
Lecture II Page 1

Lecture II
RECURRENCES

Recurrences arise naturally in analyzing the complexity of recursive algorithms and in probabilistic anal-
ysis. We introduce some basic techniques for solving recurrences. A recurrence is a recursive relation for a
complexity function T (n). Here are two examples:

F (n) = F (n− 1) + F (n− 2) (1)

and
T (n) = n + 2T (n/2). (2)

The reader may recognize the first as the recurrence for Fibonacci numbers, and the second as the complexity
of the Merge Sort, described in Lecture 1. These recurrences have the following “separable form”:

T (n) = G(n, T (n1), . . . , T (nk)) (3)

where G(x0, x1, . . . , xk) is a functional expression in k + 1 variables (for some fixed k) and n1, . . . , nk are
all strictly less than n. Each ni is a function of n. E.g., in (1), k = 2, n1 = n − 1, n2 = n − 2 and in (2),
k = 1, n1 = n/2.

What does it mean to “solve” recurrences such as equations (1) and (2)? We consider the following
acceptable solutions: F (n) = Θ(φn) where φ = (1 +

√
5)/2 = 1.618 . . . is the golden ratio, and T (n) =

Θ(n log n). In this book, we generally wish to determine the function T (n) in (3) only up to Θ-order.
Sometimes, only an upper bound is needed, and we determine T (n) up to its O-order. In special cases, we
may be able to derive the exact solution but this may be difficult. A nice benefit of Θ-order solutions is this
– all the recurrences we treat can be solved by only elementary methods, without assuming continuity or
using calculus.

The variable “n” is called the designated variable of the recurrence (3). In case there are non-
designated variables, these are supposed to be held constant. In mathematics, we usually reserve “n” for
natural numbers or perhaps integers. In the above examples, this is the natural intepretation for n. But
one of the first steps we take in solving recurrences is to extend reinterpret n (or whatever is the designated
variable) to range over the real numbers. The corresponding recurrence equation (3) is then called a real
recurrence. For this reason, we may prefer the symbol “x” as our designated variable, since x is normally
viewed as a real variable.

What does an extension to real numbers mean? In the Fibonacci recurrence (1), what is F (2.5)? In
Merge Sort (2), what does T (π) = T (3.14159 . . .) represent? The short answer is, we don’t really care.

In addition to the recurrence (3), we generally need the boundary conditions or initial values of the
function T (n). They give us the values of T (n) before the recurrence (3) becomes valid. Without initial
values, T (n) is generally under-determined. For our example (1), if n range over natural numbers, then the
initial conditions

F (0) = 0, F (1) = 1

give rise to the standard Fibonacci numbers, i.e., F (n) is the nth Fibonacci number. Thus F (2) = 1, F (3) =
2, F (4) = 3, etc. On the other hand, if we use the initial conditions F (0) = F (1) = 0, then the solution is
trivial: F (n) = 0 for all n ≥ 0. Thus, our assertion earlier that F (n) = Θ(φn) is the solution to (1) is not
completely true without knowing the initial conditions. On the other hand, T (n) = O(n log n) can be shown
to hold for (2) regardless of the initial conditions.

Exercises

c© Chee-Keng Yap Basic Version September 23, 2004

§1. Simplication Lecture II Page 2

Exercise 0.1: Consider a (non-homogeneous) version of Fibonacci recurrence T (n) = T (n−1)+T (n−2)+n.
Show that T (n) = Ω(cn) for some c > 1, regardless of the initial conditions. Try to find the largest
value for c. ♦

Exercise 0.2: Consider recurrences of the form

T (n) = (T (n− 1))2 + g(n). (4)

In this exercise, we restrict n to natural numbers and use explicit boundary conditions.
(a) Show that the number of binary trees of height at most n is given by this recurrence with g(n) = 1
and the boundary condition T (1) = 1. Show that this particular case of (4) has solution

T (n) =
⌊
k2n
⌋

. (5)

(b) Show that the number of Boolean functions on n variables is given by (4) with g(n) = 0 and
T (1) = 2. Solve this.
NOTE: Aho and Sloane (1973) investigate the recurrence (4). ♦

Exercise 0.3: Let T, T ′ be binary trees and |T | denote the number of nodes in T . Define the relation T ∼ T ′

recursively as follows: (BASIS) If |T | = 0 or 1 then |T | = |T ′|. (INDUCTION) If |T | > 1 then |T ′| > 1
and either (i) TL ∼ T ′

L and TR ∼ T ′
R, or (ii) TL ∼ T ′

R and TR ∼ T ′
L. Here TL and TR denote the left

and right subtrees of T .
(a) Use this to give a recursive algorithm for checking if T ∼ T ′.
(b) Give the recurrence satisfied by the running time t(n) of your algorithm.
(c) Give asymptotic bounds on t(n). ♦

End Exercises

§1. Simplification

In the real world (as opposed to a classroom situation), when faced with an actual recurrence to be
solved, there is usually some simplifications steps to be taken. This section suggests some guidelines. There
are three generally applicable simplifications:

• Initial Condition. In this book, we often state recurrence without any specific initial conditions. This
is deliberate: we expect the student to supply some non-trivial initial conditions. The Default Initial
Condition (DIC) has the following form: for all 0 < n0 < n1, there exists constants 0 < C0 ≤ C1

such that
(∀ n0 ≤ n < n1)[C0 ≤ T (n) ≤ C1]. (6)

The recurrence relations is then assumed to hold for n ≥ n1. The intent is for the student to make
convenient choices for n0, n1 so as to make the solution for T (n) simple.

We sometimes allow the strong Default Initial Condition (strong DIC) in which the student can
freely choose that arbitrary values of T (n) for each n, n0 ≤ n ≤ n1. Here, T (n) is not required to
satisfy (6) (in particular, we allow T (n) ≤ 0). This can further simplify the solution.

What is the justification for this approach? It allows us to focus on the recurrence itself rather than
the initial conditions. In many cases, this arbitrariness does not affect the asymptotic behavior of the
solution. But even if it does, it may not affect the method of solving the recurrence.

c© Chee-Keng Yap Basic Version September 23, 2004

§1. Simplication Lecture II Page 3

• Extension to Real Functions. Even if the function T (n) is originally defined for natural numbers
n, we will now treat T (n) as a real function (i.e., n is viewed as a real variable), and defined for n
sufficiently large. Under the Default Initial Condition (6), we assume T (n) is define for all n > n0.

• Convert into a Recurrence Equation. If we begin with an recurrence inequality such as T (n) ≤
G(n, T (n1), . . . , T (nk)), we simply treat it as an equality: T (n) = g(T (n1), . . . , T (nk)). Our eventual
solution for T (n) can only be an upper bound on the function underlying “T (n)”. Similarly, if we had
started with T (n) ≥ G(n, T (n1), . . . , T (nk)), the eventual solution is only a lower bound.

Special Simplications. This depends on the recurrence at hand. Suppose the running time of an algo-
rithm satisfies the following inequality:

T (n) ≤ T (dn/2e) + T (bn/2c) + 6n + lg n− 4, (7)

for integer n > 10, with boundary condition

T (n) = 3n2 − 4n + 2 (8)

for 0 ≤ n ≤ 10. Such a recurrence inequation may arises in some imagined implementation of Merge
Sort. Our general simplifications steps already tells us to (a) discard the specific boundary conditions (8) in
favor of (6), (b) treat T (n) as a real function, and (c) write the recurrence as a equation.

What other simplications might apply here? Let us convert (7) into the following

T (n) = 2T (n/2) + n. (9)

This represents two additional simplifications: (i) We replaced the term “+6n + lg n − 4” by some simple
expression with same Θ-order (in this case, “+n”). (ii) We have removed the ceiling and floor functions.
Step (i) is justified because this does not affect the Θ-order (if this is not clear, then you can always come
back to verify this claim). Step (ii) exploits the fact that we now treat T (n) as a real function, so we need
not worry about non-integral arguments when we remove the ceiling or floor functions. Also, it does not
affect the asymptotic value of T (n) here.

While these remarks may not be obvious, it should seem reasonable. Ultimately, one ought to return to
such simplifications to justify them.

