
§1. Keyed Search Structures Lecture III Page 1

Lecture III

BALANCED SEARCH TREES

Anthropologists inform that there is an unusually large number of Eskimo words for snow.
The Computer Science equivalent of snow is the tree word: we have (a, b)-tree, AVL tree, B-tree,
binary search tree, BSP tree, conjugation tree, dynamic weighted tree, finger tree, half-balanced
tree, heaps, interval tree, kd-tree, quadtree, octtree, optimal binary search tree, priority search tree,
R-trees, randomized search tree, range tree, red-black tree, segment tree, splay tree, suffix tree,
treaps, tries, weight-balanced tree, etc. The above list is restricted to trees used as search data
structures. If we include trees arising in specific applications (e.g., Huffman tree, DFS/BFS tree, Eskimo:snow::CS:tree
alpha-beta tree), we obtain an even more diverse list. The list can be enlarged to include variants
of these trees: thus there are subspecies of B-trees called B+- and B∗-trees, etc.

The simplest search tree is the binary search tree. It is usually the first non-trivial data structure
that students encounter, after linear structures such as arrays, lists, stacks and queues. Trees are
useful for implementing a variety of abstract data types. We shall see that all the common
operations for search structures are easily implemented using binary search trees. Algorithms on
binary search trees have a worst-case behaviour that is proportional to the height of the tree.
The height of a binary tree on n nodes is at least ⌊lg n⌋. We say that a family of binary trees is
balanced if every tree in the family on n nodes has height O(log n). The implicit constant in the balance-ness is

a family prop-
erty

big-Oh notation here depends on the particular family of search trees. Such a family usually comes
equipped with algorithms for inserting and deleting items from trees, while preserving membership
in the family.

Many balanced families have been invented in computer science. They come in two basic forms:
height-balanced and weight-balanced schemes. In the former, we ensure that the height of
siblings are “approximately the same”. In the latter, we ensure that the number of descendents
of sibling nodes are “approximately the same”. Height-balanced schemes require us to maintain
less information than the weight-balanced schemes, but the latter has some extra flexibility that
are needed for some applications. The first balanced family of trees was invented by the Russians
Adel’son-Vel’skii and Landis in 1962, and are called AVL trees. We will describe several balanced
families, including AVL trees and red-black trees. The notion of balance can be applied to non-
binary trees; we will study the family of (a, b)-trees and generalizations. Tarjan [8] gives a brief
history of some balancing schemes.

STUDY GUIDE: all algorithms for search trees are described in such a way that they can be
internalized, and we expect students to carry out hand-simulations on concrete examples. We do
not provide any computer code, but once these algorithms are understood, it should be possible
to implementing them in your favorite programming language.

§1. Search Structures with Keys

Search structures store a set of objects subject to searching and modification of these objects.
Here we will standardize basic terminology for such search structures.

Most search structures can be viewed as a collection of nodes that are interconnected by
pointers. Abstractly, they are just directed graphs. Each node stores or represents an object
which we call an item. We will be informal about how we manipulate nodes – they will variously
look like ordinary variables and pointers1 as in the programming language C/C++, or like references

1The concept of locatives introduced by Lewis and Denenberg [5] may also be used: a locative u is like a

c© Chee-Keng Yap Basic Version February 27, 2008

§1. Keyed Search Structures Lecture III Page 2

in Java.

key2 data2data1key1

data1key1

data1key1

(a) (b)

Figure 1: Two Kinds of Nodes: (a) linked lists, (b) binary trees

Each item is associated with a key. The rest of the information in an item is simply called
data so that we may view an item as the pair (Key,Data). Nodes contain pointers to other nodes.
The two main types of nodes are illustrated in Figure 1: nodes with only one pointer (Figure 1(a))
are used for forming linked lists; nodes with two pointers can be used to form a binary trees
(Figure 1(b)), or doubly-linked lists. If u is a node, we write u.Key and u.Data for the key and
data associated with the item represented by u. It is convenient to assume a special kind of node
called the nil node. In Figure 1, they are represented by the electrical ground symbol. Such nodes
store no items.

Another concept is that of iterators. In search queries, we sometimes need to return a set of
items. We basically have to return a list of nodes that represent these items in some order. The
concept of an iterator captures this in an abstract way: We can view an iterator as a node u which
has an associated field denoted u.next. This field is another iterator, or it is the special node nil.
Thus, an iterator naturally represents a list of items.

Examples of search structures are:

(i) An employee database where each item is an employee record. The key of an employee record
is the social security number, with associated data such as address, name, salary history, etc.

(ii) A dictionary where each item is a word entry. The key is the word itself, associated with data
such as the pronounciation, part-of-speech, meaning, etc.

(iii) A scheduling queue in a computer operating systems where each item in the queue is a job
that is waiting to be executed. The key is the priority of the job, which is an integer.

It is also natural to refer such structures as keyed search structures. From an algorithmic
point of view, the properties of the search structure are solely determined by the keys in items, the
associated data playing no role. This is somewhat paradoxical since, for the users of the search
structure, it is the data that is more important. In any case, we may often ignore the data part of
an item in our illustrations, thus identifying the item with the key (if the keys are unique).

Binary search trees is an example of a keyed search structure. Usually, each node of the binary
search trees stores an item. In this case, our terminology of “nodes” for the location of items
happily coincides with the concept of “tree nodes”. However, there are versions of binary search
trees whose items resides only in the leaves – the internal nodes only store keys for the purpose of
searching.

pointer variable in programming languages, but it has properties like an ordinary variable. Informally, u will act
like an ordinary variable in situations where this is appropriate, and it will act like a pointer variable if the situation
demands it. This is achieved by suitable automatic referencing and dereferencing semantics for such variables.

c© Chee-Keng Yap Basic Version February 27, 2008

§2. Abstract Data Types Lecture III Page 3

Key values usually come from a totally ordered set. Typically, we use the set of integers for our
ordered set. Another common choice for key values are character strings ordered by lexicographic
ordering. For simplicity in these notes, the default assumption is that items have unique keys.
When we speak of the “largest item”, or “comparison of two items” we are referring to the item
with the largest key, or comparison of the keys in two items, etc. Keys are called by different
names to suggest their function in the structure. For example, a key may called a

• priority, if there is an operation to select the “largest item” in the search structure (see
example (iii) above);

• identifier, if the keys are unique (distinct items have different keys) and our operations use
only equality tests on the keys, but not its ordering properties (see examples (i) and (ii));

• cost or gain, depending on whether we have an operation to find the minimum or maximum
value;

• weight, if key values are non-negative.

More precisely, a search structure S is a representation of a set of items that supports the
lookUp query. The lookup query, on a given key K and S, returns a node u in S such that the
item in u has key K. If no such node exists, it returns u = nil. Since S represents a set of items,
two other basic operations we might want to do are inserting an item and deleting an item. If S is
subject to both insertions and deletions, we call S a dynamic set since its members are evolving
over time. In case insertions, but not deletions, are supported, we call S a semi-dynamic set. In
case both insertion and deletion are not allowed, we call S a static set. The dictionary example
(ii) above is a static set from the viewpoint of users, but it is a dynamic set from the viewpoint of
the lexicographer.

Two search structures that store exactly the same set of items are said to be equivalent.
An operation that preserves the equivalence class of a search structure is called an equivalence
transformation.

§2. Abstract Data Types

This section contains a general discussion on abstract data types (ADT’s). It
may be used as a reference; a light reading is recommended for the first time

Using the terminology of modern object-oriented languages such as C++ or Java, we view a
search data structure is an instance of a container class. Each instance stores a set of items
and have a well-defined set of members (i.e., variables) and methods (i.e., operations). Thus,
a binary tree is just an instance of the “binary tree class”. The “methods” of such class support
some subset of the following operations listed below.

�

¶1. ADT Operations. In the following, we list all the main operations found in all the ADT’s
that we will study. This set of operations are organized into four groups (I)-(IV):

c© Chee-Keng Yap Basic Version February 27, 2008

§2. Abstract Data Types Lecture III Page 4

(I) Initializer and Destroyers make()
kill()

(II) Enumeration and Order list() →Node,
succ(Node)→Node,
pred(Node)→Node,
min()→Node,
max()→Node,
deleteMin()→Item,

(III) Dictionary Operations lookUp(Key)→Node,
insert(Item)→Node,
delete(Node),

(IV) Set Operations split(Key)→ Structure1,
merge(Structure).

In Java terminology, this list of operations corresponds to the interface (or API) for some
imaginary super ADT. Below, we will pick out subsets of this list to describe well-known ADT’s. ADT ≡ inter-

face

The meaning of these operations are fairly intuitive. We will briefly explain them. Let S, S′

be search structures, viewed as instances of a suitable class. Let K be a key and u a node. Each
of the above operations are invoked from some S: thus, S.make() will initialize the structure S,
and S.max() returns the maximum value in S. But when there is only one structure S, we may
suppress the reference to S, e.g., we write “merge(S′)” instead of “S.merge(S′)”.

(I) We need to initialize and dispose of search structures. Thus make (with no arguments)
returns a brand new empty instance of the structure. The inverse of make is kill, to remove a
structure.

(II) The operation list() returns a node that is an iterator. This iterator is the beginning of
a list that contains all the items in S in some arbitrary order. The ordering of keys is not used by
the iterators. The remaining operations in this group depend on the ordering properties of keys.
The min() and max() operations are obvious. The successor succ(u) (resp., predecesssor pred(u))
of a node u refers to the node in S whose key has the next larger (resp., smaller) value. This is
undefined if u has the largest (resp., smallest) value in S.

Note that list() can be implemented using min() and succ(u) or max() and pred(u). Such a
listing has the additional property of sorting the output by key value.

The operation deleteMin() operation deletes the minimum item in S. In most data structures,
we can replace deleteMin by deleteMax without trouble. However, this is not the same as being
able to support both deleteMin and deleteMax simultaneously.

(III) The next three operations constitute the “dictionary operations”. The node u returned
by lookUp(K) should contain an item whose associated key is K. In conventional programming
languages such as C, nodes are usually represented by pointers. In this case, the nil pointer can be
returned by the lookUp function in case there is no item in S with key K. The structure S itself
may be modified to another structure S′ but S and S′ must be equivalent.

In case no such item exists, or it is not unique, some convention should be established. At this
level, we purposely leave this under-specified. Each application should further clarify this point.
For instance, in case the keys are not unique, we may require that lookUp(K) returns an iterator
that represents the entire set of items with key equal to K.

c© Chee-Keng Yap Basic Version February 27, 2008

§2. Abstract Data Types Lecture III Page 5

Both insert and delete have the obvious basic meaning. In some applications, we may prefer
to have deletions that are based on key values. But such a deletion operation can be implemented
as ‘delete(lookUp(K))’. In case lookUp(K) returns an iterator, we would expect the deletion to
be performed over the iterator.

(IV) If split(K)→ S′ then all the items in S with keys greater than K are moved into a new
structure S′; the remaining items are retained in S. In the operation merge(S′), all the items in
S′ are moved into S and S′ itself becomes empty. This operation assumes that all the keys in S
are less than all the items in S′. In a sense, split and merge are inverses of each other.

¶2. Some Abstract Data Types. The above operations are defined on typed domains (keys,
structures, items) with associated semantics. An abstract data type (acronym “ADT”) is spec-
ified by

• one or more “typed” domains of objects (such as integers, multisets, graphs);

• a set of operations on these objects (such as lookup an item, insert an item);

• properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assumption about the actual implementation.

It is not practical or necessary to implement a single data structure that has all the operations
listed above. Instead, we find that certain subset of these operations work together nicely to solve
certain problems. Computer science has discovered that following subset of operations to be widely
applicable:

• Dictionary ADT: lookUp, [insert, [delete]].

• Ordered Dictionary ADT: lookUp, insert, delete, succ, pred.

• Priority queue ADT: deleteMin, insert, [delete, [update]].

• Fully mergeable dictionary ADT: lookUp, insert, delete, merge, split.

Sometimes, those operations within [· · ·] can be omitted. If the deletion in dictionaries are
based on keys (see comment above) then we may think of a dictionary as a kind of associative
memory. If we omit the split operation in fully mergeable dictionary, then we obtain the
mergeable dictionary ADT. The operations make and kill (from group (I)) are assumed to be
present in every ADT.

In contrast to ADTs, data structures such as linked list, arrays or binary search trees are
called concrete data types. We think of the ADTs as being implemented by concrete data
types. For instance, a priority queue could be implemented using a linked list. But a more natural
implementation is to represent D by a binary tree with the min-heap property: a tree has this
property if the key at any node u is no larger than the key at any child of u. Thus the root of
such a tree has a minimum key. Similarly, we may speak of a max-heap property. It is easy to
design algorithms (Exercise) that maintains this property under the priority queue operations.

REMARKS:
1. Variant interpretations of all these operations are possible. For instance, some version of insert

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 6

may wish to return a boolean (to indicate success or failure) or not to return any result (in case
the application will never have an insertion failure).
2. Other useful functions can be derived from the above. E.g., it is useful to be able to create a
structure S containing just a single item I. This can be reduced to ‘S.make(); S.insert(I)’.
3. The concept of ADT was a major research topic in the 1980’s, and many of these ideas found
their way into structured programming languages such as Pascal and their modern successors. Our
discussion of ADT is somewhat informal, but one way to study them formally is to describe axioms
that these operations satisfy. For instance, if S is a stack, then pushing an item x on S followed
by popping S should return the item x. Of course, we have relied on informal understanding of
these ADT’s to avoid such axiomatic treatment. For instance, an interface in Java is a kind of
ADT where we capture only the types of operation.

