraph whose vertex set is Sn and whose
edges comprise those pairs of vertices that are adjacent in the sense defined for permutations.
We note that the adjacency ordering produced by Lemma 8 is actually a cycle in the graph Gn.
In other words, the adjacency ordering has the additional property that the first and the last
permutations of the ordering are themselves adjacent. A cycle that goes through every vertex of a
graph is said to be Hamiltonian. If (π1−π2− · · · −πm) (for m = (n− 1)!) is a Hamiltonion cycle
for Gn−1, then it is easy to see that

(DOWN(π1); UP (π2); · · · ; UP (πm))

is a Hamiltonian cycle for Gn.¶29. The Permutation Generator. We proceed to derive an efficient means to generate
successive permutations in the Johnson-Trotter ordering. We need an appropriate high level view of
this generator. The generated permutations are to be used by some “permutation consumer” such
as our greedy linear bin packing algorithm. There are two alternative views of the relation between
the “permutation generator” and the “permutation consumer”. We may view the consumer as
calling4 the generator repeatedly, where each call to the generator returns the next permutation.
Alternatively, we view the generator as a skeleton program with the consumer program as a (shell)
subroutine. We prefer the latter view, since this fits the established paradigm of BFS and DFS as
skeleton programs (see Chapter 4). Indeed, we may view the permutation generator as a bigraph
traversal: the implicit bigraph here is the permutation graph Gn.

In the following, an n-permutation is represented by the array per[1..n]. We will transform per
by exchange of two adjacent values, indicated by

per[i]⇔ per[i− 1] (15)

4The generator in this viewpoint is a co-routine. It has to remember its state from the previous call.© Chee-Keng Yap Basic Version April 2, 2008
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for some i = 2, . . . , n, or
per[i]⇔ per[i + 1]

where i = 1, . . . , n− 1.¶30. A Counter for n factorial. To keep track of the successive exchanges in Johnson-Trotter
generator, we introduce an array of n counters

C[1..n]

where each C[i] is initiallized to 1 but always satisfying the relation 1 ≤ C[i] ≤ i. Of course, C[1]
may be omitted since its value cannot change under our restrictions. The array counter C has n!
distinct possible. We say the i-th counter is full iff C[i] = i. The level of the C is the largest
index ℓ such that the ℓ-th counter is not full. If all the counters are full, the level of C is defined
to be 1. E.g., C[1..5] = [1, 2, 2, 1, 5] has level 4. We define the increment of this counter array as
follows: if the level of the counter is ℓ, then (1) we increment C[ℓ] provided ℓ > 1, and (2) we set
C[i] = 1 for all i > ℓ. E.g., the increment of C[1..5] = [1, 2, 2, 1, 5] gives [1, 2, 2, 2, 1]. In code:

Inc(C)
ℓ← n.
while (C[ℓ] = ℓ) ∧ (ℓ > 1)

C[ℓ--]← 1.
if (ℓ > 1)

C[ℓ]++.
return(ℓ)

Note that Inc returns the level of the original counter value. This subroutine is a generalization
of the usual incrementation of binary counters (Chapter 6.1). For instance, for n = 4, starting
with the initial value of [1, 1, 1], successive increments of this array produce the following cyclic
sequence:

C[2, 3, 4] = [1, 1, 1]→ [1, 1, 2]→ [1, 1, 3]→ [1, 1, 4]→ [1, 2, 1] (16)

→ [1, 2, 2]→ [1, 2, 3]→ [1, 2, 4]→ [1, 3, 1]→ · · ·

→ [2, 3, 3]→ [2, 3, 4]→ [1, 1, 1]→ · · · .

Let the cost of incrementing the counter array be equal to n + 1− ℓ where ℓ is the level. CLAIM:
the cost to increment the counter array from [1, 1, . . . , 1] to [2, 3, . . . , n] is < 2(n!). In proof, note
that C[ℓ] is updated after every n!/ℓ! steps, so that the overall, C[ℓ] is updated ℓ! times. Hence
the total number of updates for the n− 1 counters is

n! + (n− 1)! + · · ·+ 2! < 2(n!),

which proves our Claim.