Exercises

Exercise 1.1: Show that our above simplifications of the the recurrence (7) (with its initial conditions)
cannot affect the asymptotic order of the solution. [Show this for ANY choice of a Default Boundary
Condition.] ♦

Exercise 1.2: Show counterexamples to the claim that we can replace dn/2e by n/2 in a recurrence without
changing the Θ-order of the solution.
(a) Construct a function g(n) that provides a counter example for the following recurrence: T (n) =
T (dn/2e) + g(n). HINT: make g(n) depend on the parity of n.
(b) Construct a different recurrence to provide a counter example.

♦

Exercise 1.3: Construct examples such that the following modifications lead to asymptotically differente
solutions.
(a) Removing a ceiling function (say, replace T (dn/2e) by T (n/2)).
(b) Modifying the initial conditions. ♦

c© Chee-Keng Yap Basic Version September 23, 2004

§2. Karatsuba Multiplication Lecture II Page 4

Exercise 1.4: Suppose T (n) satisfies a recurrence equation of the form T (n) = g(T (n1)) where n1 < n and
g(·) is an arbitrary function. Assume that the solution of this recurrence with respect to some specific
initial conditions (C) yields the solution T (n) = Θ(nk) for some constant k > 0. Do the following
modifications affect the Θ-order of the solution?
(a) The use of our Default Initial Condition instead of (C).
(b) Using the modified recurrence T (n) = g(T (n1+c)) where c is any real constant, positive or negative,
such that n1 + c < n. ♦

Exercise 1.5: Suppose x, n are positive numbers satisfying the following “recurrence” equation,

2x = x2n.

Solve for x as a function of n, showing

x(n) = [1 + o(1)]2n log2(2n).

HINT: take logarithms. This is an example of a bootstrapping argument where we use an approximation
of x(n) to derive yet a better approximation.

♦

Exercise 1.6: [Ample Domains] Consider the simplification of (7) to (9). Suppose, instead of assuming
T (n) to be a real function (so that (9) makes sense for all values of n), we continue to assume n is a
natural number. It is easy to see that T (n) is completely defined by (9) iff n is a power of 2. We say
that (9) is closed over the set D0 :={2k : k ∈ N} of powers of 2. In general, we say a recurrence is
“closed over a set D ⊆ R” if for all n ∈ D, the recurrence for T (n) depends only on smaller values ni

that also belong in D (unless ni lies within the boundary condition).
(a) Let us call a set D ⊆ R an “ample set” if, for some α > 1, the set D ∩ [n, α · n] is non-empty for
all n ∈ N. Here [n, αn] is closed real interval between n and αn. If the solution T (n) is sufficiently
“smooth”, then knowing the values of T (n) at an ample set D gives us a good approximation to
values where n 6∈ D. In this question, our “smoothness assumption” is simply: T (n) is monotonic
non-decreasing. Suppose that T (n) = nk for n ranging over an ample set D. What can you say about
T (n) for n 6∈ D? What if T (n) = cn over D? What if T (n) = 22n

over D?
(b) Suppose T (n) is recursively expressed in terms of T (n1) where n1 < n is the largest prime smaller
than n. Is this recurrence defined over an ample set? ♦

End Exercises

§2. Karatsuba Multiplication

Let us see another interesting recurrence that arise in the analysis of an algorithm of Karatsuba [5].

We learn a fairly non-trivial algorithm in middle school, namely a method to multiply two integers.
Given positive integers X, Y , we want to compute Z which is their produce XY . Usually we think of X, Y
in decimal notation, but the algorithm works equally well for binary notation. We assume binary notation
for simplicity. For instance, if X = 19 then in binary X = 10011. To avoid the ambiguity from different
bases, we indicate1 the base using a subscript, X = (10011)2. In any case, if X and Y are at most n digits
each, then the high school algorithm clearly takes Θ(n2) time. Can we improve on this?

1By the same token, we may write X = (19)10 for base 10. But now the base “10” itself may be subject to ambiguity – after
all “10” in binary is equal to two. But the standard convention is to write the base in decimal. A further convention is that
decimal base is assumed when none is indicated.

c© Chee-Keng Yap Basic Version September 23, 2004

§2. Karatsuba Multiplication Lecture II Page 5

Assume X and Y has length exactly n where n is a power of 2 (we can padd with 0’s if necessary). Let
us split up X into a high-order half X1 and low-order half X0. Thus

X = X0 + 2n/2X1

where X0, X1 are n/2-bit numbers. Similarly,

Y = Y0 + 2n/2Y1.

Then

Z = (X0 + 2n/2X1)(Y0 + 2n/2Y1)
= X0Y0 + 2n/2(X1Y0 + X0Y1) + 2nX1Y1

= Z0 + 2n/2Z1 + 2nZ1,

where Z0 = X0Y0, etc. Clearly, each of these Zi’s have at most 2n bits. Now, if we compute the 4 products

X0Y0, X1Y0, X0Y1, X1Y1

recursively, then we can put them together (“conquer step”) in O(n) time. To see this, we must make an
observation: in binary notation, multiplying any number X by 2k (for any positive integer k) takes O(k)
time, independent of X. We can view this as a matter of shifting left by k, or by appending a string of k
zeros to X.

Hence, if T (n) is the time to multiply two n-bit numbers, we obtain the recurrence

T (n) ≤ 4T (n/2) + Cn (10)

for some C > 1. Given our simplification suggestions, we immediately rewrite this as

T (n) = 4T (n/2) + n.

It turns out that this recurrence has solution T (n) = Θ(n2), so we have not really improved on the high-school
method.

Karatsuba observed that we can proceed as follows: we can compute Z0 = X0Y0 and Z2 = X1Y1 first.
Then we can compute Z1 using the formula

Z1 = (X0 + X1)(Y0 + Y1)− Z0 − Z2.

Thus Z1 can be computed with one recursive multiplication plus some addition O(n) work. From Z0, Z1, Z2,
we can again obtain Z in O(n) time. This gives us the Karatsuba recurrence,

T (n) = 3T (n/2) + n. (11)

We shall show that T (n) = Θ(nα) where α = lg 3 = 1.58 · · · . This is clearly an improvement of the high
school method.

The recurrences (2), (10) and (11) are all instances of the “Master recurrence”

T (n) = aT (n/b) + f(n) (12)

where a > 0 and b > 1 are constants and f is any function. We shall solve this recurrence under fairly
general conditions.

Exercises

c© Chee-Keng Yap Basic Version September 23, 2004

§3. Rote Method Lecture II Page 6

Exercise 2.1: Carry out Karatsuba’s algorithm for X = 6 = (0110)2 and Y = 11 = (1011)2. It is enough to
display the recursion tree with the correct arguments for each recursive call, and the returned values.

♦

Exercise 2.2: Suppose an implementation of Karatsuba’s algorithm achieves T (n) ≤ Cn1.58 where C =
1000. Moreover, the High School multiplication is T (n) = 30n2. At what value of n does Karatsuba
become competitive with the High School method? ♦

Exercise 2.3: Consider the recurrence T (n) = 3T (n/2) + n and T ′(n) = 3T ′(dn/2e) + 2n. Show that
T (n) = Θ(T ′(n)). ♦

Exercise 2.4: The following is a programming exercise. It is best done using a programming language such
as Java that has a readily available library of big integers.
(a) Implement Karatsuba’s algorithm using such a programming language and using its big integer
data structures and related facilities. The only restriction is that you must not use the multiplication,
squaring, division or reciprocal facility of the library. But you are free to use its addition, and presum-
ably it has the ability to perform “left shifts” (multiplication by powers of 2) in linear time.
(b) Let us measure the running time of your implementation of Karatsuba’s algorithm. If T (n) ≤ Cnα

then lg T (n) ≤ lg C +α lg n. Hence if we plot lg T (n) against lg n, we should get a slope that is at most
C. Verify that C < 1.58 in your case. ♦

Exercise 2.5: Suppose the running time of an algorithm is an unknown function of the form T (n) =
Ana + Bnb where a > b and A,B are arbitrary positive constants. You want to discover the exponent
a by measurement. How can you, by plotting the running time of the algorithm for various n, find a
with an error of at most ε? Assume that you can do least squares line fitting. ♦