Exercises

Exercise 2.1: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the concrete data structures are linked
lists.
(b) Analyze the complexity of your algorithms in (a).
(a’) Describe algorithms to implement this ADT when the concrete data structures are arrays
instead of linked lists.
(b’) Analyze the complexity of your algorithms in (a’). ♦

Exercise 2.2: Repeat the previous question for the priority queue ADT. ♦

Exercise 2.3: Suppose D is a dictionary with the dictionary operations of lookup, insert and
delete. List a complete set of axioms (properties) for these operations. ♦

End Exercises

§3. Binary Search Trees

We introduce binary search trees and show that such trees can support all the operations
described in the previous section on ADT. Our approach will be somewhat unconventional, because
we want to reduce all these operations to the single operation of “rotation”. the universal

operation?

Recall the definition and basic properties of binary trees in the Appendix of Chapter I. Figure 2
shows two binary trees (small and big) which we will use in our illustrations. For each node u of
the tree, we store a value u.Key called its key. The keys in Figure 2 are integers, used simply as
identifiers for the nodes.

Briefly, a binary tree T is a set N ≥ 0 of nodes that is either the empty set, or N has a node
u called the root. In Figure 2, N = {1, 2, 3, 4, 5} for the small tree and N = {1, 2, 3, . . . , 15} for
the big tree. The remaining nodes N \ {u} are partitioned into two sets of nodes that recursively
form binary trees, TL and TR. If TL (resp., TR) is non-empty, then its root is called the left (resp.,
right) child of u. This definition of binary trees is based on structural induction. The size of
T is |N |, and is denoted |T |; also TL, TR are the left and right subtrees of T .

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 7

(b)(a)

7 8 9 10 11

12 13 14

15

1

2 3

4 5 6
1

2 3

54

Figure 2: Two binary (not search) trees: (a) small, (b) big

(a) (b)

rotate(2)
2

10

11

15

13

12 143

4

5

10

6 11

2 8 15

1 5 7 9 13

3 12 14

4

1 6

9

8

7

Figure 3: (a) Binary Search Tree on keys {1, 2, 3, 4, . . . , 14, 15}. (b) After rotate(2).

The keys of the binary trees in Figure 2 are just used as identifiers. To turn binary trees into
a binary search tree, we must organize the keys in a particular way. Such a binary search tree is
illustrated in Figure 3(a). structurally, it is the big binary tree in Figure 2, but now the keys are
no longer just arbitrary identifiers.

A binary tree T is called binary search tree (BST) the key u.Key at each node u satisfies the
binary search tree property:

uL.Key < u.Key ≤ uR.Key. (1)

where uL and uR are (resp.) any left descendent and right descendent of u. Please verify that
the binary search in of Figure 3 obeys (1) at each node u. The “standard mistake” is to replace
(1) by u.left.Key < u.Key ≤ u.right.Key. By definition, a left (right) descendent of u is a node good exam

question...in the subtree rooted at the left (right) child of u. The left and right children of u are denoted by
u.left and u.right.

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 8

The student will do well to remember a fundamental rule about binary trees:
as binary trees are best defined by structural induction, most properties about
binary trees are best proved by induction on the structure of the tree. For
the same reason, algorithms for binary trees are often simplest when they are
described recursively.

fundamental
rule?

¶3. Distinct versus duplicate keys. Binary search trees can be used to store a set of items
whose keys are distinct, or items that may have duplicate keys. Since we allow the right child to
have an equal key with its parent, we see that under pure insertions, all the elements with the
same key forms a “right path”. We could modify all our algorithms to preserve this property.
Alternatively, we could just place all the equal-key items in a linked list as an auxilliary structure
attached to a node. In any case, this would complicate our algorithms. Hence, in the following,
we will assume distinct keys unless otherwise noted.

¶4. Lookup. The algorithm for key lookup in a binary search tree is almost immediate from the
binary search tree property: to look for a key K, we begin at the root (remember the good point
above?). In general, suppose we are looking for K in some subtree rooted at node u. If u.Key = K,
we are done. Otherwise, either K < u.Key or K > u.Key. In the former case, we recursively search
the left subtree of u; otherwise, we recurse in the right subtree of u. In the presense of duplicate
keys, what does lookup return? There are two interpretations: (1) We can return the first node u
we find that has the given key K. (2) We may insist that we continue to explicitly locate all the
other keys.

In any case, requirement (2) can be regarded as an extension of (1), namely, given a node u,
find all the other nodes below u with same same key as u.Key. This can be solved separately.
Hence we may assume interpretation (1) in the following.

¶5. Insertion. To insert an item with key K, we proceed as in the Lookup algorithm. If we
find K in the tree, then the insertion fails (assuming distinct keys). Otherwise, we reach a leaf
node u. Then the item can be inserted as the left child of u if u.Key > K, and otherwise it can be
inserted as the right child of u. In any case, the inserted item is a new leaf of the tree.

¶6. Rotation. This is not a listed operation in §2. It is an equivalence operation, i.e., it
transforms a binary search tree into another one with exactly the same set of keys. By itself,
rotation does not appear to do anything useful. But it can be the basis for almost all of our
operations.

The operation rotate(u) is a null operation (“no-op” or identity transformation) when u is a
root. So assume u is a non-root node in a binary search tree T . Then rotate(u) amounts to the
following transformation of T (see figure 4).

In rotate(u), we basically want to invert the parent-child relation between u and its parent v.
The other transformations are more or less automatic, given that the result is to remain a binary
search tree. If the subtrees A, B, C (any of these can be empty) are as shown in figure 4, then they
must re-attach as shown. This is the only way to reattach as children of u and v, since we know
that

A < B < C

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 9

u

v

A

B C

rotate(v)

rotate(u)

v

u

A B

C

Figure 4: Rotation at u and its inverse.

in the sense that each key in A is less than any key in B, etc. Actually, only the parent of the root
of B has switched from u to v. Notice that after rotate(u), the former parent of v (not shown)
will now have u instead of v as a child. Clearly the inverse of rotate(u) is rotate(v). The explicit
pointer manipulations for a rotation are left as an exercise. After a rotation at u, the depth of
u is decreased by 1. Note that rotate(u) followed by rotate(v) is the identity2 operation, as
illustrated in figure 4.

Recall that two search structures are equivalent if they contain the same set of items. Clearly,
rotation is an equivalence transformation.

¶7. Graphical convention: Figure 4 encodes two conventions: consider the figure on the left
side of the arrow (the same convention hold for the figure on the right side). First, the edge
connecting v to its parent is directed vertically upwards. This indicates that v can be the left- or
right-child of its parent. Second, the two edges from v to its children are connected by a circular
arc. This is to indicate that u and its sibling could exchange places (i.e., u could be the right-child
of v even though we choose to show u as the left-child). Thus Figure 4 is a compact way to
represent four distinct situations.

¶8. Implementation of rotation. Let us discuss how to implement rotation. Until now, when
we draw binary trees, we only display child pointers. But we must now explicitly discuss parent
pointers.

Let us classify a node u into one of three types: left, right or root. This is defined in the obvious
way. E.g., u is a left type iff it is not a root and is a left child. The type of u is easily tested:
u is type root iff u.parent = nil, and u is type left iff u.parent.left = u. Clearly, rotate(u)
is sensitive to the type of u. In particular, if u is a root then rotate(u) is the null operation.
If T ∈ {left, right} denote left or right type, its complementary type is denoted T , where
left = right and right = left.

We are ready to discuss the function rotate(u), which we assume will return the node u.
Assume u is not the root, and its type is T ∈ {left, right}. Let v = u.parent, w = v.parent
and x = v.T . Note that w and x might be nil. Thus we have potentially three child-parent pairs:

(x, u), (u, v), (v, w). (2)

2Also known as null operation or no-op

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 10

w w

x x

u

v

A

B C

rotate(v)

rotate(u)

v

u

A B

C

Figure 5: Links that must be fixed in rotate(u).

But after rotation, we will have the transformed child-parent pairs:

(x, v), (v, u), (u, w). (3)

These pairs are illustrated in Figure 5 where we have explicitly indicated the parent pointers as well
as child pointers. Thus, to implement rotation, we need to reassign 6 pointers (3 parent pointers
and 3 child pointers). We show that it is possible to achieve this re-assignment using exactly 6
assignments.

x u v wu v w x

Figure 6: Simplified view of rotate(u) as fixing a doubly-linked list (x, u, v, w).

Such re-assignments must be done in the correct order. It is best to see what is needed by
thinking of (2) as a doubly-linked list (x, u, v, w) which must be converted into the doubly-linked
list (x, v, u, w) in (3). This is illustrated in Figure 6. For simplicity, we use the terminology of
doubly-linked list so that u.next and u.prev are the forward and backward pointers of a doubly-
linked list. Here is3 the code:

3In Lines 3 and 5, we used the node u as a pointer on the right hand side of an assignment statement. Strictly
speaking, we ought to take the address of u before assignment. Alternatively, think of u as a “locator variable”
which is basically a pointer variable with automatic ability to dereference into a node when necessary.

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 11

Rotate(u):
⊲ Fix the forward pointers

1. u.prev.next← u.next
⊳ x.next = v

2. u.next← u.next.next
⊳ u.next = w

3. u.prev.next.next← u
⊳ v.next = u

⊲ Fix the backward pointers
4. u.next.prev.prev← u.prev

⊳ v.prev = x
5. u.next.prev← u

⊳ w.prev = u
6. u.prev← u.prev.next

⊳ u.prev = v

We can now translate this sequence of 6 assignments into the corresponding assignments for binary
trees: the u.next pointer may be identified with u.parent pointer. However, u.prev would be u.T
where T ∈ {left, right} is the type of x. Moreover, v.prev is v.T . Also w.prev is w.T ′ for
another type T ′. A further complication is that x or/and w may not exist; so these conditions
must be tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the code can be simplified (Exercise).

¶9. Variations on Rotation. The above rotation algorithm assumes that for any node u, we
can access its parent. This is true if each node has a parent pointer u.parent. This is our default
assumption for binary trees. In case this assumption fails, we can replace rotation with a pair of
variants: called left-rotation and right-rotation. These can be defined as follows:

left-rotate(u) ≡ rotate(u.left), right-rotate(u) ≡ rotate(u.right).

It is not hard to modify all our rotation-based algorithms to use the left- and right-rotation
formulation if we do not have parent pointers. Of course, the corresponding code would be twice
as fast since we have halved the number of pointers to manipulate.

¶10. Double Rotation. Suppose u has a parent v and a grandparent w. Then two successive
rotations on u will ensure that v and w are descendents of u. We may denote this operation by
rotate2(u). Up to left-right symmetry, there are two distinct outcomes in rotate2(u): (i) either
v, w are becomes children of u, or (ii) only w becomes a child of u and v a grandchild of u. These
depend on whether u is the outer or inner grandchildren of w. These two cases are illustrated in
Figure 7. [As an exercise, we ask the reader to draw the intermediate tree after the first application
of rotate(u) in this figure.]

It turns out that case (ii) is the more important case. For many purposes, we would like to view
the two rotations in this case as one indivisible operation: hence we introduce the term double
rotation to refer to case (ii) only. For emphasis, we might call the original rotation a single
rotation.

These two cases are also known as the zig-zig (or zag-zag) and zig-zag (or zag-zig) cases,
respectively. This terminology comes from viewing a left turn as zig, and a right turn as zag, as

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 12

rotate
2(u)

rotate
2(u)

w

v

A B

C

D

w

v

A

B

D

C

v w

B CA D

u

A

Zig-zag Case

Zag-zag Case

v

w

CB

D
u

u

u

Figure 7: Two outcomes of rotate2(u)

we move from up a root path. The Exercise considers how we might implement a double rotation
more efficiently than by simply doing two single rotations.

¶11. Root path, Extremal paths and Spines. A path is a sequence of nodes (u0, u1, . . . , un)
where ui+1 is a child of ui. The length of this path is n, and un is also called the tip of the path.
E.g., (2, 4, 8, 12) is a path in Figure 2(b), with tip 12.

Relative to a node u, we now introduce 5 paths that originates from u. The first is the path
from u to the root, called the root path of u. In figures, the root path is displayed as an upward
path, following parent pointers from the node u. E.g., if u = 4 in Figure 2(b), then the root path is
(4, 2, 1). Next we introduce 4 downward paths from u. The left-path of u is simply the path that
starts from u and keeps moving towards the left or right child until we cannot proceed further. The
right-path of u is similarly defined. E.g., with u as before, the left-path is (4, 7) and right-path is
(4, 8). Collectively, we refer to the left- and right-paths as extremal paths. Next, we define the
left-spine of a node u is defined to be the path (u, rightpath(u.left)). In case u.left = nil, the
left spine is just the trivial path (u) of length 0. The right-spine is similarly defined. E.g., with
u as before, the left-spine is (4, 7) and right-spine is (4, 8, 12). The tips of the left- and right-paths
at u correspond to the minimum and maximum keys in the subtree at u. The tips of the left- and
right-spines, provided they are different from u itself, correspond to the predecessor and successor
of u. Clearly, u is a leaf iff all these four tips are identical and equal to u.