This gives us the top level structure for our permutation generator:

© Chee-Keng Yap Basic Version April 2, 2008
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Johnson-Trotter Generator (Sketch)
Input: natural number n ≥ 2

⊲ Initialization
per[1..n]← [1, 2, . . . , n]. ⊳ Initial permutation
C[2..n]← [1, 1, . . . , 1]. ⊳ Initial counter value

⊲ Main Loop
do

ℓ← Inc(C)
UPDATE(ℓ) ⊳ The permutation is updates
CONSUME(per) ⊳ Permutation is consumed

while (ℓ > 1)

The shell routine CONSUME is application-dependent. In illustrations, we simply use it to
print the current permutation.¶31. How to update the permutation. We now describe the UPDATE routine. It uses
the previous counter level ℓ to transform the current permutation to the next permutation. For
example, the successive counter values in (16) correspond to the following sequence of permutations:

[1,1,1]
−→ (1−2−3−4)

[1,1,2]
−→ (1−2−4−3)

[1,1,3]
−→ (1−4−2−3)

[1,1,4]
−→ (4−1−2−3)

[1,2,1]
−→ (4−1−3−2)(17)

[1,2,2]
−→ (1−4−3−2)

[1,2,3]
−→ (1−3−4−2)

[1,2,4]
−→ (1−3−2−4)

[1,3,1]
−→ (3−1−2−4)

[1,3,2]
−→ · · ·

[2,3,3]
−→ (1−4−2−3)

[2,3,4]
−→ (1−2−4−3)

[1,1,1]
−→ (1−2−3−4) −→ · · · .

To interpret the above, consider a general step of the form

[c2,c3,c4]
−→ · · · (x1−x2−x3−x4)

[c′
2
,c′

3
,c′

4
]

−→ (x′
1−x′

2−x′
3−x′

4) · · ·

We start with the counter value [c2, c3, c4] and permutation (x1−x2−x3−x4). After calling Inc,
the counter is updated to [c′2, c

′
3, c

′
4], and it returns the level ℓ of [c2, c3, c4]. If ℓ = 1, we may5

terminate; otherwise, ℓ ∈ {2, 3, 4}. We find the index i such that xi = ℓ (for some i = 1, 2, 3, 4).
UPDATE will then exchange xi with its neighbor xi+1 or xi−1. The resulting permutation is
(x′

1−x′
2−x′

3−x′
4).

In (17), we indicate xi by an underscore, “xi”. The choice of which neighbor (xi−1 or xi+1)
depends on whether we are in the “UP” phase or “DOWN” phase of level ℓ. Let UP [1..n] be a
Boolean array where UP [ℓ] is true in the UP phase, and false in the DOWN phase when we are
incrementing a counter at level ℓ. Moreover, the the value of UP [ℓ] is changed (flipped) each time
C[ℓ] is reinitialized to 1. For instance, in the first row of (17), UP [4] = false and so the entry 4
is moving down with each swap involving 4. In the next row, UP [4] = true and so the entry 4 is
moving up with each swap.

Hence we modify our previous Inc subroutine to include this update:

5In case we want to continue, the case ℓ = 1 is treated as if ℓ = n. E.g., in (17), the case ℓ = 1 is treated as
ℓ = 4.
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Increment(C)
Output: Increments C, updates UP , and returns the previous level of C

ℓ← n.
while (C[ℓ] = ℓ) ∧ (ℓ > 1) ⊳ Loop to find the counter level

C[ℓ]← 1;
UP [ℓ]← ¬UP [ℓ]; ⊳ Flips the boolean value UP [ℓ]
ℓ--.

if (ℓ > 1)
C[ℓ]++.

return(ℓ).