Exercise 2.6: Try to generalize Karatsuba’s algorithm by breaking up each n-bit number into 3 parts.
What recurrence can you achieve in your approach? Does your recurrence improve upon Karatsuba’s
exponent of lg 3 = 1.58 · · · ? ♦

Exercise 2.7: To generalize Karatsuba’s algorithm, consider splitting an n-bit integer X into m equal parts
(assuming m divides n). Let the parts be X0, X1, . . . , Xm−1 where X =

∑m−1
i=0 Xi2in/m. Similarly, let

Y =
∑m−1

i=0 Yi2in/m. Let us define Zi =
∑i

j=0 XjYi−j for i = 0, 1, . . . , 2m − 2. In the formula for Zi,
assume X` = Y` = 0 when ` ≥ m.
(i) Determine the Θ-order of f(m,n), defined to be the time to compute the product Z = XY when
you are given Z0, Z1, . . . , Z2m−2. Remember that f(m,n) is the number of bit operations.
(ii) It is known that we can compute {Z0, Z1, . . . , Z2m−2} from the Xi’s and Yj ’s using O(m log m)
multiplications and O(m log m) additions, all involving (n/m)-bit integers. Using this fact with part
(i), give a recurrence relations for the time T (n) to multiply two n-bit integers.
(iii) Conclude that for every ε > 0, there is an algorithm for multiplying any two n-bit integers in time
T (n) = Θ(n1+ε). NOTE: part (iii) is best attempted after you have studied the Master Theorem in
the subsequent sections. ♦

End Exercises

§3. Rote Method

c© Chee-Keng Yap Basic Version September 23, 2004

§3. Rote Method Lecture II Page 7

We are going to introduce two “direct methods” for solving recurrences: rote method and induction.
They are “direct” as opposed to other transformational methods which we will introduce later. Although
fairly straightforward, these direct methods do call for some creativity (educated guesses). We begin with
the rote method, as it appears to require somewhat less guess work.

Expand, Guess, Verify, Stop. The “rote method” may be thought of as the method of repeated expan-
sion of a recurrence. Actually, this is only the first of 4 distinct stages. After several expansion steps, you
guess the general term in the growing summation. Next, you verify your guess by natural induction. Finally,
we must terminate the process by choosing a base of induction. The creative part of this process lies in the
guessing step.

We will illustrate the method using the merge-sort recurrence ((9)):

T (n) = 2T (n/2) + n

= 4T (n/4) + n + n

= 8T (n/8) + n + n + n (13)

This is the expansion step. At this point, we may guess that the (i− 1)st step of this expansion yields

(G)i : T (n) = 2iT (n/2i) + in (14)

for a general i. To verify our guess, we expand the guessed formula one more time,

T (n) = 2i[2T (n/2i+1) + n/2i] + in

= 2i+1T (n/2i+1) + (i + 1)n, (15)

which is just the formula (G)i+1 in the sense of (14). Thus the formula (14) is verified for i = 1, 2, 3, We
must next choose a value of i at which to stop this expansion. It is natural to choose i = lg n if n is a power
of 2. But when n is not a power of 2, lg n is not an integer. Unfortunately, we cannot re-interprete i as a
real number (as we did for n). It is meaningless, for instance, to expand the recurrence for i = 2.3 times.
So, restricting i to a natural number, we now choose

i = blg nc . (16)

as our stopping value. With this choice of i, we see that 1 ≤ n/2i < 2. Now we choose the initial condition
to be

T (n) = 0, for n < 2. (17)

This yields the exact solution that for n ≥ 2,

T (n) = n blg nc . (18)

To summarize, the rote method consists of

(E) Expansions steps as in (13),

(G) Guessing of a general formula as in (14),

(V) Verification of the formula as in (15),

(S) choice of a Stopping criteria as in (16).

How can this method fail? It is clear that you can always perform expansions, but you may be stuck
at the next step while trying to guess a reasonable formula. For instance, try to expand the recurrence
T (n) = n + 2T (dn/2e). But when the method works, it gives you the exact solution.

c© Chee-Keng Yap Basic Version September 23, 2004

§4. Real Induction Lecture II Page 8

REMARKS:
I. The choice (17) is an example of the strong Default Initial Condition. But suppose you are only allowed to
use the plain Default Initial Condition, i.e., (6). Let us choose n0 = 1 and n1 = 2, so that for some C0, C1,
we have

0 < C0 ≤ T (n) ≤ C1

for all 1 ≤ n < 2. In this case, we see that i must be chosen so that

n

2i
< 2 ≤ n

2i−1

which, after some manipulation, amounts to

i = 1 + blg(n/2)c .

Plugging into (14), we get that for n ≥ 2,

T (n) = 21+blg(n/2)cΘ(1) + (1 + blg(n/2)c)n
= n blg(n/2)c+ Θ(n).

This is not as pretty as (18).
II. The appearance of the floor function in the solution (18) makes T (n) non-continuous whenever n is a
power of 2. We can make the solution continuous if we fully exploit our freedom in specifying boundary
conditions. Let us now assume that T (n) = n lg n for 1 ≤ n < 2. Then the above proof gives the solution

T (n) = n lg n

for n ≥ 1. This solution is the ultimate in simplicity for the recurrence (9).

Exercises

Exercise 3.1: No credit work: Rote is discredited word in pedagogy, so we would like a more dignified
name for this method. We could call this the “4-Fold Path” or the the “EGVS Method”. Suggest your
own name for this method. In a humorous vein, what can EGVS stand for? ♦

Exercise 3.2: Solve the Karatsuba recurrence (11) using the Rote Method. ♦

Exercise 3.3: Use the Rote Method to solve the following recurrences
(a) T (n) = n + 8T (n/2).
(b) T (n) = n + 16T (n/4).

(c) Can you generalize your results in (a) and (b) to recurrences of the form T (n) = n + aT (n/b)
where a, b are in some special relation? ♦

Exercise 3.4: Give the exact solution for T (n) = 2T (n/2)+n for n ≥ 1 under the initial condition T (n) = 0
for n < 1. ♦

End Exercises

§4. Real Induction

c© Chee-Keng Yap Basic Version September 23, 2004

§4. Real Induction Lecture II Page 9

The rote method, when it works, is a very accurate tool in the sense that as it gives us the exact solution
to recurrences. Unfortunately, it does not work for many recurrences: while you can always expand, you may
not be able to guess the general formula for the i-th expansion. We now introduce a more widely applicable
method, based on the novel idea of “real induction”.

The student should be familiar with natural induction, a method of proof based on induction over
natural numbers. In brief, natural induction is this. Suppose P (·) is a natural number predicate, i.e., for
each n ∈ N, P (n) is a proposition. For example, P (n) might be “There is a prime number between n and
n + 10 inclusive”. A proposition is either true or false. Thus, we may verify2 that P (100) is true because
101 is prime, but P (200) is false because 211 is the smallest prime larger than 200. We simply write “P (n)”
or, for emphasis, “P (n) holds” when we want to assert that “proposition P (n) is true”. Natural induction
is aimed at proving propositions of the form

(∀n ∈ N)[P (n) holds]. (19)

When (19) holds, we say the predicate P (·) is valid. The standard method for proving validity of a predicate
is “natural induction”. This has three steps:
(i) [Natural Basis Step] First show that P (0) holds.
(ii) [Natural Induction Step] Next, show that if n ≥ 1 and P (n− 1) holds then P (n) holds:

(n ≥ 1) ∧ P (n− 1) ⇒ P (n). (20)

(iii) [Principle of Natural Induction] This principle says (i) and (ii) imply the validity of P (·), i.e., (19).

Since step (iii) is generic and independent of the predicate P (·), we only need to show the first two steps.
A variation of natural induction is the following: for any natural number predicate P (·), we define a new
predicate denoted P ∗(·), defined via

P ∗(n) : (∀m ∈ N)[m < n ⇒ P (m)]. (21)

Then strong natural induction replaces (20) in step (ii) by

(ii)∗: (n ≥ 1) ∧ P ∗(n) ⇒ P (n).