After performing a left-rotation at u, we reduce the left-spine length of u by one (but the
right-spine of u is unchanged). See Figure 8. More generally:

Lemma 1. Let (u0, u1, . . . , uk) be the left-spine of u and k ≥ 1. Also let (v0, . . . , vm) be the root

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 13

u

v

v

w x

u

x

w
rotate(w)

Figure 8: Reduction of the left-spine of u after rotate(u.left) = rotate(w).

path of u, where v0 is the root of the tree and u = vm. After performing rotate(u.left),
(i) the left-spine of u becomes (u0, u2, . . . , uk) of length k − 1,
(ii) the right-spine of u is unchanged, and
(iii) the root path of u becomes (v0, . . . , vm, u1) of length m + 1.

In other words, after a left-rotation at u, the left child of u transfers from the left-spine of u to
the root path of u. Similar remarks apply to right-rotations. If we repeatedly do left-rotations at
u, we will reduce the left-spine of u to length 0. We may also alternately perform left-rotates and
right-rotates at u until one of its 2 spines have length 0.

¶12. Deletion. Suppose we want to delete a node u. In case u has at most one child, this is
easy to do – simply redirect the parent’s pointer to u into the unique child of u (or nil if u is a
leaf). Call this procedure Cut(u). It is now easy to describe a general algorithm for deleting a
node u:

Delete(T, u):
Input: u is node to be deleted from T .
Output: T , the tree with u deleted.

while u.left 6= nil do

rotate(u.left).
Cut(u)

If we maintain information about the left and right spine heights of nodes (Exercise), and the right
spine of u is shorter than the left spine, we can also perform the while-loop by going down the
right spine instead.

We ask the reader to simulate the operations of Delete(T, 10) where T is the BST of Figure 3.

Contrast this with the following standard deletion algorithm:

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 14

Delete(T, u):
Input: u is node to be deleted from T .
Output: T , the tree with item in u deleted.

if u has at most one child, apply Cut(u) and return.
else let v be the tip of the right spine of u.

Move the item in v into u (effectively removing the item in u)
Cut(v).

Note that in the else-case, the node u is not physically removed: only the item represented by
u is removed. Again, the node v that is physically removed has at most one child.

Again, the reader should simulate the operations of Delete(T, 10), using this standard algo-
rithm, and compare the results to the rotation-based algorithm.

The rotation-based deletion is conceptually simpler, and will be useful for amortized algorithms
later. However, the rotation-based algorithm seems to be slower as it requires an unbounded
number of pointer assignments.

¶13. Inorder listing of a binary tree.

Lemma 2. Let T be a binary tree on n nodes. There is a unique way to assign the keys {1, 2, . . . , n}
to the nodes of T such that the resulting tree is a binary search tree on these keys.

We leave the simple proof to an Exercise. For example, if T is the binary tree in Figure 2(b),
then this lemma would assign the keys {1, . . . , 15} to the nodes of T as in Figure 3(a).

For each i = 1, . . . , n, we may refer to node u ∈ T as the ith node if Lemma 2 assigns the key
i to u. In particular, we can speak of the first and last node of T . The unique enumeration of
the nodes of T from first to last is called the in-order listing of T .

¶14. Successor and Predecessor. If u is the ith node of a binary tree T , the successor of u
refers to the (i + 1)st node of T . By definition, u is the predecessor of v iff v is the successor of
u. Let succ(u) and pred(u) denotes the successor and predecessor of u. Of course, succ(u) (resp.,
pred(u)) is undefined if u is the last (resp., first) node in the in-order listing of the tree.

We will define a closely related concept, but applied to any key K. Let K be a key, not
necessarily occurring in T . Define the successor of K in T to be the least key K ′ in T such that
K < K ′. We similarly define the predecessor of K in T to be the greatest K ′ in T such that
K ′ < K.

In some applications of binary trees, we want to maintain pointers to the successor and prede-
cessor of each node. In this case, these pointers may be denoted u.succ and u.pred. Note that the
successor/predecessor pointers of nodes is unaffected by rotations. Our default version of binary
trees do not include such pointers.

Let us make some simple observations:

Lemma 3. Let u be a node in a binary tree, but u is not the last node in the in-order traversal of
the tree.

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 15

(i) u.right = nil iff u is the tip of the left-spine of some node v. Moreover, such a node v is
uniquely determined by u.
(ii) If u.right = nil and u is the tip of the left-spine of v, then succ(u) = v.
(iii) If u.right 6= nil then succ(u) is the tip of the right-spine of u.

It is easy to derive an algorithm for succ(u) using the above observation.

Succ(u):
1. if u.right 6= nil ⊳ return the tip of the right-spine of u
1.1 v ← u.right;
1.2 while v.left 6= nil, v ← v.left;
1.3 return(v).
2. else ⊳ return v where u is the tip of the left-spine of v
2.1 v ← u.parent;
2.2 while v 6= nil and u = v.right,
2.3 (u, v)← (v, v.parent).
2.4 return(v).

Note that if succ(u) = nil then u is the last node in the in-order traversal of the tree (so u has no
successor). The algorithm for pred(u) is similar.

¶15. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximum)
item is in the first (last) node of the binary tree. Moreover, the first (last) node is at the tip of
the left-path (right-path) of the root.

¶16. Merge. To merge two trees T, T ′ where all the keys in T are less than all the keys in T ′,
we proceed as follows. Introduce a new node u and form the tree rooted at u, with left subtree T
and right subtree T ′. Then we repeatedly perform left rotations at u until u.left = nil. Similarly,
perform right rotations at u until u.right = nil. Now u is a leaf and can be deleted. The result is
the merge of T and T ′.

¶17. Split. Suppose we want to split a tree T at a key K. First we do a lookUp of K in T .
This leads us to a node u that either contains K or else u is the successor or predecessor of K in
T . Now we can repeatedly rotate at u until u becomes the root of T . At this point, we can split
off either the left-subtree or right-subtree of T . This pair of trees is the desired result.

¶18. Complexity. Let us now discuss the worst case complexity of each of the above operations.
They are all Θ(h) where h is the height of the tree. It is therefore desirable to be able to maintain
O(log n) bounds on the height of binary search trees.

REMARK: We stress that our rotation-based algorithms for insertion and deletion are slower
than the “standard” algorithms which perform only a constant number of pointer re-assignments.
Therefore, it seems that rotation-based algorithms may be impractical unless we get other benefits.
One possible benefit of rotation will be explored in Chapter 6 on amortization and splay trees.

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 16

Exercises

Exercise 3.1: Consider the BST of Figure 3(a). Please show all the intermediate trees, not just
the final tree.
(a) Perform the deletion of the key 10 this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standardbased deletion algorithm. ♦

Exercise 3.2: The function Verify(u) is supposed return true iff the binary tree rooted at u is
a binary search tree with distinct keys:

Verify(Node u)
if (u = nil) return(true)
if ((u.left 6= nil) and (u.Key < u.left.Key)) return(false)
if ((u.right 6= nil) and (u.Key > u.right.Key)) return(false)
return(Verify(u.left)∧Verify(u.right))

Either argue for it’s correctness, or give a counter-example showing it is wrong. ♦

Exercise 3.3: TRUE or FALSE: Recall that a rotation can be implemented with 6 pointer as-
signments. Suppose a binary search tree maintains successor and predecessor links (denoted
u.succ and u.pred in the text). Now rotation requires 12 pointer assignments. ♦

Exercise 3.4: (a) Implement the above binary search tree algorithms (rotation, lookup, insert,
deletion, etc) in your favorite high level language. Assume the binary trees have parent
pointers.
(b) Describe the necessary modifications to your algorithms in (a) in case the binary trees
do not have parent pointers. ♦

Exercise 3.5: Let T be the binary search tree in figure 3. You should recall the ADT semantics
of T ′ ← split(T, K) and merge(T, T ′) in §2. HINT: although we only require that you show
the trees at the end of the operations, we recommend that you show selected intermediate
stages. This way, we can give you partial credits in case you make mistakes!

(a) Perform the operation T ′ ← split(T, 5). Display T and T ′ after the split.
(b) Now perform insert(T, 3.5) where T is the tree after the operation in (a). Display the
tree after insertion.
(c) Finally, perform merge(T, T ′) where T is the tree after the insert in (b) and T ′ is the tree
after the split in (a). ♦

Exercise 3.6: Give the code for rotation which uses temporary variables. ♦

Exercise 3.7: Instead of minimizing the number of assignments, let us try to minimize the time.
To count time, we count each reference to a pointer as taking unit time. For instance,
the assignment u.next.prev.prev ← u.prev costs 5 time units because in addition to the
assignment, we have to make access 4 pointers.
(a) What is the rotation time in our 6 assignment solution in the text?
(b) Give a faster rotation algorithm, by using temporary variables. ♦

c© Chee-Keng Yap Basic Version February 27, 2008

§3. Binary Search Trees Lecture III Page 17

Exercise 3.8: We could implement a double rotation as two successive rotations, and this would
take 12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. ♦

Exercise 3.9: Open-ended: The problem of implementing rotate(u) without using extra storage
or in minimum time (previous Exercise) can be generalized. Let G be a directed graph
where each edge (“pointer”) has a name (e.g., next, prev, left, right) taken from a fixed
set. Moreover, there is at most one edge with a given name coming out of each node.
Suppose we want to transform G to another graph G′, just by reassignment of these pointers.
Under what conditions can this transformation be achieved with only one variable u (as in
rotate(u))? Under what conditions is the transformation achievable at all (using more
intermediate variables? We also want to achieve minimum time. ♦

Exercise 3.10: The goal of this exercise is to show that if T0 and T1 are two equivalent binary
search trees, then there exists a sequence of rotations that transforms T0 into T1. Assume
the keys in each tree are distinct. This shows that rotation is a “universal” equivalence
transformation. We explore two strategies.
(a) One strategy is to first make sure that the roots of T0 and T1 have the same key. Then
by induction, we can transform the left- and right-subtrees of T0 so that they are identical
to those of T1. Let R1(n) be the worst case number of rotations using this strategy on trees
with n keys. Give a tight analysis of R1(n).
(b) Another strategy is to show that any tree can be reduced to a canonical form. Let us
choose the canonical form where our binary search tree is a left-list or a right-list. A left-list
(resp., right-list) is a binary trees in which every node has no right-child (resp., left-child).
Let R2(n) be defined for this strategy in analogy to R1(n). Give a tight analysis of R2(n).

♦

Exercise 3.11: Prove Lemma 2, that there is a unique way to order the nodes of a binary tree T
that is consistent with any binary search tree based on T . HINT: remember the fundamental
rule about binary trees. ♦

Exercise 3.12: Implement the Cut(u) operation in a high-level informal programming language.
Assume that nodes have parent pointers, and your code should work even if u.parent = nil.
Your code should explicitly “delete(v)” after you physically remove a node v. If u has two
children, then Cut(u) must be a no-op.

♦

Exercise 3.13: Design an algorithm to find both the successor and predecessor of a given key K
in a binary search tree. It should be more efficient than just finding the successor and finding
the predecessor independently. ♦

Exercise 3.14: Show that if a binary search tree has height h and u is any node, then a sequence
of k ≥ 1 repeated executions of the assignment u← successor(u) takes time O(h + k). ♦

Exercise 3.15: Show how to efficiently maintain the heights of the left and right spines of each
node. (Use this in the rotation-based deletion algorithm.) ♦

c© Chee-Keng Yap Basic Version February 27, 2008

§4. Tree Traversals Lecture III Page 18

Exercise 3.16: We refine the successor/predecessor relation. Suppose that T u is obtained from
T by pruning all the proper descendants of u (so u is a leaf in T u). Then the successor and
predecessor of u in T u are called (respectively) the external successor and predecessor
of u in T Next, if Tu is the subtree at u, then the successor and predecessor of u in Tu are
called (respectively) the internal successor and predecessor of u in T
(a) Explain the concepts of internal and external successors and predecessors in terms of
spines.
(b) What is the connection between successors and predecessors to the internal or external
versions of these concepts? ♦

Exercise 3.17: Give the rotation-based version of the successor algorithm. ♦

Exercise 3.18: Suppose that we begin with u pointing at the first node of a binary tree, and
continue to apply the rotation-based successor (see previous question) until u is at the last
node. Bound the number of rotations made as a function of n (the size of the binary tree).

♦

Exercise 3.19: Suppose we allow allow duplicate keys. Under (1), all the keys with the same
value must be lie in consecutive nodes of some “right-path chain”.
(a) Show how to modify lookup on key K so that we list all the items whose key is K.
(b) Discuss how this property can be preserved during rotation, insertion, deletion.
(c) Discuss the effect of duplicate keys on the complexity of rotation, insertion, deletion.
Suggest ways to improve the complexity. ♦

Exercise 3.20: Consider the priority queue ADT. Describe algorithms to implement this ADT
when the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). ♦

End Exercises

§4. Tree Traversals and Applications

In this section, we describe systematic methods to visit all the nodes of a binary tree. Such
methods are called tree traversals. Tree traversals provide “algorithmic skeletons” or shells for
implementing many useful algorithms. We will illustrate such uses of the traversal shells.