For a given level ℓ, the UPDATE routine need to find the “position” i where per[i] = ℓ (i =
1, . . . , n). We could search for this position in O(n) time, but it is more efficient to maintain this
information directly: let pos[ℓ] denote the current position of ℓ. Thus the pos[1..n] is just the
inverse of the array per[1..n] in the sense that

per[pos[ℓ]] = ℓ (ℓ = 1, . . . , n).

We can now specify the UPDATE routine to update both pos and per:

Update(ℓ)
if (UP [ℓ])

per[pos[ℓ]]⇔ per[pos[ℓ] + 1]; ⊳ modify permutation
pos[per[pos[ℓ]]]← pos[ℓ]; ⊳ update position array
pos[ℓ]++; ⊳ update position array

else

per[pos[ℓ]]⇔ per[pos[ℓ]− 1];
pos[per[pos[ℓ]]]← pos[ℓ];
pos[ℓ]--;

Thus, the final algorithm is:

Johnson-Trotter Generator
Input: natural number n ≥ 2

⊲ Initialization
per[1..n]← [1, 2, . . . , n]. ⊳ Initial permutation
pos[1..n]← [1, 2, . . . , n]. ⊳ Initial positions
C[2..n]← [1, 1, . . . , 1]. ⊳ Initial counter value

⊲ Main Loop
do

ℓ← Increment(C);
UPDATE(ℓ); ⊳ The permutation is updated
CONSUME(per); ⊳ Permutation is consumed

while(ℓ > 1)

REMARKS:
1. In practice, we can introduce early termination criteria into our permutation generator. For© Chee-Keng Yap Basic Version April 2, 2008
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instance, in the bin packing application, there is a trivial lower bound on the number of bins,
namely b0 = ⌈(

∑n
i=1 wi)/M⌉. We can stop when we found a solution with b0 bins. If we want only

an approximate optimal, say within a factor of 2, we may exit when the we achieve ≤ 2b0 bins.
2. We have focused on permutations of distinct objects. In case the objects may be identical, more
efficient techniques may be devised. For more information about permutation generation, see the
book of Paige and Wilson [2]. Knuth’s much anticipated 4th volume will treat permutations; this
will no doubt become a principle reference for the subject.
3. The Java code for the Johnson-Trotter Algorithm is presented in an appendix of this chapter.

Exercises

Exercise 7.1:
(a) Draw the adjacency bigraph corresponding to 4-permutations. HINT: first draw the
adjacency graph for 3-permutations and view 4-permutations as extension of 3-permutations.
(b) How many edges are there in the adjacency bigraph of n-permutations?
(c) What is the radius and diameter of the bigraph in part (b)? [See definition of radius and
diameter in Exercise 4.8 (Chapter 4).] ♦

Exercise 7.2: Another way to list all the n-permutations in Sn is lexicographic ordering:
(x1− · · · −xn) < (x′

1− · · · −x′
n) if the first index i such that xi 6= x′

i satisfies xi < x′
i. Thus

the lexicographic smallest n-permutation is (1−2−· · · −n). Give an algorithm to generate
n-permutations in lexicographic ordering. Compare this algorithm to the Johnson-Trotter
algorithm. ♦

Exercise 7.3: All adjacency orderings of 2- and 3-permutations are cyclic. Is it true of 4-
permutations? ♦

Exercise 7.4: Two n-permutations π, π′ are cylic equivalent if π = (x1−x2− · · · −xn) and π′ =
(xi−xi+1− · · · −xn−x1−x2− · · · −xi−1) for some i = 1, . . . , n. A cyclic n-permutation
is an equivalence class of the cyclic equivalence relation. Note that there are exactly n
permutations in each cyclic n-permutation. Let S′

n denote the set of cylic n-permutations.
So |S′

n| = (n − 1)!. Again, we can define the cylic permutation graph G′
n whose vertex

set is S′
n, and edges determined by adjacent pairs of cyclic permutations. Give an efficient

algorithm to generate a Hamiltonian cycle of G′
n. ♦

End Exercises
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/****************************************************

* Per(mutations)

* This generates the Johnson-Trotter permutation order.