The Principle of Strong Natural Induction says that P (0) and P ∗(n) ⇒ P (n) imply the validity of
P (·). We may call P ∗(n) the Strong Natural Induction Hypothesis.

Now we introduce real induction, which has similarities to strong natural induction. Unlike natural
induction, real induction is rarely3 discussed in mathematical literature. We shall see it is a most natural
technique for analysis of algorithms. Real induction is applicable to real predicates, i.e., a predicate P (·)
such that for each x ∈ R, we have a proposition denoted P (x).

For example, suppose T (x) is a total complexity function that satisfies the Karatsuba recurrence (11)
subject to the initial condition T (x) = 1 for x ≤ 10. Let us define the real predicate

P (x) : [x ≥ 10 ⇒ T (x) ≤ x2]. (22)

As in (19), we want to prove the validity of the real predicate P (·), i.e.,

(∀x ∈ R)[P (x) holds]. (23)

In analogy to (21), we transform P (·) into the new predicate

P ∗
δ (x) : (∀y ∈ R)[y ≤ x− δ ⇒ P (y)] (24)

where δ is any positive real number. The predicate P ∗
δ (x) is called the Real Induction Hypothesis. When

δ is understood, we may simply write P ∗(x) instead of P ∗
δ (x).

2The smallest n such that P (n) is false is n = 114.
3We have not found any references to this topic.

c© Chee-Keng Yap Basic Version September 23, 2004

§4. Real Induction Lecture II Page 10

Theorem 1 (Principle of Real Induction) Let P (x) be a real predicate. Suppose there exist real num-
bers δ > 0 and x1 such that

(I) [Real Basis Step] For all x < x1, P (x) holds.

(II) [Real Induction Step] For all x ≥ x1, P ∗
δ (x) ⇒ P (x).

Then for all x ∈ R, P (x) holds.

x1

Q(−1) Q(0) Q(1) Q(2) · · ·

x1 + δ x1 + 2δx1 − δ

· · ·
x

Figure 1: Discrete steps in real induction

Proof. The idea is to divide the real line into discrete intervals of length δ using the the function

t(x) :=
⌊

x− x1

δ

⌋
.

Thus t(x) < 0 iff x < x1. Also let the integer predicate Q(·) be given by

Q(n) : (∀x ∈ R)[t(x) = n ⇒ P (x)].

Here n ranges over the integers, not just natural numbers. We then introduce

Q∗(n) : (∀m ∈ Z)[m < n ⇒ Q(m)].

Note that Q∗(0) is equivalent to the Real Basis Step. We claim that for all n ∈ N,

Q∗(n) ⇒ Q(n). (25)

To show this, fix any n ∈ N, and any x satisfying t(x) = n. It suffices to show that P (x) holds, assuming
Q∗(n). Note that for all y ≤ x− δ,

t(y) =
⌊

y − x1

δ

⌋
≤
⌊

x− δ − x1

δ

⌋
= t(x)− 1 = n− 1.

But t(y) ≤ n − 1 and Q∗(n) implies P (y). That is, we have established the Real Induction Hypothesis,
P ∗

δ (x). Also, n = t(x) ≥ 0 means x ≥ x1. Hence the Real Induction Step (II) tells us that P (x) holds. This
proves our claim.

Now, (25) is equivalent to
Q∗(n) ⇒ Q∗(n + 1). (26)

If we view Q∗(n) as a natural number predicate, then (26) is just the Natural Induction Step for the predicate
Q∗(·). Since Q∗(0) holds, by the Principle of Natural Induction, we conclude that Q∗(·) is valid. The validity
of Q∗(·) is equivalent to the validity of the real predicate P (·). Q.E.D.

Let us apply the principle of real induction to real recurrences. Note that its application requires the
existence of two constants, x1 and δ, making it somewhat harder to use than natural induction.

Example: Suppose T (x) satisfies the recurrence

T (x) = x5 + T (x/a) + T (x/b) (27)

c© Chee-Keng Yap Basic Version September 23, 2004

§4. Real Induction Lecture II Page 11

where a−5 + b−5 = k0 < 1 and a ≥ b > 1. Given x0 ≥ 1 and K > 0, let P (x) be the proposition

x ≥ x0 ⇒ T (x) ≤ Kx5. (28)

We will prove that for all x0 ≥ 1, there is a K > 0 such that P (x) is valid. Now for any x1, if x1 > x0 then
our Default Initial Condition says that there is a C > 0 such that

T (x) ≤ C

for all x0 ≤ x < x1. If we choose K such that K ≥ C/x0 then for all x0 ≤ x < x1, P (x) holds, i.e., we have
T (x) ≤ C = Kx5

0 ≤ Kx5 (since x ≥ x0 ≥ 1). This establishes the Real Basis Step (I) for P (x) relative to x1.

To establish the Real Induction Step (II), we need more properties for x1 and must choose a suitable δ.
First choose

x1 = ax0. (29)

Thus for x ≥ x1, we have x0 ≤ x/a ≤ x/b. Next choose

δ = x1 − (x1/b) = x1
b− 1

b
. (30)

This ensures that for x ≥ x1, we have x/a ≤ x/b ≤ x − δ. The Real Induction Hypothesis P ∗
δ (x) says

that for all y ≤ x− δ, P (y) holds, i.e., y ≥ x0 ⇒ P (y). Suppose x ≥ x1 and P ∗
δ (x) holds. We need to show

that P (x) holds:

T (x) = x5 + T (x/a) + T (x/b)
≤ x5 + K · (x/a)5 + K · (x/b)5, (by P ∗

δ (x) and x0 ≤ x/a ≤ x/b ≤ x− δ) (31)
= x5(1 + K · k0)
≤ Kx5 (32)

where the last inequality is true provided our choice of K above further satisfies 1 + K · k0 ≤ K or K ≥
1/(1− k0). This proves the Real Induction Step (II). Invoking the Principle of Real Induction, we conclude
that P (·) is valid.

In a similar vein, we can prove a lower bound on T (x) using real induction. As the last example shows,
the direct application of the Principle of Real Induction is tedious, as we have to keep track of the constants
such as δ, x1 and K. Our next goal is to prove a theorem which makes most of this process can be made
automatic. The crucial property of the complexity functions used in the above derivation is captured by the
following definition:

A real function f : Rk → R is said to be a growth function if f is eventually total, eventually non-
decreasing and unbounded in each of its variables. For instance, f(x) = x2 − 3x and f(x, y) = xy + x/ log x
are growth functions, but f(x) = −x and f(x, y, z) = xy/z are not.

Theorem 2 Assume T (x) satisfies the real recurrence

T (x) = G(x, T (g1(x)), . . . , T (gk(x)))

and

• G(x, t1, . . . , tk) and each gi(x) (i = 1, . . . , k) are growth functions.

c© Chee-Keng Yap Basic Version September 23, 2004

§4. Real Induction Lecture II Page 12

• There is a constant δ > 0 such that each gi(x) ≤ x− δ (ev. x).

Suppose f(x) is a growth function such that

G(x,Kf(g1(x)), . . . ,Kf(gk(x))) ≤ Kf(x)) (ev. K, x). (33)

Under the Default Initial Condition, we conclude

T (x) = O(f(x)).

Proof. Pick x0 > 0 and K > 0 large enough so that all the “eventual premises” of the theorem are satisfied. In
particular, f(x), G(x, t1, . . . , tk) and gi(x) are all defined, non-decreasing and positive when their arguments
are ≥ x0. Also, gi(x0) ≤ x0 − δ for each i. Let P (x) be the predicate

P (x) : x ≥ x0 ⇒ T (x) ≤ Kf(x).

Pick
x1 = max{r−1

i (x0) : i = 1, . . . , k}. (34)

The inverse r−1
i of ri is undefined at x0 if there does not exist yi such that ri(yi) = x0, or if there exists more

than one such yi. In this case, take r−1
i (x0) in (34) to be any yi such that ri(yi) ≥ x0. We then conclude

that for all x ≥ x1,
x0 ≤ ri(x) ≤ x− δ.