¶19. In-order Traversal. There are three systematic ways to visit all the nodes in a binary
tree: they are all defined recursively. Perhaps the most important is the in-order or symmetric remember the

fundamental
rule?

traversal. Here is the recursive procedure to perform an in-order traversal of a tree rooted at u:

c© Chee-Keng Yap Basic Version February 27, 2008

§4. Tree Traversals Lecture III Page 19

In-Order(u):
Input: u is root of binary tree T to be traversed.
Output: The in-order listing of the nodes in T .

0. BASE(u).
1. In-order(u.left).
2. VISIT(u).
3. In-order(u.right).

This recursive program uses two two subroutines or macros. In particular, the BASE macro4

expands to a single line of code:

BASE(u)≡
if (u=nil) return.

The VISIT(u) macro is simply:

VISIT(u)≡
Print u.Key.

To illustrate, consider the two binary trees in figure 2. The numbers on the nodes are keys,
but they are not organized into a binary search tree. They simply serve as identifiers.

An in-order traversal of the small tree in Figure 2 will produce (4, 2, 1, 5, 3). For a more
substantial example, consider the output of an in-order traversal of the big tree:

(7, 4, 12, 15, 8, 2, 9, 5, 10, 1, 3, 13, 11, 14, 6)

Basic fact: if we list the keys of a BST using an inorder traversal, then the keys will be sorted.

For instance, the in-order traversal of the BST in Figure 3 will simply produce the sequence

(1, 2, 3, 4, 5, . . . , 12, 13, 14, 15).

This yields an interesting conclusion: sorting a set S of numbers can be reduced to constructing a
binary search tree on a set of nodes with S as their keys.

¶20. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:

IN(u) ≡ [BASE(u); IN(u.left); V ISIT (u); IN(u.right)]

Changing the order of Steps 1, 2 and 3 in the In-Order procedure (but always doing Step 1
before Step 3), we obtain two other methods of tree traversal. Thus, if we perform Step 2 before
Steps 1 and 3, the result is called the pre-order traversal of the tree:

PRE(u) ≡ [BASE(u); V ISIT (u); PRE(u.left); PRE(u.right)]

4We regard BASE to be a macro call (or an “inline”) and not as a subroutine call. This is because the return

statement in BASE is meant to return from the In-Order routine, and not a return from the “BASE subroutine”.

c© Chee-Keng Yap Basic Version February 27, 2008

§4. Tree Traversals Lecture III Page 20

Applied to the small tree in figure 2, we obtain (1, 2, 4, 3, 5). The big tree produces

(1, 2, 4, 7, 8, 12, 15, 5, 9, 10, 3, 6, 11, 13, 14).

¶21. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is called the
post-order traversal of the tree:

POST (u) ≡ [BASE(u); POST (u.left); POST (u.right); V ISIT (u)]

Using the trees of Figure 2, we obtain the output sequences (4, 2, 5, 3, 1) and

(7, 15, 12, 8, 4, 9, 10, 5, 2, 13, 14, 11, 6, 3, 1).

¶22. Applications of Tree Traversal. Tree traversals may not appear interesting on their
own right. However, they serve as shells for solving many interesting problems. That is, an
algorithm can be programmed by taking a shell and inserting a few lines of code at appropriate
places in the shell. The flow of control is not modified by the inserted code. We have organized Unix fans

– shell pro-
gramming is
not what you
think it is

our traversal shells in such a way that your modifications can be restricted to the BASE(u) and
VISIT(u) macros.

Let us illustrate this: suppose we want to compute the height of each node of a BST. Assume
that each node u has a variable u.H that is to store the height of node u. We can use the “post-order
shell” to accomplish this task:

POST(u)
BASE(u).
POST (u.left).
POST (u.right).
V ISIT (u).

We can keep the previous BASE subroutine, but modify V ISIT (u) to the following task:

VISIT(u)
if (u.left = nil) then L← −1.

else L← u.left.H .
if (u.right = nil) then R← −1.

else L← u.right.H .
u.H ← 1 + max{L, R}.

¶23. Return Shells. For some applications, we want a version of the above traversal routines
that return some value. We call them “return shells” here. Let us illustrate this by modifying
the postorder shell POST(u) into a new version rPOST(u) which returns a value of type T . For
instance, T might be the type integer or the type node. The returned value from recursive calls
are then passed to the VISIT macro:

c© Chee-Keng Yap Basic Version February 27, 2008

§4. Tree Traversals Lecture III Page 21

rPOST(u)
rBASE(u).
L← rPOST (u.left).
R← rPOST (u.right).
rV ISIT (u, L, R).

Note that both rBASE(u) and rV ISIT (u, L, R) returns some value of type T .

As an application of this rPOST routine, consider our previous solution for computing the
height of binary trees. There we assume that every node u has an extra field called u.H that we
used to store the height of u. Suppose we do not want to introduce this extra field for every node.
Instead of POST(u), we can use rPOST(u) to return the height of u. How can we do this? First,
BASE(u) should be modified to return the height of nil nodes:

rBASE(u)≡
if (u=nil) return(−1).

Second, we must re-visit the VISIT routine, modifying (simplifying!) it as follows: no pun in-
tended

rVISIT(u, L, R)
return(1 + max{L, R}).

The reader can readily check that rPOST solves the height problem elegantly. As another
application of such “return shell”, suppose we want to check if a binary tree is a binary search
tree. This is explored in Exercises below.

The motif of using shell programs such as BASE and VISIT will be repeated when we study
graph traversals. Indeed, we can view graph traversals as a generalization of tree traversal, so these
ideas will be further elaborated. Using shells is a great unifying aspect in the study of traversal
algorithms: we cannot over emphasize this point. Pay attention

when the pro-
fessor says this

Exercises

Exercise 4.1: Give the in-order, pre-order and post-order listing of the tree in Figure 13. ♦

Exercise 4.2: Tree traversals.
(a) Let the in-order and pre-order traversal of a binary tree T with 10 nodes be
(a, b, c, d, e, f, g, h, i, j) and (f, d, b, a, c, e, h, g, j, i), respectively. Draw the tree T .
(b) Prove that if we have the pre-order and in-order listing of the nodes in a binary tree, we
can reconstruct the tree.
(c) Consider the other two possibilities: (c.1) pre-order and post-order, and (c.2) in-order and
post-order. State in each case whether or not they have the same reconstruction property as
in (b). If so, prove it. If not, show a counter example.
(d) Redo part(c) for full binary trees. Recall that in a full binary tree, each node either has
no children or 2 children. ♦

c© Chee-Keng Yap Basic Version February 27, 2008

§4. Tree Traversals Lecture III Page 22

Exercise 4.3:
(a) Here is the set of keys from post-order traversal of a binary search tree:

2, 1, 4, 3, 6, 7, 9, 11, 10, 8, 5, 13, 16, 15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST from its post-order traversal. ♦

Exercise 4.4: Use shell programming to give an algorithm SIZE(u) that returns the number of
nodes in the subtree rooted at u. Do not assume any additional fields in the nodes. ♦

Exercise 4.5: Let size(u) denote the number of nodes in the tree rooted at u. Say that node u
is size-balanced if

1/3 ≤ size(u.left)/size(u.right) ≤ 2/3

where size(nil) = 0, by definition. Use shell programming to give an algorithm BALANCE(u)
that returns true iff every node below u is balanced. Do not assume any additional fields in
the nodes. ♦

Exercise 4.6: Give a recursive routine called CheckBST (u) which checks whether the binary tree
Tu rooted at a node u is a binary search tree (BST). You must figure out the information to
be returned by CheckBST (u); this information should also tell you whether Tu is BST or
not. Assume that each non-nil node u has the three fields, u.Key, u.left, u.right. ♦

Exercise 4.7: A student proposed a different approach to the previous question. Let minBST (u)
and maxBST (u) compute the minimum and maximum keys in Tu, respectively. These
subroutines are easily computed in the obvious way. For simplicity, assume all keys are
distinct and u 6= nil in these arguments. The recursive subroutine is given as follows:

CheckBST(u)
⊲ Returns largest key in Tu if Tu is BST
⊲ Returns +∞ if not BST
⊲ Assume u is not nil

If (u.left 6= nil)
L← maxBST (u.left)
If (L > u.Key or L =∞) return(∞)

If (u.right 6= nil)
R← minBST (u.right)
If (R < u.Key or R =∞) return(∞)

Return (CheckBST (u.left) ∧ (CheckBST (u.right)

Is this program correct? Bound its complexity. HINT: Let the “root path length” of a node
be the length of its path to the root. The “root path length” of a binary tree Tu is the sum
of the root path lengths of all its nodes. The complexity is related to this number. ♦

Exercise 4.8: Like the previous problem, we want to check if a binary tree is a BST. Write a
recursive algorithm called SlowBST (u) which solves the problem, except that the running
time of your solution must be provably exponential-time. If you like, your solution may con-
sist of mutually recursive algorithms. Your overall algorithm must achieve this exponential
complexity without any trivial redundancies. E.g., we should not be able to delete state-
ments from your code and still achieve a correct program. Thus, we want to avoid a trivial
solutions of this kind:

c© Chee-Keng Yap Basic Version February 27, 2008

§5. Variations on Binary Trees Lecture III Page 23

SlowBST (u)
Compute the number n of nodes in Tu

Do for 2n times:
FastBST (u)

♦

End Exercises

§5. Variations on Binary Trees

This is an optional section, for those who wants a deeper understanding of binary trees and
their applications. We will discuss extended binary trees, alternative ways to use binary trees in
search structures, and the notion of implicit binary search trees.

¶24. Extended binary trees. There is an alternative view of binary trees; let us call them
extended binary trees. For emphasis, the original version will be called standard binary
trees. In the extended trees, every node has 0 or 2 children; nodes with no children are called5 nil
nodes while the other nodes are called non-nil nodes. See figure 9(a) for a standard binary tree
and figure 9(b) for the corresponding extended version. In this figure, we see a common convention
(following Knuth) of representing nil nodes by black squares.

(a) (b)

Figure 9: Binary Trees: (a) standard, (b) extended.

The bijection between extended and standard binary trees is given as follows:

1. For any extended binary tree, if we delete all its nil nodes, we obtain a standard
binary tree.
2. Conversely, for any standard binary tree, if we give every leaf two nil nodes as
children and for every internal node with one child, we give it one nil node as child,
then we obtain a corresponding extended binary tree.

In view of this correspondence, we could switch between the two viewpoints depending on which
is more convenient. Generally, we avoid drawing the nil nodes since they just double the number

c© Chee-Keng Yap Basic Version February 27, 2008

§5. Variations on Binary Trees Lecture III Page 24

of nodes without conveying any new information. In fact, nil nodes cannot store data or items. Who cares
about nil
nodes?

The main reason we want to explicitly introduce them is that it simplifies the description of some
algorithms (e.g., red-black tree algorithms).

The “nil node” terminology may be better appreciated when we realize that in conventional
realization of binary trees, we allocate two pointers to every node, regardless of whether the node
has two children or not. The lack of a child is indicated by making the corresponding pointer take
the nil value.

We extend the notion of extended binary tree to extended binary search tree. Here, the
non-nil nodes store keys in the usual nodes but the nil nodes do not hold keys (obviously).

The concept of a “leaf” of an extended binary tree is apt to cause some confusion: we shall use
the “leaf” terminology so as to be consistent with standard binary trees. A node of an extended
binary tree is called a leaf if it is the leaf of the corresponding standard binary tree. Alternatively,
a leaf in an extended binary tree is a node with two nil nodes as children. Thus a nil node is never
a leaf.

¶25. Exogenous versus Endogenous Search Structures Let us return to the use of binary
trees for searching, i.e., as binary search trees. There are an implicit assumptions in the use of
binary search trees that is worth examining. We normally think of the data associated with a key
to be stored with the key itself. This means that each node of our binary search tree actually store
items (recall items is just a key-data pair). There is an alternative organization that applies to
search structures in general: we assume the set of items to be searched is stored independently
of the search structure (the binary search tree in this case). In the case of binary search trees, it
means that we associate with each key a pointer to the associated data. Following6 Tarjan [8], we
call this an exogenous search structure In contrast, if the data is directly stored with the key,
we call it an endogenous search structure. What is the relative advantage of either form? In
the exogenous case, we have actually added an extra level of indirection (the pointer) which uses
extra space). But on the other hand, it means that the actual data can be freely re-organized
more easily and independently of the search structure. In databases, this is important because the
exogenous search structure are called “indexes”. Users can freely create and destroy such indexes
into the stored set of items.

¶26. Internal verses External Search Structures. There is an implicit assumption that
each key in our binary search tree corresponds to an item. An alternative is to associate items
only to keys at the leaves of the tree. The internal keys are just used for guiding the search.
For the lack of a better name, we shall call this version of search structures an external search
structures. So the common concept of binary search trees illustrates the notion of internal
search structures. Like exogenous search structures, internal search structures apparently uses
extra space: e.g., in binary search trees, the keys in the internal nodes are possibly duplicates of
the actual keys stored with the items. On the other hand, this also give us added flexibility – we
can introduce new keys in the search structure which are not in the items. For instance, we may
want to use use more compact keys than the actual keys in items, which may be very long. Our
usual search tree algorithms are easily modified to handle external search structures.

5A binary tree in which every node has 2 or 0 children is said to be “full”. Knuth calls the nil nodes “external
nodes”. A path that ends in an external node is called an “external path”.