* By n-permutation, we mean a permutation of the symbols {1,2,...,n}.

*

* Usage:

* % javac Per.java

* % java Per [n=3] [m=0]

*

* will print all n-permutations. Default values n=3 and m=0.

* If m=1, output in verbose mode.

* Thus "java Per" will print

* (1,2,3), (1,3,2), (3,1,2), (3,2,1), (2,3,1), (2,1,3).

* See Lecture Notes for details of this algorithm.

*

***************************************************/

public class Per {

// Global variables

////////////////////////////////////////////////////

static int n; // n-permutations are being considered

// Quirk: Following arrays are indexed from 1 to n

static int[] per; // represents the current n-permutation

static int[] pos; // inverse of per: per[pos[i]]=i (for i=1..n)

static int[] C; // Counter array: 1 <= C[i] <= i (for i=1..n)

static boolean[] UP; // UP[i]=true iff pos[i] is increasing

// (going up) in the current phase

// Display permutation or position arrays

////////////////////////////////////////////////////

static void showArray(int[] myArray, String message){

System.out.print(message);

System.out.print("(" + myArray[1]);

for (int i=2; i<=n; i++)

System.out.print("," + myArray[i]);

System.out.println(")");

}

// Print counter

////////////////////////////////////////////////////

static void showC(String m){

System.out.print(m);

System.out.print("(" + C[2]);

for (int i=3; i<=n; i++)

System.out.print("," + C[i]);

System.out.println(")");

}

// Increment counter

////////////////////////////////////////////////////

static int inc(){

int ell=n;

while ((C[ell]==ell) && (ell>1)){

UP[ell] = !(UP[ell]); // flip Boolean flag© Chee-Keng Yap Basic Version April 2, 2008
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C[ell--]=1;

}

if (ell>1)

C[ell]++;

return ell; // level of previous counter value

}

// Update per and pos arrays

////////////////////////////////////////////////////

static void update(int ell){

int tmpSymbol; // this is not necessary, but for clarity

if (UP[ell]) {

tmpSymbol = per[pos[ell]+1]; // Assert: pos[ell]+1 makes sense!

per[pos[ell]] = tmpSymbol;

per[pos[ell]+1] = ell;

pos[ell]++;

pos[tmpSymbol]--;

} else {

tmpSymbol = per[pos[ell]-1]; // Assert: pos[ell]-1 makes sense!

per[pos[ell]]= tmpSymbol;

per[pos[ell]-1] = ell;

pos[ell]--;

pos[tmpSymbol]++;

}

}

// Main program

////////////////////////////////////////////////////

public static void main (String[] args)

throws java.io.IOException

{

//Command line Processing

n=3; // default value of n

boolean verbose=false; // default is false (corresponds to second argument = 0)

if (args.length>0)

n = Integer.parseInt(args[0]);

if ((args.length>1) && (Integer.parseInt(args[1]) != 0))

verbose = true;

//Initialize

per = new int[n+1];

pos = new int[n+1];

C = new int[n+1];

UP = new boolean[n+1];

for (int i=0; i<=n; i++) {

per[i]=i;

pos[i]=i;

C[i]=1;

UP[i]=false;

}

//Setup For Loop

int count=0; // only used in verbose mode

int ell=1;

System.out.println("Johnson-Trotter ordering of "+ n + "-permutations");

if (verbose)

showArray(per, count + ", level="+ ell + " :\t" );

else

showArray(per, "");© Chee-Keng Yap Basic Version April 2, 2008
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//Main Loop

do {

ell = inc();

update(ell);

if (verbose)

count++;

showArray(per, count + ", level="+ ell + " :\t" );

else

showArray(per, "");

} while (ell>1);

}//main

}//class Per
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