By the Default Initial Condition (DIC), we conclude that for all x ∈ [x0, x1], P (x) holds. Thus, the Real
Basis Step is verified. We now verify the Real Induction Step. Assume x ≥ x1 and P ∗

δ (x). Then,

T (x) = G(x, T (g1(x)), . . . , T (gk(x)))
≤ G(x,Kf(g1(x), . . . ,Kf(g1(x))) (by P ∗

δ (x))
≤ Kf(x) (by (33)).

Thus P (x) holds. By the Principle of Real Induction, P (x) is valid. This implies T (x) = O(f(x)). Q.E.D.

Let us apply this theorem to our example (27). We only need to verify that

1. f(x) = x5, G(x, t1, t2) = x5 + t1 + t2, g1(x) = x/a and g2(x) = x/b are growth functions

2. g1(x) ≤ x− 1 and g2(x) ≤ x− 1 when x is large enough.

3. The inequality (33) holds when K ≥ 1/(1− k0). This is just the derivation of (32) from (31).

From theorem 2 we conclude that T (x) = O(f(x)). The step (33) is the most interesting step of this
derivation.

It is clear that we can give an analogous theorem which can be used to easily establish lower bounds on
T (x). We leave this as an Exercise.

REMARKS:
I. One phenomenon that arises is that one often has to introduce a stronger induction hypothesis than
the actual result aimed for. For instance, to prove that T (x) = O(x log x), we may need to guess that
T (x) = Cx log x + Dx for some C,D > 0. See the Exercises below.

c© Chee-Keng Yap Basic Version September 23, 2004

§5. Basic Sums Lecture II Page 13

II. The Archimedean Property of real numbers says that for all δ > 0 and x > 0, there exists n ∈ N such
that nδ > x. This is the property that allowed us to reduce Real Induction to Natural Induction.

In the rest of this chapter, we indicate other systematic pathways, influenced by some lecture notes of
Mishra and Siegel [8], and the books of Knuth [6], Greene and Knuth [3]. See also Purdom and Brown [9]
and the survey of Lueker [7].

Exercises

Exercise 4.1: Give another proof of theorem 1, by using contradiction. ♦

Exercise 4.2: Suppose T (x) = 3T (x/2) + x. Show by real induction that T (x) = Θ(xlg 3). ♦

Exercise 4.3: Consider equation (9), T (n) = 2T (n) + n. Fix any k > 1. Show by induction that T (n) =
O(nk). Which part of your argument suggests to you that this solution is not tight? ♦

Exercise 4.4: Consider the recurrence T (n) = n + 10T (n/3). Suppose we want to show T (n) = O(n3).
(a) Attempting to prove by real induction, students often begin with a statement such as “Using the
Default Initial Condition, we may assume that there is some C > 0 and n0 > 0 such that T (n) ≤ Cn3

for all n < n0”. What is wrong with this statement?
(b) Give a correct proof by real induction.
(c) Suppose T (n) = n + 10T ((n + K)/2) for some constant K. How does your proof in (b) change?

♦

Exercise 4.5: Let T (n) = 2T (n
2 + c) + n for some c > 0.

(a) By choosing suitable initial conditions, prove the following bounds on T (n) by induction, and not
by any other method:

(a.1) T (n) ≤ D(n − 2c) lg(n − 2c) for some D > 1. Is there a smallest D that depends only on c?
Explain. Similarly, show T (n) ≥ D′(n− 2c) lg(n− 2c) for some D′ > 0.

(a.2) T (n) = n lg n− o(n).
(a.3) T (n) = n lg n + Θ(n).

(b) Obtain the exact solution to T (n).
(c) Use your solution to (b) to explain your answers to (a). ♦

Exercise 4.6: Let us introduce the “multiterm master recurrence”,

T (x) = f(x) +
k∑

i=1

aiT

(
x

bi

)
where k ≥ 1, ai > 0 and b1 > b2 > · · · > bk > 1 (i = 1, . . . , k). Suppose f(x) = O(xα) for some
constant α > 0 and

∑k
i=1 ai/bα

i = c0 < 1. Prove that T (x) = O(xα). ♦

End Exercises

§5. Basic sums

c© Chee-Keng Yap Basic Version September 23, 2004

§5. Basic Sums Lecture II Page 14

Consider the recurrence T (n) = T (n− 1) + n. By rote method, this has the “solution”

T (n) =
n∑

i=1

i,

assuming T (0) = 0. But the RHS of this equation involves an open sum, meaning that the number of
summands is unbounded as a function of n. We do not accept this “answer” even though it is perfectly
accurate.

What Does It Mean to Solve a Recurrence? Actually, you may have noticed that the open sum
above is well-known and is equal to (

n

2

)
=

n(n− 1)
2

= Θ(n2).

We would be perfectly happy with the answer “T (n) = Θ(n2)”. In general, one can always express a separable
recurrence equation of T (n) as an open sum, by rote expansion. We do not regard this as acceptable. Hence,
we are really only interested in solutions which can be written as a closed sum or product, meaning that
the number of terms (i.e., summands or factors) is independent of n. Moreover, each term must be composed
of “familiar” functions.

Familiar Functions. So we conclude that “solving a recurrence” is relative to the form of solution we
allow. This we interpret to mean a closed sum of “familiar” functions. For our purposes, the functions
considered familiar include

polynomials f(n) = nk, logarithms f(n) = log n, and exponentials f(n) = cn (c > 0).

Functions such as factorials n!, binomial coefficients
(
n
k

)
and harmonic numbers Hn (see below) are tightly

bounded by familiar functions, and are therefore considered familiar. Finally, we have a rule saying that the
sum, product and functional composition of familiar functions are considered familiar. Thus logk n, log log n,
n + 2 log n and nn log n are familiar.

In addition to the above list of functions, two very slow growing functions arise naturally in algorithmic
analysis. These are the log-star function log∗ x and the inverse Ackermann function α(n) (see Lecture XII).
We will consider them familiar, although functional compositions involving them are only familiar in a very
technical sense!

We refer the reader to the Appendix A in this lecture for basic properties of the exponential and logarithm
function. In this section, we present some basic closed form summations.

Arithmetic series. The basic arithmetic series is

Sn :=
n∑

i=1

i

=
(

n + 1
2

)
. (35)

In proof,

2Sn =
n∑

i=1

i +
n∑

i=1

(n + 1− i) =
n∑

i=1

(n + 1) = n(n + 1).

c© Chee-Keng Yap Basic Version September 23, 2004

§5. Basic Sums Lecture II Page 15

More generally, for fixed k ≥ 1, we have the “arithmetic series of order k”,

Sk
n :=

n∑
i=1

ik = Θ(nk+1). (36)

In proof, we have

nk+1 > Sk
n >

n∑
i=dn/2e)

(n/2)k ≥ (n/2)k+1.

For more precise bounds, we bound Sk
n by integrals,

nk+1

k + 1
=
∫ n

0

xkdx < Sk
n <

∫ n+1

1

xkdx =
(n + 1)k+1 − 1

k + 1
,

yielding

Sk
n =

nk+1

k + 1
+Ok(nk). (37)

Geometric series. For x 6= 1 and n ≥ 1,

Sn(x) :=
n−1∑
i=0

xi

=
xn − 1
x− 1

. (38)

In proof, note that xSn(x)− Sn(x) = xn − 1. When n →∞, we get the series

S∞(x) :=
∞∑

i=0

xi

=


∞ if x ≥ 1
↑ (undefined) if x ≤ −1

1
1−x if |x| < 1.

One of the simplest infinite series is
∑∞

i=0 xi. It also has a very simple closed form solution,

∞∑
i=0

xi =
1

1− x
(39)

I call
∑∞

i=0 xi. the “mother of series” because, from the, we can derive many other solutions for series,
including finite series. In fact, for |x| < 1, we can derive equation (38) by plugging equation (39) into

Sn(x) = S∞(x)− xnS∞(x) = (1− xn)S∞(x).