6He used this classification only in the case of the linked lists data structure, but the extension is obvious.

c© Chee-Keng Yap Basic Version February 27, 2008

§5. Variations on Binary Trees Lecture III Page 25

¶27. Auxiliary Information. In many applications, additional information must be main-
tained at each node of the binary search tree. We already mentioned the predecessor and successor
links. Another information is the the size of the subtree at a node. Some of this information is
independent, while other is dependent or derived. Maintaining the derived information under the
various operations is usually straightforward. In all our examples, the derived information is local
in the following sense that the derived information at a node u can only depend on the information
stored in the subtree at u. We will say that derived information is strongly local if it depends
only on the independent information at node u, together with all the information at its children
(whether derived or independent).

¶28. Implicit Keys and Parametrized Binary Search Trees. Perhaps the most interesting
variation of binary search trees is when the keys used for comparisons are only implicit. The
information stored at nodes allows us to make a “comparison” and decide to go left or to go right
at a node but this comparison may depend on some external data beyond any explicitly stored
information. We illustrate this concept in the lecture on convex hulls in Lecture V.

¶29. Implicit Binary Trees. This is illustrated by the concept of a heap structure: this
is defined to be binary tree whose nodes are indexed by integers following this rule: the root
is indexed 1, and if a node has index i, then its left and right children are indexed by 2i and
2i + 1, respectively. Moreover, if the binary tree has n nodes, then the set of its indices is the set
{1, 2, . . . , n}. A heap structure can therefore be represented naturally by an array A[1..n], where
A[i] represents the node of index i. If, at the ith node of the heap structure, we store a key A[i]
and these keys satisfy the heap order property for each i = 1, . . . , n,

HO(i) : A[i] ≤ min{A[2i], A[2i + 1]}. (4)

In (4), it is understood that if 2i > n (resp., 2i + 1 > n) then A[2i] (A[2i + 1]) is taken to be ∞.
Then we call the binary tree a heap. Here is an array that represents a heap:

A[1..9] = [1, 4, 2, 5, 6, 3, 8, 7, 9].

In the exercises we consider algorithms for insertion and deletion from a heap. This leads to a
highly efficient method for sorting elements in an array, in place.

The array representation of a heap is an example of an “implicit data structure”. In general,
such data structures are represented by an array, and instead of pointers between nodes, we have
some rules for computing the indices of the nodes that are pointed to. By avoiding explicit pointers,
such structures can be very efficient to navigate.

Exercises

Exercise 5.1: Describe what changes is needed in our binary search tree algorithms for the exo-
geneous case. ♦

Exercise 5.2: Suppose we insist that for exogenous binary search trees, each of the keys in the
internal nodes really correspond to keys in stored items. Describe the necessary changes to
the deletion algorithm that will ensure this property. ♦

Exercise 5.3: Consider the usual binary search trees in which we no longer assume that keys in
the items are unique. State suitable conventions for what the various operations mean in

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 26

this setting. E.g., lookUp(K) means find any item whose key is K or find all items whose
keys are equal to K. Describe the corresponding algorithms. ♦

Exercise 5.4: Describe the various algorithms on binary search trees that store the size of subtree
at each node. ♦

Exercise 5.5: Recall the concept of heaps in the text. Let A[1..n] be an array of real numbers.
We call A an almost-heap at i there exists a number such that if A[i] is replaced by this
number, then A becomes a heap. Of course, a heap is automatically an almost-heat at any
i.
(i) Suppose A is an almost-heap at i. Show how to convert A into a heap be pairwise-
exchange of array elements. Your algorithm should take no more than lg n exchanges. Call
this the Heapify(A, i) subroutine.
(ii) Suppose A[1..n] is a heap. Show how to delete the minimum element of the heap, so that
the remaining keys in A[1..n− 1] form a heap of size n− 1. Again, you must make no more
than lg n exchanges. Call this the DeleteMin(A) subroutine.
(iii) Show how you can use the above subroutines to sort an array in-place in O(n log n) time.

♦

Exercise 5.6: Normally, each node u in a binary search tree maintains two fields, a key value and
perhaps some balance information, denoted u.KEY and u.BALANCE, respectively. Sup-
pose we now wish to “augment” our tree T by maintaining two additional fields called
u.PRIORITY and u.MAX. Here, u.PRIORITY is an integer which the user arbitrarily as-
sociates with this node, but u.MAX is a pointer to a node v in the subtree at u such that
v.PRIORITY is maximum among all the priorities in the subtree at u. (Note: it is possible
that u = v.) Show that rotation in such augmented trees can still be performed in constant
time.

♦

End Exercises

§6. AVL Trees

AVL trees is the first known family of balanced trees. By definition, an AVL tree is a binary
search tree in which the left subtree and right subtree at each node differ by at most 1 in height.
They also have relatively simple insertion/deletion algorithms.

More generally, define the balance of any node u of a binary tree to be the height of the left
subtree minus the height of the right subtree:

balance(u) = ht(u.left)− ht(u.right).

The node is perfectly balanced if the balance is 0. It is AVL-balanced if the balance is either
0 or ±1. Our insertion and deletion algorithms will need to know this balance information at
each node. Thus we need to store at each AVL node a 3-valued variable. Theoretically, this space
requirement amounts to lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will reserve
2 bits per node for the balance information (but see Exercise).

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 27

Let us first prove that the family of AVL trees is a balanced family. It is best to introduce the
function µ(h), defined as the minimum number of nodes in any AVL tree with height h. The first
few values are

µ(−1) = 0, µ(0) = 1, µ(1) = 2, µ(2) = 4.

These initial values are not entirely obvious: it seems clear that µ(0) = 1 since there is a unique
tree with height 0. To see7 that µ(1) = 2, we must define the height of the empty tree to be −1.
This explains why µ(−1) = 0. We can verify µ(2) = 4 by case analysis.

In general, µ(h) is seen to satisfy the recurrence

µ(h) = 1 + µ(h− 1) + µ(h− 2), (h ≥ 1). (5)

This corresponds to the minimum size tree of height h having left and right subtrees which are
minimum size trees of heights h−1 and h−2. For instance, µ(2) = 1+µ(1)+µ(0) = 1+2+1 = 4,
as we found by case analysis above. We similarly check that the recurrence (5) holds for h = 1.
See figure 10 for the smallest AVL trees of the first few values of h. We have drawn these AVL
trees where all internal nodes has balance of +1.

T0 T1 T2 T3

Figure 10: Smallest AVL trees of heights 0, 1, 2 and 3.

Lemma 4.
µ(h) ≥ Ch, (h ≥ 1) (6)

where C =
√

2 = 1.4142

Proof. From (5), we have µ(h) ≥ 2µ(h − 2) for h ≥ 1. It is easy to see by induction that
µ(h) ≥ 2h/2 for all h ≥ 1. Q.E.D.

We can easily sharpen the constant C in this lemma. Let φ = 1+
√

5
2 > 1.6180. This is the

golden ratio and it is the positive root of the quadratic equation x2−x−1 = 0. Hence, φ2 = φ+1.
We claim:

µ(h) ≥ φh, h ≥ 0.

The cases h = 0 and h = 1 are immediate. For h ≥ 2, we have

µ(h) > µ(h− 1) + µ(h− 2) ≥ φh−1 + φh−2 = (φ + 1)φh−2 = φh.

So any AVL tree with n nodes and height h must satisfy the inequality φh ≤ n or h ≤ (lg n)/(lg φ).
Thus the height of an AVL Tree on n nodes is at most (logφ 2) lg n where logφ 2 = 1.4404.... An
exercise below shows how to further sharpen this estimate.

7See Exercise for a different version.

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 28

If an AVL tree has n nodes and height h then

n ≥ µ(h)

follows by definition of µ(h). Combined with (6), we conclude that n ≥ Ch. Taking logs, we obtain
logC(n) ≥ h or h = O(log n). This proves:

Corollary 5. The family of AVL trees is balanced.

¶30. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively
simple, as far as balanced trees go. In either case there are two phases:

UPDATE PHASE: Insert or delete as we would in a binary search tree. REMARK: We assume
here the standard deletion algorithm, not its rotational variant. Furthermore, the node
containing the deleted key and the node we physically removed may be different.

REBALANCE PHASE: Let x be the parent of node that was just inserted, or just physi-
cally deleted, in the UPDATE PHASE. We now retrace the path from x towards the root,
rebalancing nodes along this path as necessary. For reference, call this the rebalance path.

It remains to give details for the REBALANCE PHASE. If every node along the rebalance
path is balanced, then there is nothing to do in the REBALANCE PHASE. Otherwise, let u be
the first unbalanced node we encounter as we move upwards from x to the root. It is clear that u
has a balance of ±2. In general, we fix the balance at the “current” unbalanced node and continue
searching upwards along the rebalance path for the next unbalanced node. Let u be the current
unbalanced node. By symmetry, we may suppose that u has balance 2. Suppose its left child is
node v and has height h + 1. Then its right child v′ has height h− 1. This situation is illustrated
in Figure 11.

h + 1 h− 1 h− 1

hL hR

v
expand left subtree

u

A
B

u

B

DC

v′

Figure 11: Node u is unbalanced after insertion or deletion.

By definition, all the proper descendents of u are balanced. The current height of u is h + 2.
In any case, let the current heights of the children of v be hL and hR, respectively.

¶31. Insertion Rebalancing. Suppose that this imbalance came about because of an insertion.
What was the heights of u, v and v′ before the insertion? It is easy to see that the previous heights
are (respectively)

h + 1, h, h− 1.

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 29

The inserted node x must be in the subtree rooted at v. Clearly, the heights hL, hR of the children
of v satisfy max(hL, hR) = h. Since v is currently balanced, we know that min(hL, hR) = h or
h− 1. But in fact, we claim that min(hL, hR) = h− 1. To see this, note that if min(hL, hR) = h
then the height of v before the insertion was also h+1 and this contradicts the initial AVL property
at u. Therefore, we have to address the following two cases.

CASE (I.1): hL = h and hR = h− 1. This means that the inserted node is in the left subtree
of v. In this case, if we rotate v, the result would be balanced. Moreover, the height of u is h + 1.

h− 1

hL hR

rotate
2(w)

h− 1

hL
hL

h− 1

h− 1

h h− 1 h− 1

h

expand

rotate(v)

h− 1

CASE (I.1)

CASE (I.2)

u

v

B

DC

u

v

B

C

w

DRDL

uv

C DL DR B

w

u

v

B

DC D

C

u

v

B

Figure 12: CASE (I.1): rotate(v), CASE (I.2): rotate2(w).

CASE (I.2): hL = h − 1 and hR = h. This means the inserted node is in the right subtree
of v. In this case let us expand the subtree D and let w be its root. The two children of w will
have heights of h− 1 and h− 1− δ (δ = 0, 1). It turns out that it does not matter which of these
is the left child (despite the apparent assymetry of the situation). If we double rotate w (i.e.,
rotate(w), rotate(w)), the result is a balanced tree rooted at w of height h + 1.

In both cases (I.1) and (I.2), the resulting subtree has height h+1. Since this was height before
the insertion, there are no unbalanced nodes further up the path to the root. Thus the insertion
algorithm terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figure 13, and we insert the key 9.5. The
resulting transformations is shown in Figure 14.

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 30

12

1

3

2

4

5

6

7

8

9

10

11

13

14

15

16

Figure 13: An AVL tree

9.5

1

3

2

4

5

8

12

6

7

9

9.5

10

11

12

13

14

15

16

15

16

1

3

2

4

5

6

7

8

9

10

11

13

14

Insert(9.5)

rotate
2(8)

Figure 14: Inserting 9.5 into an AVL tree

¶32. Deletion Rebalancing. Suppose the imbalance in figure 11 comes from a deletion. The
previous heights of u, v, v′ must have been

h + 2, h + 1, h

and the deleted node x must be in the subtree rooted at v′. We now have three cases to consider:

CASE (D.1): hL = h and hR = h − 1. This is like case (I.1) and treated in the same way,
namely by performing a single rotation at v. Now u is replaced by v after this rotation, and the
new height of v is h+1. Now u is AVL balanced. However, since the original height is h+2, there
may be unbalanced node further up the root path. Thus, this is a non-terminal case (i.e., we have
to continue checking for balance further up the root path).

CASE (D.2): hL = h − 1 and hR = h. This is like case (I.2) and treated the same way, by
performing a double rotation at w. Again, this is a non-terminal case.

CASE (D.3): hL = hR = h. This case is new, and appears in Figure 15. We simply rotate at
v. We check that v is balanced and has height h + 2. Since v is in the place of u which has height
h + 2 originally, we can safely terminate the rebalancing process.

This completes the description the insertion and deletion algorithms for AVL trees. In illustra-
tion, suppose we delete key 13 from Figure 13. After deleting 13, the node 14 is unbalanced. This
is restored by a single rotation at 15. Now, the root containing 12 is unbalanced. Another single
rotation at 5 will restore balance. The result is shown in Figure 16.

Both insertion and deletion take O(log n) time. In case of deletion, we may have to do O(log n)
rotations but a single or double rotation suffices for insertion.

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 31

h

rotate(v)

h− 1

h− 1

h h h

C

u

v

B

u

v

B

C D D

Figure 15: CASE (D.3): rotate(v)

12

5

14 16

3

1 4

2

15

12

1

3

2

4

5

6

7

8

9

10

11

14

15

16

6

7

8

9

10

11

Delete(13)

rotate(5)
rotate(15)

Figure 16: Deleting 13 from the AVL tree in Figure 13

¶33. Relaxed Balancing. Larsen [4] shows that we can decouple the rebalancing of AVL trees
from the updating of the maintained set. In the semidynamic case, the number of rebalancing
operations is constant in an amortized sense (amortization is treated in Chapter 5).

Exercises

Exercise 6.1: Let T be the AVL tree in Figure ??. As usual, show intermediate trees, not just
the final one.
(a) Delete the key 10 from T .
(b) Inserve the key 2.5 into T . This question is independent of part (a). ♦

Exercise 6.2: Give an algorithm to check if a binary search tree T is really an AVL tree. Your
algorithm should take time O(|T |). HINT: Use shell programming.

♦

Exercise 6.3: What is the minimum number of nodes in an AVL tree of height 10? ♦

Exercise 6.4: My pocket calculator tells me that logφ 100 = 9.5699 · · · . What does this tell you
about the height of an AVL tree with 100 nodes? ♦

Exercise 6.5: Draw an AVL T with minimum number of nodes such that the following is true:
there is a node x in T such that if you delete this node, the AVL rebalancing will require two

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 32

rebalancing acts. Note that a double-rotation counts as one, not two, rebalancing act. Draw
T and the node x. ♦

Exercise 6.6: Consider the AVL tree in Figure 17.

16

8

5

73

2 4

1

6

13 19

11 15

10

9

12 14

18

17

20

Figure 17: An AVL Tree for deletion

(a) Find all the keys that we can delete so that the rebalancing phase requires two rebalancing
acts.
(b) Among the keys in part (a), which deletion has a double rotation among its rebalancing
acts?
(c) Please delete one such key, and draw the AVL tree after each of the rebalancing acts. ♦

Exercise 6.7: Consider the height range for AVL trees with n nodes.
(a) What is the range for n = 15? n = 20 nodes?
(b) Is it true that there are arbitrarily large n such that AVL trees with n nodes has a unique
height? ♦

Exercise 6.8: Draw the AVL trees after you insert each of the following keys into an initially
empty tree: 1, 2, 3, 4, 5, 6, 7, 8, 9 and then 19, 18, 17, 16, 15, 14, 13, 12, 11. ♦

Exercise 6.9: Insert into an initially empty AVL tree the following sequence of keys:
1, 2, 3, . . . , 14, 15.
(a) Draw the trees at the end of each insertion as well as after each rotation or double-
rotation. [View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, we will have a complete binary tree
at the end of inserting key 2n − 1 for all n ≥ 1. ♦

Exercise 6.10: Starting with an empty tree, insert the following keys in the given order:
13, 18, 19, 12, 17, 14, 15, 16. Now delete 18. Show the tree after each insertion and deletion.
If there are rotations, show the tree just after the rotation. ♦

Exercise 6.11: Draw two AVL trees, with n keys each: the two trees must have different heights.
Make n as small as you can. ♦

Exercise 6.12: TRUE or FALSE: In CASE (D.3) of AVL deletion, we performed a single rotation
at node v. This is analogous to CASE (D.1). Could we have also have performed a double
rotation at w, in analogy to CASE (D.2)? ♦

c© Chee-Keng Yap Basic Version February 27, 2008

§6. AVL Trees Lecture III Page 33

Exercise 6.13: Improve the lower bound µ(h) ≥ φh by taking into consideration the effects of
“+1” in the recurrence µ(h) = 1 + µ(h− 1) + µ(h− 2).
(a) Show that µ(h) ≥ F (h− 1) + φh where F (h) is the h-th Fibonacci number. Recall that
F (h) = h for h = 0, 1 and F (h) = F (h− 1) + F (h− 2) for h ≥ 2.
(b) Further improve (a). ♦

Exercise 6.14: Allocating one bit per AVL node is sufficient if we exploit the fact that leaf nodes
are always balanced allow their bits to be used by the internal nodes. Work out the details
for how to do this. ♦

Exercise 6.15: It is even possible to allocate no bits to the nodes of a binary search tree. The
idea is to exploit the fact that in implementations of AVL trees, the space allocated to each
node is constant. In particular, the leaves have two null pointers which are basically unused
space. We can use this space to store balance information for the internal nodes. Figure out
an AVL-like balance scheme that uses no extra storage bits. ♦

Exercise 6.16: Relaxed AVL Trees
Let us define AVL(2) balance condition to mean that at each node u in the binary tree,
|balance(u)| ≤ 2.
(a) Derive an upper bound on the height of a AVL(2) tree on n nodes.
(b) Give an insertion algorithm that preserves AVL(2) trees. Try to follow the original AVL
insertion as much as possible; but point out diferences from the original insertion.
(c) Give the deletion algorithm for AVL(2) trees. ♦

Exercise 6.17: To implement we reserve 2 bits of storage per node to represent the balance
information. This is a slight waste because we only use 3 of the four possible values that the
2 bits can represent. Consider the family of “biased-AVL trees” in which the balance of each
node is one of the values b = −1, 0, 1, 2.
(a) In analogy to AVL trees, define µ(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.
(b) Is it possible to give an O(log n) time insertion algorithm for biased-AVL trees? What
can be achieved? ♦

Exercise 6.18: Suppose we define the height of the empty tree to be −2 in a new definition of
’AVL’ trees, but everything else remain the same as before. We want to compare the original
AVL trees with this new ’AVL’ trees.
(a) TRUE or FALSE: every ’AVL’ tree is an AVL tree.
(b) Let µ′(h) be defined (similar to µ(h) in the text) as the minumum number of nodes in
an ’AVL’ tree. Determine µ′(h) for all h ≤ 5.
(c) Show (and prove) a relationship among µ′(h), µ(h) and F (h) where F (h) is the standard
Fibonacci numbers.
(d) Give a good upper bound on µ′(h).
(e) What is one conceptual difficulty of trying to use the family of ’AVL’ trees as a general
search structure? ♦

Exercise 6.19: A node in a binary tree is said to be full if it has exactly two children. A full
binary tree is one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that ’AVL’ trees as defined in the previous question are full binary trees. ♦

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 34

Exercise 6.20: The AVL insertion algorithm makes two passes over its search path: the first pass
is from the root down to a leaf, the second pass goes in the reverse direction. Consider the
following idea for a “one-pass algorithm” for AVL insertion: during the first pass, before we
visit a node u, we would like to ensure that (1) its height is less than or equal to the height
of its sibling. Moreover, (2) if the height of u is equal to the height of its sibling, then we
want to make sure that if the height of u is increased by 1, the tree remains AVL.

The following example illustrates the difficulity of designing such an algorithm:

Imagine an AVL tree with a path (u0, u1, . . . , uk) where u0 is the root and ui is a child of
ui−1. We have 3 conditions:
(a) Let i ≥ 1. Then ui is a left child iff i is odd, and otherwise ui is a right child. Thus, the
path is a pure zigzag path.
(b) The height of ui is k − i (for i = 0, . . . , k). Thus uk is a leaf.
(c) Finally, the height of the sibling of ui is h− i− 1.

Suppose we are trying to insert a key whose search path in the AVL tree is precisely
(u0, . . . , uk). Can we preemptively balance the AVL tree in this case? ♦

End Exercises

§7. (a, b)-Search Trees

We consider another class of trees that is important in practice, especially in database appli-
cations. These are no longer binary trees, but are parametrized by a choice of two integers,

2 ≤ a < b. (7)

An (a, b)-tree is a rooted, ordered tree with the following requirements:

• DEPTH BOUND: All leaves are at the same depth.

• BRANCHING BOUND: Let m be the number of children of an internal node u. In general,
we have the bounds

a ≤ m ≤ b. (8)

The root is an exception, with the bound 2 ≤ m ≤ b.

To see the intuition behind these conditions, compare with binary trees. In binary trees, the
leaves do not have to be at the same depth. To re-introduce some flexibility into trees where leaves
have the same depth, we allow the number of children of an internal node to vary over a larger
range [a, b]. Moreover, in order to ensure logarithmic height, we require a ≥ 2. This means that if
there n leaves, the height is at most loga(n)+O(1). Therefore, (a, b)-trees forms a balanced family
of trees.

The definition of (a, b)-trees imposes purely structural requirements. Figure 18 illustrates an
(a, b)-tree for (a, b) = (2, 3). To use (a, b)-trees as a search structure, we need to give additional
requirements, in particular how keys are stored in these trees. Before giving the definition, we can
build some intuitions by studying an example of such a search tree in Figure 19. The 14 items
stored in this tree are all at the leaves, with the keys 2, 4, 6, . . . , 23, 25, 27. As usual, we do not
display the associated data in items. The keys in the internal nodes do not correspond to items.

Recall that an item is a (Key, Data) pair. We define an (a, b)-search tree to be an (a, b)-tree
whose nodes are organized as follows:

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 35

Figure 18: A (2, 3)-tree.

102 4 6 8 12 13 15 17 19 21 23

2 5 9 10 14 16 18 22 23

6 12 20

25 27

25

Figure 19: A (3,4)-search tree on 14 items

• LEAF: Each leaf stores a sequence of items, sorted by their keys. Hence we represent a leaf
u with m items as the sequence,

u = (k1, d1, k2, d2, . . . , km, dm) (9)

where (ki, di) is the ith smallest item. See Figure 20(i). In practice, di might only be a
pointer to the actual location of the data. If leaf u is not the root, then a′ ≤ m ≤ b′ for
some 1 ≤ a′ ≤ b′. Thus (a′, b′) is an additional pair of parameters. There are two canonical
choices for a′, b′. The simplest is a′ = b′ = 1. This means each leaf stores exactly one item.
All our examples (e.g., Figure 19) will use this assumption because of its simplicity. This Our assump-

tion for leafschoice has no affect our basic algorithms. Another canonical choice is

a′ = a, b′ = b. (10)

In any case, we must allow an exception when u is the root. We allow the root to have
between 0 and 2b′ − 1 items.

• INTERNAL NODE: Each internal node with m children stores an alternating sequence of
keys and pointers (node references), in the form:

u = (p1, k1, p2, k2, p3, . . . , pm−1, km−1, pm) (11)

where pi is a pointer (or reference) to the i-th child of the current node. Note that the
number of keys in this sequence is one less than the number m of children. See Figure 20(ii).
The keys are sorted so that

k1 < k1 < · · · < km−1.

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 36

For i = 1, . . . , m, each key k in the i-th subtree of u satisfies

ki−1 ≤ k < ki, (12)

with the convention that k0 = −∞ < ki < km = +∞. Note that this is just a generalization
of the binary search tree property in (1).

· · ·(k1, d1) (k2, d2) · · · k1 k2

p1
p2 p3

pm−1 pm

1 ≤ a′ ≤ m ≤ b′ 2 ≤ a ≤ m ≤ b

(i) Leaf Node Organization (ii) Internal Node Organization

(km, dm) km−1

Figure 20: Organization of nodes in (a, b)-search trees

Thus, an (a, b)-search tree is just a (a, b)-tree that has been organized into a search tree. As
usual, we assume that the set of items in an (a, b)-search tree has unique keys. But as seen in
Figure 19, the keys in internal nodes may be the same as keys in the leaves.

2 5 6 8 10 13 18 21 23 29 33

2 5 9 22

2318

10

6

13 30

Figure 21: A (2, 3)-search tree.

Another (a, b)-search tree is shown in Figure 21, for the case (a, b) = (2, 3). In contrast to
Figure 19, here we use a slightly more standard convention of representing the pointers as tree
edges.

¶34. Special Cases of (a, b)-Search Trees. The earliest and simplest (a, b)-search trees cor-
respond to the case (a, b) = (2, 3). These are called 2-3 trees and were introduced by Hopcroft
(1970). By choosing

b = 2a− 1 (13)

(for any a ≥ 2), we obtain the generalization of (2, 3)-trees called B-trees. These were introduced
by McCreight and Bayer [2]. When (a, b) = (2, 4), the trees have been studied by Bayer (1972) as
symmetric binary B-trees and by Guibas and Sedgewick as 2-3-4 trees. Another variant of
2-3-4 trees is red-black trees. The latter can be viewed as an efficient way to implement 2-3-4
trees, by embedding them in binary search trees. But the price of this efficiency is complicated
algorithms for insertion and deletion. Thus it is clear that the concept of (a, b)-search trees serves
to unify a variety of search trees. The terminology of (a, b)-trees was used by Mehlhorn [6].

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 37

The B-tree relationship (13) is optimal in a certain8 sense. Nevertheless, there are other benefits
in allowing more general relationships between a and b. E.g., if we replace (13) by b = 2a, the
amortized complexity of such (a, b)-search trees algorithms can improve [3].

¶35. Searching. The organization of an (a, b)-search tree supports an obvious lookup algorithm
that is a generalization of binary search. Namely, to do lookUp(Key k), we begin with the root as
the current node. In general, let u be the current node.

• Base Case: suppose u is a leaf node given by (9). If k occurs in u as ki (for some i = 1, . . . , m),
then we return the associated data di. Otherwise, we return the null value, signifying search
failure.

• Inductive Case: suppose u is an internal node given by (11). Then we find the pi such that
ki−1 ≤ k < ki (with k0 = −∞, km =∞). Set pi as the new current node and continue.