By differentiating both sides of the mother series with respect to x, we get:

1
(1− x)2

=
∞∑

i=1

ixi−1

x

(1− x)2
=

∞∑
i=1

ixi (40)

c© Chee-Keng Yap Basic Version September 23, 2004

§5. Basic Sums Lecture II Page 16

This process can be repeated to yield formulas for
∑∞

i=0 ikxi, for any integer k ≥ 2. Differentiating both
sides of equation (38), we obtain the finite summation analogue:

n−1∑
i=1

ixi−1 =
(n− 1)xn − nxn−1 + 1

(x− 1)2
,

n−1∑
i=1

ixi =
(n− 1)xn+1 − nxn + x

(x− 1)2
, (41)

(42)

Combining the infinite and finite summation formulas, equations (40) and (41), we finally obtain

∞∑
i=n

ixi =
nxn − (n− 1)xn+1

(1− x)2
. (43)

We may verify by induction that these formulas actually hold for all x 6= 1. In general, for any k ≥ 0, we
obtain formulas for the geometric series of order k:

n−1∑
i=1

ikxi. (44)

The infinite series have finite values only when |x| < 1.

Harmonic series.

Hn := 1 +
1
2

+
1
3

+ · · ·+ 1
n

= ln n + Θ(1).

Note that ln is the natural logarithm (appendix A). This is easy to see using calculus,

Hn < 1 +
∫ n

1

dx

x
< 1 + Hn.

But
∫ n

1
dx
x = ln n. This proves that Hn = ln n + g(n) where 0 < g(n) < 1. More precise estimates for g(n)

are known: g(n) = γ + (2n)−1 +O(n−2) where γ = 0.577... is Euler’s constant.

For any real α ≥ 1, we can define the sum

H(α)
n :=

n∑
i=0

1
iα

.

Thus H
(1)
n is just Hn. If we let n = ∞, the sum H

(α)
∞ is bounded for α > 1; it is clearly unbounded for

α = 1 since lnn is unbounded. The sum is just the value of the Riemann zeta function at α. For instance,
H

(2)
∞ = π2/6.

Stirling’s Approximation. So far, we have treated open sums. If we have an open product such as the
factorial function n!, we can convert it into an open sum by taking logarithms. This method of estimating
an open product may not give as tight a bound as we wish (why?). For the factorial function, there is a
family of more direct bounds that are collectively called Stirling’s approximation. The following Stirling
approximation is from Robbins (1955) and it should be committed to memory:

n! =
(n

e

)n√
2πn eαn

c© Chee-Keng Yap Basic Version September 23, 2004

§5. Basic Sums Lecture II Page 17

where
1

12n + 1
< αn <

1
12n

.

Sometimes, the alternative bound αn > (12n)−1 − (360n3)−1 is useful [2]. Up to Θ-order, we may prefer to
simplify the above bound to

n! = Θ
((n

e

)n+ 1
2
)

.

Binomial theorem.

(1 + x)n = 1 + nx +
n(n− 1)

2
x2 + · · ·+ xn

=
n∑

i=0

(
n

i

)
xi.

In general, the binomial function
(
x
i

)
is defined for all real x and integer i:

(
x

i

)
=


0 if i < 0

1 if i = 0

x(x−1)···(x−i+1)
i(i−1)···2···1 if i > 0.

The binomial theorem can be viewed as an application of Taylor’s expansion for a function f(x) at x = a:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n + · · ·

where f (n)(x) = dnf
dxn . This expansion is defined provided all derivatives of f exist and the series converges.

Applied to f(x) = (1 + x)p for any real p at x = 0, we get

(1 + x)p = 1 + px +
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)
3!

x3 + · · ·

=
∑
i≥0

(
p

i

)
xi.

Exercises

Exercise 5.1: Solve the recurrence T (x) = 1
x + T (x− 1) for all x > 1. ♦

Exercise 5.2: Let c > 0 be any real constant.
(a) Prove that Hn = o(nc). HINT: first let c = 1 and sum the first

√
n terms of Hn/n.

(b) Show that ln(n + c)− lnn = O(c/n).
(c) Show that |Hx+c −Hx| = O(c/n) where Hx is the generalized Harmonic function.
(d) Bound the sum

∑n
i=1+bcc

1
i(i−c) . ♦

Exercise 5.3:
(a) Give the exact value of

∑n
i=2

1
i(i−1) . HINT: use partial fraction decomposition of 1

i(i−1) .

(b) Conclude that H
(2)
∞ is bounded.

(c) Give the asymptotic value of
∑n

i=1
1

i(n−i) . ♦

c© Chee-Keng Yap Basic Version September 23, 2004

§6. Standard Form Lecture II Page 18

Exercise 5.4: The goal is to give tight bounds for H
(2)
n :=

∑n
i=1

1
i2 (cf. (a) in previous exercise).

(a) Let S(n) =
∑n

i=2
1

(i−1)(i+1) . Find the exact bound for S(n).

(b) Let G(n) = S(n)−H
(2)
n + 1. Now γ′ = G(∞) is a real constant,

γ′ =
1

1 · 3 · 4
+

1
2 · 4 · 9

+
1

3 · 5 · 16
+ · · ·+ 1

(i− 1) · (i + 1) · i2
+ · · · .

Show that G(n) = γ′ − θ(n−3).
(c) Give an approximate expression for H

(2)
n (involving γ′) that is accurate to O(n−3). Note that γ′

plays a role similar to Euler’s constant γ for harmonic numbers.
(d) What can you say about γ′, given that H

(2)
∞ = π2/6? Use a calculator (and a suitable approximation

for π) to compute γ′ to 6 significant digits. ♦

Exercise 5.5: Solve the recurrence T (n) = 5T (n− 1) + n. ♦

Exercise 5.6: Solve exactly (choose your own initial conditions):
(a) T (n) = 1 + n+1

n T (n− 1).
(b) T (n) = 1 + n+2

n T (n− 1). HINT: compare previous exercise (a). ♦

Exercise 5.7: Show that
∑n

i=1 Hi = (n + 1)Hn − n. More generally,
n∑

i=1

(
i

m

)
Hi =

(
n + 1
m + 1

)[
Hn+1 −

1
m + 1

]
.

♦

Exercise 5.8: Give a recurrence for Sk
n (see (36)) in terms of Si

n, for i < k. Solve exactly for S4
n. ♦

Exercise 5.9: Derive the formula for the “geometric series of order 2”, k = 2 in (44). ♦

Exercise 5.10: (a) Use Stirling’s approximation to give an estimate of the exponent E in the expression
2E =

(
2n
n

)
.

(b) (Feller) Show
(
2n
n

)
=
∑n

k=0

(
n
k

)2. ♦

§6. Standard form and Summation Techniques

We try to reduce all recurrences to the following standard form:

t(n) = t(n− 1) + f(n). (45)

Let us assume that the recurrence is valid for integers n ≥ 1. Thus

t(i)− t(i− 1) = f(i), (i = 1, . . . , n).

Adding these n equations together, all but two terms on the left-hand side cancel, leaving us t(n) − t(0) =∑n
i=1 f(i). (We say the left-hand side is a “telescoping sum”, and this trick is known as “telescopy”.)

Choosing the convenient initial condition t(0) = 0, we obtain

t(n) =
n∑

i=1

f(i). (46)

c© Chee-Keng Yap Basic Version September 23, 2004

§6. Standard Form Lecture II Page 19

If this open sum has the form of one of the basic sums in the previous section, we are done! For instance, in
bubble sort, we obtain a standard form recurrence:

t(n) = t(n− 1) + n.

Choosing the initial condition t(0) = 0, we obtain the exact solution t(n) =
∑n

i=1 i =
(
n+1

2

)
.

Let us consider what is to be done if the open sum (46) does not have one of the basic forms. Here are
some simple techniques that are useful in the analysis of algorithms. Assume

f(i) > 0

in (46). Two situations appear very often:

Polynomial Type: The terms f(i) increase polynomially in i. By this, we mean that the f(i)’s are
increasing and

f(i) = O(f(i/2)).

E.g.,
n∑

i=1

i3,
n∑

i=1

i log i,
n∑

i=1

log i . (47)

Exponential Type: The terms f(i) grow exponentially in i. There are two possibilities: (a) f(i) grows
exponentially large:

(∃C > 1) [f(i) ≥ C · f(i− 1)] .

(b) Or f(i) grows exponentially small:

(∃c < 1) [f(i) ≤ c · f(i− 1)] .