The running time of the lookUp algorithm is O(hb) where h is the height of the (a, b)-tree, and
we spend O(b) time at each node. The following bounds the height of (a, b)-trees:

Lemma 6. An (a, b)-tree with n leaves has height satisfying

⌈logb ⌈n/b′⌉⌉ ≤ h ≤ 1 + ⌊loga ⌊n/(2a′)⌋⌋ . (14)

Proof. The number ℓ of leaves clearly lies in the range [⌊n/b′⌋ , ⌈n/a′⌉]. However, with a little
thought, we can improve it to:

ℓ ∈ [⌈n/b′⌉ , ⌊n/a′⌋].
(Why?) With height h, we must have at least 2ah−1 leaves. Hence ⌊n/a′⌋ ≥ ℓ ≥ 2ah−1 or
⌊n/a′⌋ /2 ≥ ah−1. Since ah−1 is integer, we obtain ⌊⌊n/a′⌋ /2⌋ = ⌊n/(2a′)⌋ ≥ ah−1 or h ≤
1 + loga(⌊n/(2a′)⌋). Again, since h is integer, this yields h ≤ 1 + ⌊loga(⌊n/(2a′)⌋)⌋. For the lower
bound on h, a similar (but simpler) argument holds. Q.E.D.

This lemma implies
⌈logb ⌈n/b′⌉⌉ ≤ 1 + ⌊loga ⌊n/(2a′)⌋⌋ . (15)

For instance, with n = 109 (a billion), (a, b) = (34, 51) and a′ = b′ = 1, this inequality is actually
an equality (both sides are equal to 6). It become a strict inequality for n sufficiently large. For
small n, the inequality may even fail. Hence it is clear that we need additional inequalities on our
parameters.

This lemma shows that b, b′ determine the lower bound and a, a′ determine the upper bound
on h. Our design goal is to maximize a, b, a′, b′ for speed, and to minimize b/a for space efficiency
(see below). Typically b/a is bounded by a small constant close to 2, as in B-trees.

We briefly discuss alternative organization of the keys and pointers in internal nodes. Since the
size of nodes in a (a, b)-tree is not a small constant, the organization of the data (11) for internal
nodes, and (9) for leaves, can be an issue. In practice, b is a medium size constant (say, b < 1000).
These lists can be stored as an array, a singly- or doubly-linked list, or as a balanced search tree.
These have their usual trade-offs. With an array or balanced search tree at each node, the time
spent at a node improves from O(b) to O(log b). But a balanced search tree takes up more space

8I.e., assuming a certain type of split-merge inequality, which we will discuss below.

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 38

than using a plain array organization; this will reduce the value of b. So, to maximize the value
of b, a practical compromise is to simply store the list as an array in each node. This achieves
O(lg b) search time but each insertion and deletion in that node requires O(b) time. Indeed, when
we take into account the effects of secondary memory, the time for searching within a node is
negligible compared to the time accessing each node. This argues that the overriding goal should
be to maximize b and a.

¶36. Exogenous and Endogenous Search Structures. Search trees store items. But where
these items are stored constitute a major difference between (a, b)-search trees and the binary
search trees which we have presented. Items in (a, b)-search trees are stored in the leaves only,
while in binary search trees, items are stored in internal nodes as well. Tarjan [8, p. 9] calls a
search structure exogenous if it stores items in leaves only; otherwise it is endogenous.

The keys in the internal nodes of (a, b)-search trees are used purely for searching: they are
not associated with any data. In our description of binary search trees (or their balanced versions
such as AVL trees), we never explicitly discuss the data that are associated with keys. So how do
we know that these data structures are endogenous? We deduce it from the observation that, in
looking up a key k in a binary search tree, if k is found in an internal node u, we stop the search
and return u. Implicitly, it means we have found the item with key k (effectively, the item is stored
in u). For (a, b)-search tree, we cannot stop at any internal node, but must proceed until we reach
a leaf before we can conclude that an item with key k is, or is not, stored in the search tree. It is
possible to modify binary search trees so that they become exogenous (Exercise).

There is another important consequence of this dual role of keys in (a, b)-search trees. The keys
in the internal nodes need not be the keys of items that are stored in the leaves. This is seen in
Figure 21 where the key 9 in an internal node does not correspond to any actual item in the tree.
On the other hand, the key 13 appears in the leaves (as an item) as well as in an internal node.

¶37. Database Application. One reason for treating (a, b)-trees as exogenous search structures
comes from its applications in databases. In database terminology, (a, b)-search tree constitute an
index over the set of items in its leaves. A given set of items can have more than one index built
over it. If that is the case, at most one of the index can actually store the original data in the
leaves. All the other indices must be contented to point to the original data, i.e., the di in (9)
associated with key ki is not the data itself, but a reference/pointer to the data stored elsewhere.
Imagine a employee database where items are employee records. We may wish to create one index
based on social security numbers, and another index based on last names, and yet another based on
address. We chose these values (social security number, last name, address) for indexing because
most searches in such a data base is presumably based on these values. It seems to make less sense
to build an index based on age or salary, although we could.

¶38. Disk I/O Considerations: How to choose the parameter b. There is yet another
reason for preferring exogenous structures: In databases, the number of items is very large and
these are stored in disk memory. If there are n items, then we need at least n/b′ internal nodes.
This many internal nodes implies that the nodes of the (a, b)-trees is also stored in disk memory.
Therefore, while searching through the (a, b)-tree, each node we visit must be brought into the
main memory from disk. The I/O speed for transferring data between main memory and disk is
relatively slow, compared to CPU speeds. Moreover, disk transfer at the lowest level of a computer
organization takes place in fixed size blocks. E.g., in UNIX, block sizes are traditionally 512 bytes.
To minimize the number of disk accesses, we want to pack as many keys into each node as possible.
So the size for a node must match the size of computer blocks. Thus the parameter b of (a, b)-trees

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 39

is chosen to be the largest value so that a node has this block size. Below, we discuss constraints
on how the parameter a is chosen.

¶39. The Standard Split and Merge Inequalities for (a, b)-trees. To support efficient
insertion and deletion algorithms, the parameters a, b must satisfy an additional inequality in
addition to (7). This inequality, which we now derive, comes from two low-level operations on
(a, b)-search tree. These split and merge operations are called as subroutines by the insertion
and deletion algorithms (respectively). There is actually a family of such inequalities, but we first
derive the simplest one (“the standard inequality”).

During insertion, a node that previously had b children may acquire a new child. Such a node
violates the requirements of an (a, b)-tree, so an obvious response is to split it into two nodes
with ⌊(b + 1)/2⌋ and ⌈(b + 1)/2⌉ children, respectively. In order that the result is an (a, b)-tree,
we require the following split inequality:

a ≤
⌊

b + 1

2

⌋

. (16)

During deletion, we may remove a child from a node that has a children. The resulting node with
a− 1 children violates the requirements of an (a, b)-tree, so we may borrow a child from one of its
siblings (there may be one or two such siblings), provided the sibling has more than a children.
If this proves impossible, we are forced to merge a node with a − 1 children with a node with
a children. The resulting node has 2a − 1 children, and to satisfy the branching factor bound of
(a, b)-trees, we have 2a− 1 ≤ b. Thus we require the following merge inequality:

a ≤ b + 1

2
. (17)

Clearly (16) implies (17). However, since a and b are integers, the reverse implication also holds!
Thus we normally demand (16) or (17). The smallest choices of these parameters under the
inequalities and also (7) is (a, b) = (2, 3), which has been mentioned above. The case of equality in
(16) and (17) gives us b = 2a− 1, which leads to precisely the B-trees. Sometimes, the condition
b = 2a is used to define B-trees; this behaves better in an amortized sense (see [6, Chap. III.5.3.1]).

¶40. Treatment of Leaves and Root. Consider splits at the root, and merges of children of
the root:

(i) Normally, when we split a node u, its parent gets one extra child. But when u is the root,
we create a new root with two children. This explains the exception we allow for roots to have
between 2 and b children.

(ii) Normally, when we merge two siblings u and v, the parent loses a child. But when the
parent is the root, the root may now have only one child. In this case, we delete the root and its
sole child is now the root.

Note that (i) and (ii) are the only means for increasing and decreasing the height of the (a, b)-
tree.

Now consider leaves: in order for the splits and merges of leaves to proceed as above, we need
the analogue of the split-merge inequality,

a′ ≤ b′ + 1

2
. (18)

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 40

Finally, consider the case where the root is also a leaf. We cannot treat it like an ordinary leaf
having between a′ to b′ items. Let the root have between a′

0, b
′
0 items when it is a leaf. Initially,

there may be no items in the root, so we must let a′
0 = 0. Also, when it exceed b′0 items, we must

split into two or more children with at least a′ items. The standard literature allows the root to
have 2 children and this requires 2a′ ≤ b′0 + 1 (like the standard split-merge inequality). Hence we
choose b′0 = 2a′ − 1.

In practice, it seems better to allow the root to have a large degree than a small degree. This
alternative design is explored in an Exercise.

¶41. Achieving 2/3 Space Utility Ratio. A node with m children is said to be full when
m = b, and more generally, (m/b)-full. Hence, our nodes can be as small as (a/b)-full. Call
the ratio a : b the space utilization ratio. The standard inequality (17) on (a, b)-trees implies
that the space utilization in such trees can never9 be better than ⌊(b + 1)/2⌋ /b, and this can be
achieved by B-trees. This ratio can be slightly larger than 1 : 2, but at most 2 : 3. Of course, in
practice b is fairly large and this ratio is essentially a : b. We now address the issue of achieving
ratios that are arbitrarily close to 1. The following shows how to achieve 2/3 asymptotically.

Consider the following modified insertion: to remove an overfull node u with b + 1 children,
we first look at a sibling v to see if we can donate a child to the sibling. If v is not full, we may
donate to v. Otherwise, v is full and we can take the 2b + 1 children in u and v, and divide them
into 3 groups as evenly as possible. So each group has between ⌊(2b + 1)/3⌋ and ⌈(2b + 1)/3⌉ keys.
More precisely, the size of the three groups are

⌊(2b + 1)/3⌋ , ⌊(2b + 1)/3⌉ , ⌈(2b + 1)/3⌉

where ⌊(2b + 1)/3⌉ denotes rounding to the nearest integer. Nodes u and v will (respectively)
have one of these groups as their children, but the third group will be children of a new node. See
Figure 22.

k k′ k′′

u v u v v′

ww

⌊

2a−1
3

⌋ ⌊

2a−1
3

⌉

⌈

2a−1
3

⌉

a− 1 a

Figure 22: Generalized (2-to-3) split

We want these groups to have between a and b children. The largest of these groups has at
most b children (assuming b ≥ 2). However, for the smallest of these groups to have at least a
children, we require

a ≤
⌊

2b + 1

3

⌋

. (19)

This process of merging two nodes and splitting into three nodes is called generalized split
because it involves merging as well as splitting. Let w be the parent of u and v. Thus, w will have
an extra child v′ after the generalized split. If w is now overfull, we have to repeat this process at
w.

9The ratio a : b is only an approximate measure of space utility for various reasons. First of all, it is an asymptotic
limit as b grows. Furthermore, the relative sizes for keys and pointers also affect the space utilization. The ratio
a : b is a reasonable estimate only in case the keys and pointers have about the same size.

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 41

Next consider a modified deletion: to remove an underfull node u with a− 1 nodes, we again
look at an adjacent sibling v to borrow a child. If v has a children, then we look at another sibling
v′ to borrow. If both attempts at borrowing fails, we merge the 3a− 1 children10 the nodes u, v, v′

and then split the result into two groups, as evenly as possible. Again, this is a generalized
merge that involves a split as well. The sizes of the two groups are ⌊(3a− 1)/2⌋ and ⌈(3a− 1)/2⌉
children, respectively. Assuming

a ≥ 3, (20)

v and v′ exists (unless u is a child of the root). This means

⌈

3a− 1

2

⌉

≤ b (21)

Because of integrality constraints, the floor and ceiling symbols could be removed in both (19) and
(21), without changing the relationship. And thus both inequality are seen to be equivalent to

a ≤ 2b + 1

3
(22)

As in the standard (a, b)-trees, we need to make exceptions for the root. Here, the number m
of children of the root satisfies the bound 2 ≤ m ≤ b. So during deletion, the second sibling v′

may not exist if u is a child of the root. In this case, we can simply merge the level 1 nodes, u and
v. This merger is now the root, and it has 2a − 1 children. This suggests that we allow the root
to have between a and max{2a− 1, b} children.

If we view b as a hard constraint on the maximum number of children, then the only way to
allow the root to have max{2a−1, b} children is to insist that 2a−1 ≤ b. Of course, this constraint
is just the standard split-merge inequality (17); so we are back to square one. This says we must
treat the root as an exception to the upper bound of b. Indeed, one can make a strong case for
treating the root differently:
(1) It is desirable to keep the root resident in memory at all times, unlike the other nodes.
(2) Allow the root to be larger than b can speed up the general search.

The smallest example of a (2/3)-full tree is where (a, b) = (3, 4). We have already seen a
(3, 4)-tree in Figure 19. The nodes of such trees are actually 3/4-full, not 2/3-full. But for large b,
the “2/3” estimate is more reasonable.