E.g.,
n∑

i=1

2i,
n∑

i=1

2−i,
n∑

i=1

i522i

,
n∑

i=1

i! . (48)

Summation Rules: Let Sn =
∑n

i=1 f(n).

1. If Sn is a polynomial type summation, replace each term by its “largest term” f(n). Hence Sn =
Θ(nf(n)). Example: For k > 0,

n∑
i=1

ik = Θ(nk+1),
n∑

i=1

i log i = Θ(n2 log n). (49)

2. If Sn is an exponential type summation, replace the entire sum by its largest term. Since the largest
term is f(n) if the terms are growing exponentially large, and f(1) if the terms are growing exponentially
small, we get Sn = Θ(f(n)) or Sn = Θ(f(1)), respectively. Example: For constants k > 0 and x 6= 1,

n∑
i=1

ikxi =
{

Θ(1) if x < 1,
Θ(nkxn) if x > 1.

(50)

c© Chee-Keng Yap Basic Version September 23, 2004

§6. Standard Form Lecture II Page 20

Proof. For a polynomial type summation,

n

2
f(n/2) ≤ Sn ≤

n∑
i=1

O1(f(n/2)) = O1(nf(n/2)).

The result follows since we have f(n/2) = Θ(f(n)). For an exponentially large type summation, there is
some C > 1 such that

f(n) ≤ Sn ≤ f(n) + f(n− 1) + f(n− 2) + · · · ≤ f(n)
[
1 +

1
C

+
1

C2
+ · · ·

]
<

C

C − 1
f(n).

Similarly for an exponentially small summation, there is an appropriate c < 1 such that

f(1) ≤ Sn ≤ f(1) + f(2) + f(3) + · · · ≤ f(1)
[
1 + c + c2 + · · ·

]
< f(1)

1
c− 1

.

Q.E.D.

Breaking Up a Sum into Small and Large Parts. A general technique is to break up a sum into two
parts, one containing the “small terms” and the other containing the “big terms”. Let us illustrate this by
showing that

Hn =
n∑

i=1

1
i

= o(n).

It is sufficient to show that

Sn :=Hn/n =
n∑

i=1

1
i · n

goes to 0 as n →∞. Write Sn = An + Bb where

An =
b√nc∑
i=1

1
i · n

.

Then we see that

An ≤
b√nc∑
i=1

1
n
≤ 1√

n
.

Also,

Bn =
n∑

i=b√nc+1

1
i · n

≤
n∑

i=1

1√
n · n

=
1√
n

.

Thus Sn ≤ 2√
n
→ 0 as n →∞.

Exercises

Exercise 6.1: (a) Verify that each of the examples in (47) and (48) are polynomial type or exponential
type, as claimed. For each, state the bound according to our summation rules.
(b) Is the summation

∑n
i=1 ilg i an exponential type or polynomial type? Give bounds for the summa-

tion. ♦

c© Chee-Keng Yap Basic Version September 23, 2004

§7. Domain Transformation Lecture II Page 21

Exercise 6.2: (a) Use a direct estimate to show that Hn = o(nα) for any α > 0. Generalize the argument
in the text (do not use calculus, properties of log x such as x/ log x →∞, etc.)
(b) Likewise, show by direct argument that Hn →∞ as n →∞. ♦

Exercise 6.3: Extend our summation rules to the case where f(i) is “decreasing polynomially”. ♦

§7. Domain transformation

So our goal for a general recurrence is to transform it into the standard form. You may think of change
of domain as a “change of scale”. Transforming the domain of a recurrence equation may sometimes bring
it into standard form. Consider

T (N) = T (N/2) + N. (51)

We define
t(n) := T (2n), N = 2n.

This transforms the original N -domain into the n-domain. The new recurrence is now in standard form,

t(n) = t(n− 1) + 2n.

Choosing the boundary condition t(0) = 1, we get t(n) =
∑n

i=0 2i. This is a geometric series which we know
how to sum, t(n) = 2n+1 − 1; hence, T (N) = 2N − 1.

Logarithmic transform. More generally, consider the recurrence

T (N) = T

(
N

c
− d

)
+ F (N), c > 1, (52)

and d is an arbitrary constant. It is instructive to begin with the case d = 0. Then it is easy to see that the
“logarithmic transformation” of the argument N to the new argument n := logc(N) converts this to the new
recurrence

t(n) = t(n− 1) + F (cn)

where we define
t(n) := T (cn) = T (N).

There is some possible confusion in such manipulations, so let us state the connection between t and T more
formally. Let τ denote the domain transformation function,

τ(N) = logc(N)

(so “n” is only a short-hand for “τ(N)”). Then t(τ(N)) is defined to be T (N), valid for large enough N . In
order for this to be well defined, we need τ to have an inverse for large enough N . Then we can write

t(n) := T (τ−1(N)).

We now return to the general case where d is an arbitrary constant. Note that if d < 0 then we must
assume that N is sufficiently large (how large?) so that the recurrence (52) is meaningful (i.e., (N/c)−d < N).
The following transformation

n := τ(N) = logc(N +
cd

c− 1
)

c© Chee-Keng Yap Basic Version September 23, 2004

§7. Domain Transformation Lecture II Page 22

will reduce the recurrence to standard from. To see this, note that the “inverse transformation” is

N := cn − cd

c− 1
= τ−1(n)

(N/c)− d = cn−1 − cd

c− 1
= τ−1(n− 1).

Writing t(n) for T (τ−1(n)) and f(n) for F (τ−1(n)), we convert equation (52) to

t(n) = t(n− 1) + F

(
cn − cd

c− 1

)
= t(n− 1) + f(n)

=
n∑

i=1

f(i).

To finally “solve” for t(n) we need to know more about the function F (N). For example, if F (N) is a
polynomially bounded function, then f(n) = F (cn + cd

c−1) would be Θ(F (cn)). This is the usual justification
for ignoring the additive term “d” in the equation (52).

Multiplicative transform. Notice that the logarithmic transform case does not quite capture the follow-
ing closely related recurrence

T (N) = T (N − d) + F (N), d > 0. (53)

It is easy to concoct the necessary domain transformation: replace N by n = N/d and substituting

t(n) = T (dn)

will transform it to the standard form,

t(n) = t(n− 1) + F (dn).

Again, to be formal, we can explicitly introduce the transform function τ(N) = N/d, etc. This may be called
the “multiplicative transform”.

More generally, we consider T (N) = T (r(N)) + f(N) where r(N) < N . We want a domain transform
τ(N) so that τ(r(N)) = τ(N)− 1. For instance, if r(N) =

√
(N), then τ(N) = lg lg(N) implies τ(

√
(N)) =

lg lg N − 1 = τ(N)− 1.

Remarks. You may need to perform several of the above transformations to get the standard form. For
instance, with

T (n) = T (
√

n) + N

you need to apply the logarithmic transformation twice to obtain the transformation N = lg lg n. If you then
define t(N) = T (n), you get t(N) = t(N −1)+22N

. We note that the application of domain transformations
is often confusing for students who have difficulty keeping the similar-looking symbols, ‘n’ versus ‘N ’ and ‘t’
versus ‘T ’, straight. Of course, these symbols are mnemonically chosen. You can choose anything you want,
but your reader may get even more confused.

Exercises

c© Chee-Keng Yap Basic Version September 23, 2004

§8. Range Transformation Lecture II Page 23

Exercise 7.1: Justify the simplification step (iv) in §1 (where we replace dn/2e by n/2). ♦

Exercise 7.2: Solve recurrence (52) in these cases:
(a) F (N) = Nk.
(b) F (N) = log N . ♦

Exercise 7.3: Construct examples where you need to compose two or more of the above domain transfor-
mations. ♦

End Exercises

§8. Range transformation

A transformation of the range is sometimes called for. For instance, consider

T (n) = 2T (n− 1) + n.

To put this into standard form, we could define

t(n) :=
T (n)
2n

and get the standard form recurrence
t(n) = t(n− 1) +

n

2n
.

Telescoping gives us a series of the type in equation (40), which we know how to sum.