¶42. Mechanics of Insertion and Deletion. Both insertion and deletion can be described
as a repeated application of the following while-loop:

10Normally, we expect v, v′ to be immediate siblings of u (to the left and right of u). But if u is the eldest or
youngest sibling, then we may have to look slightly farther for the second sibling.

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 42

⊲ INITIALIZATION
To insert an item (k, d) or delete a key k, we first do a lookup on k.
Let u be the leaf where k is found.
Bring u into main memory and perform the indicated operation.
Call u the current node.
⊲ MAIN LOOP
while u is overfull or underfull, do:
1. If u is root, handle as a special case and terminate.
2. Bring the parent v of u into main memory. ⊳ No need if caching is used
3. Depending on the case, some siblings u1, u2, etc, of u may be brought into main memory.
4. Do the necessary transformations of u and its siblings and v in the main memory.

⊳ While in main memory, a node is allowed to to have more than b or less than a children
⊳ We may have created a new node or deleted a node

5. Write back into secondary memory all the children of v.
6. Make v our new current node (rename it as u) and repeat this loop.
Write the current node u to secondary memory and terminate.

13 15 17 19

14 16 17

6 12 20

22 23 25

6 12 20

108 12

9 10

108 12

9 10

8 10 12 13

9 10 12

14 15 17 19

14 16 17

6 13 20

14 16 1713

151413 191721 23 25 272 4 6

2 5

Insert(14)

Donate 13

Figure 23: Inserting 14 into (3, 4, 2)-tree.

Insertion Example: Consider inserting the item (represented by its key) 14 into the tree in
Figure 19. This is illustrated by Figure 23. Note that a′ = b′ = 1. After inserting 14, we get an
overfull node with 5 children. Suppose we first try to donates to our left sibling. In this case, this
is possible since the left sibling has less than 4 children.

But imagine that a slightly different algorithm which tries to first donate to the right sibling.
In this case, the donation fails. Then our algorithm requires us to merge with the right sibling and
then split into 3 nodes. Of course, it is also possible to imagine a variant where we try to donate
to the left sibling if the right sibling is full. This variant may be slower since it involves bringing
an additional disk I/O. The tradeoff is that it leads to better space utilization.

Deletion Example: Consider deleting the item (represented by its key) 4 from the tree in
Figure 19. The is illustrated in Figure 24. After deleting 4, the current node u is underfull. We
try to borrow from the right sibling, but failed. But the right sibling of the right sibling could give
up one child.

One way to break down this process is to imagine that we merge u with the 2 siblings to its
right (a 3-to-1 merge) to create supernode. This requires bringing some keys (6 and 12) from the

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 43

6 12 20

22 23 25

13 15 17 19

14 16 179 102 5

108 122 4 6

6 12 20

108 126

9 102

13 15 17 19

14 16 17

2

20

21 23 25 27 2 6

2(5)

2 6 8 10 12 13

2

209

10 16

15 17 19

17

14

1 to 3 split

126

Delete(4)

126

3 to 1 merge

Figure 24: Deleting 4 from (3, 4, 2)-tree.

parent of u into the supernode. The supernode has 9 children, which we can split evenly into 3
nodes (a 1-3 split). These nodes are inserted into the parent. Note that keys 9 and 14 are pushed
into the parent. An implementation should be able combine this merge-then-split steps into one
more efficient process.

¶43. Generalized Split-Merge for (a, b)-trees. Thus insertion and deletion algorithms uses
the strategy of “share a key if you can” in order to avoid splitting or merging. Here, “sharing” en-
compasses donating or borrowing. The 2/3-space utility method is now generalized by introducing
a new parameter c ≥ 1. Call these (a, b, c)-trees. We use the parameter c as follows.

• Generalized Split of u: When node u is overfull, we will examine up to c−1 siblings to see
if we can donate a child to these siblings. If so, we are done. Otherwise, we merge c nodes
(node u plus c− 1 siblings), and split the merger into c + 1 nodes. We view c of these nodes
as re-organizations of the original nodes, but one of them is regarded as new. We must insert
this new node into the parent of u. The parent will be transformed appropriately.

• Generalized Merge of u: When node u is underfull, we will examine up to c siblings to
see if we can borrow a child of these siblings. If so, we are done. Otherwise, we merge c + 1
nodes (node u plus c siblings), and split the merger into c nodes. We view c of the original
nodes as being re-organized, but one of them being deleted. We must thus delete a node
from the parent of u. The parent will be transformed appropriately.

In summary, the generalized merge-split of (a, b, c)-trees transforms c nodes into c+1 nodes, or
vice-versa. When c = 1, we have the B-trees; when c = 2, we achieve the 2/3-space utilization ratio
above. In general, they achieve a space utilization ratio of c : c+1 which can be arbitrarily close to
1 (we also need b → ∞). Our (a, b, c)-trees must satisfy the following generalized split-merge
inequality,

c + 1 ≤ a ≤ cb + 1

c + 1
. (23)

The lower bound on a ensures that generalized merge or split of a node will always have enough
siblings. In case of merging, the current node has a − 1 keys. When we fail to borrow, it means
that c siblings have a keys each. We can combine all these a(c + 1)− 1 keys and split them into c
new nodes. This merging is valid because of the upper bound (23) on a. In case of splitting, the

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 44

current node has b + 1 keys. If we fail to donate, it means that c− 1 siblings have b keys each. We
combine all these cb + 1 keys, and split them into c + 1 new nodes. Again, the upper bound on a
(23) guarantees success.

We are interested in the maximum value of a in (23). Using the fact that a is integer, this
amounts to

a =

⌊

cb + 1

c + 1

⌋

. (24)

The corresponding (a, b, c)-tree will be called a generalized B-tree. Thus generalized B-trees are
specified by two parameters, b and c.

Example: What is the simplest generalized B-tree where c = 3? Then b > a ≥ c + 1 = 4. So
the smallest choices for these parameters are (a, b, c) = (4, 5, 3).

REMARK: An (a, b, c)-trees is structurally indistinguishable from an (a, b)-tree. For any (a, b)
parameter, we can compute the smallest c such that this could be a (a, b, c)-tree.

¶44. A Numerical Example. Let us see how to choose the (a, b, c) parameters in a concrete
setting. The nodes of the search tree are stored on the disk. The root is assumed to be always
in main memory. To transfer data between disk and main memory, we assume a UNIX-like
environment where memory blocks have size of 512 bytes. So that is the maximum size of each
node. The reading or writing of one memory block constitute one disk access. Assume that each
pointer is 4 bytes and each key 6 bytes. So each (key,pointer) pair uses 10 bytes. The value of b
must satisfy 10b ≤ 512. Hence we choose b = ⌊512/10⌋ = 51. Suppose we want c = 2. In this case,

the optimum choice of a is a =
⌊

cb+1
c+1

⌋

= 34.

To understand the speed of using such (34, 51, 2)-trees, assume that we store a billion items in
such a tree. How many disk accesses in the worst is needed to lookup an item? The worst case is
when the root has 2 children, and other internal nodes has 34 children (if possible). A calculation
shows that the height is 6. Assume the root is in memory, we need only 6 block I/Os in the worst
case. How many block accesses for insertion? We need to read c nodes and write out c + 1 nodes.
For deletion, we need to read c + 1 nodes and write c nodes. In either case, we have 2c + 1 nodes
per level. With c = 2 and h = 6, we have a bound of 30 block accesses.

For storage requirement, let us bound the number of blocks needed to store the internal nodes
of this tree. Let us assume each data item is 8 bytes (it is probably only a pointer). This allows us

to compute the optimum value of a′, b′. Thus b′ = ⌊512/8⌋ = 64. Also, a′ =
⌊

cb′+1
c+1

⌋

= 43. Using

this, we can now calculate the maximum and number of blocks needed by our data structure (use
Lemma 6).

¶45. Pre-emptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes
from the root to the leaf: one pass to go down the tree and another pass to go up the tree. There
is a 1-pass versions of these algorithms. Such algorithms could potentially be twice as fast as the
corresponding 2-pass algorithms since they could reduce the bottleneck disk I/O. The basic idea
is to pre-emptively split (in case of insertion) or pre-emptively merge (in case of deletion).

More precisely, during insertion, if we find that the current node is already full (i.e., has b
children) then it might be advisable to split u at this point. Splitting u will introduce a new child
to its parent, v. We may assume that v is already in core, and by induction, v is not full. So

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 45

v can accept a new child without splitting. In case of standard B-trees (c = 1), this involves no
extra disk I/O. Such pre-emptive splits might turn out to be unnecessary, but this extra cost is
negligible when the work is done in-core. Unfortunately, this is not true of generalized B-trees
since a split requires looking at siblings which must be brought in from the disk. Further studies
would be needed.

For deletion, we can again do a pre-emptive merge when the current node u has a children.
Unfortunately, even for standard B-trees, this may involve extra disk I/O because we need to try
to donate to a sibling first.

But there is another intermediate solution: instead of preemptive merge/split, we simply cache
the set of nodes from the root to the leaf. In this way, the second pass does not involve any disk
I/O, unless absolutely necessary (when we need to split and/or merge). In modern computers,
main memory is large and storing the entire path of nodes in the 2-pass algorithm seems to impose
no burden. In this situation, the pre-emptive algorithms may actually be slower than a 2-pass
algorithm with caching.

¶46. Background on Space Utilization. Using the a : b measure, we see that standard
B-trees have about 50% space utilization. Yao showed that in a random insertion model, the
utilization is about lg 2 ∼ 0.69%. (see [6]). This was the beginning of a technique called “fringe
analysis” which Yao [9] introduced in 1974. Nakamura and Mizoguchi [7] independently discovered
the analysis, and Knuth used similar ideas in 1973 (see the survey of [1]).

Now consider the space utilization ratio of generalized B-trees. Under (24), we see that the
ratio a : b is cb+1

(c+1) : b, and is greater than c : c + 1. In case c = 2, our space utilization that is close

to lg 2. Unlike fringe analysis, we guarantee this utilization in the worst case. It seems that most
of the benefits of (a, b, c)-trees are achieved with c = 2 or c = 3.

Exercises

Exercise 7.1: What is the the best ratio achievable under (17)? Under (22)? ♦

Exercise 7.2: Give a more detailed analysis of space utilization based on parameters for (A) a
key value, (B) a pointer to a node, (C) either a pointer to an item (in the exogenous case)
or the data itself (in the endogenous case). Suppose we need k bytes to store a key value,
p bytes for a pointer to a node, and d bytes for a pointer to an item or for the data itself.
Express the space utilization ratio in terms of the parameters

a, b, k, p, d

assuming the inequality (17). ♦

Exercise 7.3: Describe the exogenous version of binary search trees. Give the insertion and
deletion algorithms. NOTE: the keys in the leaves are now viewed as surrogates for the
items. Moreover, we allow the keys in the internal nodes to duplicate keys in the leaves, and
it is also possible that some keys in the internal nodes correspond to no stored item. ♦

Exercise 7.4: Consider the tree shown in Figure 19. Although we previously viewed it as a (3, 4)-
tree, we now want to view it as a (2, 4)-tree. For insertion/deletion we further treat it as a

c© Chee-Keng Yap Basic Version February 27, 2008

§7. (a, b)-Search Trees Lecture III Page 46

(2, 4, 1)-tree.
(a) Insert an item (whose key is) 14 into this tree. Draw intermediate results.
(b) Delete the item (whose key is) 4 from this tree. Draw intermediate results. ♦

Exercise 7.5: To understand the details of insertion and deletion algorithms in (a, b, c)-trees, we
ask you to implement in your favorite language (we like Java) the following two (2, 3, 1)-trees
and (3, 4, 2)-trees. ♦

Exercise 7.6: Is it possible to design (a, b, c) trees so that the root is not treated as an exception?
♦

Exercise 7.7: Suppose we want the root, if non-leaf, to have at least a children. But we now
allow it to have more than b children. This is reasonably, considering that the root should
probably be kept in memory all the time and so do not have to obey the b constraint. Here
is the idea: we allow the root, when it is a leaf, to have up to a′a− 1 items. Here, (a′, b′) is
the usual bound on the number of items in non-root leaves. Similarly, when it is a non-leaf,
it has between a and max{aa−1, b} children. Show how to consistently carry out this policy.

♦

Exercise 7.8: We want to explore the weight balanced version of (a, b)-trees.
(a) Define such trees. Bound the heights of your weight-balanced (a, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. ♦

End Exercises

References

[1] R. A. Baeza-Yates. Fringe analysis revisited. ACM Computing Surveys, 27(1):109–119, 1995.

[2] R. Bayer and McCreight. Organization of large ordered indexes. Acta Inform., 1:173–189,
1972.

[3] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists. Acta
Inform., 17:157–184, 1982.

[4] K. S. Larsen. AVL Trees with relaxed balance. J. of Computer and System Sciences, 61:508–
522, 2000.

[5] H. R. Lewis and L. Denenberg. Data Structures and their Algorithms. Harper Collins Publish-
ers, New York, 1991.

[6] K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sorting. Springer-Verlag, Berlin,
1984.

[7] T. Nakamura and T. Mizoguchi. An analysis of storage utilization factor in block split data
structuring scheme. VLDB, 4:489–195, 1978. Berlin, September.

[8] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1974.

[9] A. C.-C. Yao. On random 2-3 trees. Acta Inf., 9(2):159–170, 1978.

c© Chee-Keng Yap Basic Version February 27, 2008