We have transformed the range of T (n) by introducing a multiplicative factor 2n: this factor is called
the summation factor. The reader familiar with linear differential equations will see an analogy with
“integrating factor”. (In the same spirit, the previous trick of domain transformation is simply a “change of
variable”.)

In general, a range transformation converts a recurrence of the form

T (n) = cnT (n− 1) + F (n) (54)

into standard form. Here cn is a constant depending on n. Let us discover which summation factor will
work. If C(n) is the summation factor, we get

t(n) :=
T (n)
C(n)

,

and hence

t(n) =
T (n)
C(n)

=
cn

C(n)
T (n− 1) +

F (n)
C(n)

=
T (n− 1)
C(n− 1)

+
F (n)
C(n)

, (provided C(n) = cnC(n− 1))

= t(n− 1) +
F (n)
C(n)

.

c© Chee-Keng Yap Basic Version September 23, 2004

§9. Examples Lecture II Page 24

Thus we need C(n) = cnC(n− 1) which expands into

C(n) = cncn−1 · · · c1.

Exercises

Exercise 8.1: Solve the recurrence (54) in the case where cn = 1/n and F (n) = 1. ♦

Exercise 8.2: (a) Reduce the following recurrence

T (n) = 4T (n/2) +
n2

lg n

to standard form. Then solve it exactly when n is a power of 2. For general n, use our generalized
Harmonic numbers Hx for real x ≥ 2 (see §2). You may choose any suitable initial conditions, but
please state it explicitly.
(b) Solve the variations

T (n) = 4T (n/2) +
n2

lg2 n

and

T (n) = 4T (n/2) +
n2

√
lg n

.

♦

§9. Examples

There is a wide variety of recurrences. This section looks at some recurrences, some of which falling
outside our transformation techniques.

§9.1. Recurrences with Max

A class of recurrences that arises frequently in computer science involves the max operation. Fredman
has investigated the solution of a class of recurrences involving max.

Consider the following variant of QuickSort: each time after we partition the problem into two subprob-
lems, we will solve the subproblem that has the smaller size first (if their sizes are equal, it does not matter
which order is used). We want to analyze the depth of the recursion stack. If a problem of size n is split
into two subproblems of sizes n1, n2 then n1 + n2 = n − 1. Without loss of generality, let n1 ≤ n2. So
0 ≤ n1 ≤ b(n− 1)/2c. If the stack contains problems of sizes (n1 ≥ n2 ≥ · · · ≥ nk ≥ 1) where nk is the
problem size at the top of the stack, then we have

ni−1 ≥ ni + ni+1.

Since n1 ≤ n, this easily implies n2i+1 ≤ n/2i or k ≤ 2 lg n. A tighter bound is k ≤ logφ n where φ = 1.618 . . .
is the golden ratio. This is not tight either.

c© Chee-Keng Yap Basic Version September 23, 2004

§9. Examples Lecture II Page 25

The depth of recursion satisfies

D(n) =
b(n−1)/2c

max
n1=0

[max{1 + D(n1), D(n2)}]

This recurrence involving max is actually easy to solve. Assuming D(n) ≤ D(m) for all n ≤ m, and for any
real x, D(x) = D(bxc), it is easy to see that D(n) = 1 + D(n/2). Using the fact that D(1) = 0, we obtain
D(n) ≤ lg n. [Note: D(1) = 0 means that all problems on the stack has size ≥ 2.

§9.2. The Master Theorem

We first look at a recurrence that does fall under our transformation techniques. If a ≥ 1, b > 1 are
constants, we consider the master recurrence

T (n) = aT (n/b) + f(n) (55)

where f(n) is some function. Evidently, this is the recurrence to solve if we manage to solve a problem of
size n by breaking it up into a subproblems each of size n/b, and merging these a subsolutions in time f(n).
The recurrence was systematically studied by Bentley, Haken and Saxe [1]. Solving it requires a combination
of domain and range transformation.

First apply a domain transformation by defining

t(k) := T (bk) (for all k).

Hence
t(k) = a t(k − 1) + f(bk).

Next, transform the range by using the summation factor 1/ak. This defines the function s(k):

s(k) := t(k)/ak.

Now s(k) satisfies a recurrence in standard form:

s(k) =
t(k)
ak

=
t(k − 1)

ak−1
+

f(bk)
ak

= s(k − 1) +
f(bk)
ak

Telescoping, we get

s(k) = s(k)− s(0) =
k∑

i=1

f(bi)
ai

,

where we have chosen the boundary condition s(0) = 0. Now, we cannot proceed any further without knowing
the nature of the function f .

The master theorem considers three possibilities for f . The easiest possibility is what we call is what
we call the “watershed” case (CASE (0)). This is when f(n) = Θ(nlogb a) (we may call nlogb a the “wa-
tershed function”). The other two possibilities are where f grows “polynomially slower” (CASE (−1)) or
“polynomially faster” (CASE (+1)) than the watershed case.

c© Chee-Keng Yap Basic Version September 23, 2004

§9. Examples Lecture II Page 26

CASE (0) This is when f(n) satisfies
f(n) = Θ(nlogb a). (56)

Then f(bi) = Θ(ai) and s(k) =
∑k

i=1 f(bi)/ai = Θ(k).

CASE (−1) This is when f(n) grows polynomially slower than the watershed function:

f(n) = O(n−ε+logb a), (57)

for some ε > 0. Then f(bi) = O(bi(logb a−ε)). Let f(bi) = O1(aib−iε) (using the subscripting notation for
O). So s(k) =

∑k
i=1 f(bi)/ai =

∑
O1(b−iε) = O2(1), since b > 1 implies b−ε < 1. Hence s(k) = Θ(1).

CASE (+1) This is when f(n) satisfies the regularity condition

af(n/b) ≤ cf(n) (58)

for some c < 1. Expanding this,

f(n) ≥ a

c
f
(n

b

)
≥

(a

c

)logb n

f(1)

= Ω(nε+logb a),

where ε = − logb c > 0. Thus the regularity condition implies that f(n) grows polynomially faster
than the watershed function,

f(n) = Ω(nε+logb a). (59)

It follows from (58) that f(bk−i) ≤ (c/a)if(bk). So

s(k) =
k∑

i=1

f(bi)/ai

=
k−1∑
i=0

f(bk−i)/ak−i

≤
k−1∑
i=0

(c/a)if(bk)/ak−i

= f(bk)/ak

(
k−1∑
i=0

ck−i

)

= O
(

f(bk)
ak

)
,

since c < 1. But clearly, s(k) ≥ f(bk)/ak. Hence we have s(k) = Θ(f(bk)/ak).

Summarizing,

s(k) =

 Θ(1), CASE (−1)
Θ(k), CASE (0)
Θ(f(bk)/ak), CASE (+1).

Back substituting,

t(k) = aks(k) =

 Θ(ak), CASE (−1)
Θ(akk), CASE (0)
Θ(f(bk)), CASE (+1).

Since T (n) = t(logb n), we conclude:

c© Chee-Keng Yap Basic Version September 23, 2004

§9. Examples Lecture II Page 27

Theorem 3 (Master Theorem) The master recurrence (55) has solution:

T (n) =

 Θ(nlogb a), if f(n) = O(n−ε+logb a), for some ε > 0,
Θ(nlogb a log n), if f(n) = Θ(nlogb a),
Θ(f(n)), if af(n/b) ≤ cf(n) for some c < 1.

In applications of the Master Theorem for case (+), we often first to verify equation (59) mentally, before
checking the stronger regularity condition (58). The Master Theorem is powerful but unfortunately, there
are gaps between its 3 cases. For instance, f(n) = nlogb a log n grows faster than the watershed function, but
not polynomially faster. Thus the Master Theorem is inapplicable for this f(n). Yet it is just as easy to
solve this case using the transformation techniques (see Exercise).

Note that the values a, b in the theorem are constants. Thus, attempting to apply this theorem to the
recurrence

T (n) = 2nT (n/2) + nn

(with a = 2n and b = 2) leads to the false conclusion that T (n) = Θ(nn log n). See exercise. For a more
general solution to the master recurrence, see [10].

Graphic Interpretation of the Master Recurrence. We imagine a “recursion tree” with branching
factor of a at each node, and every leaf of the tree is at level logb a. Of course, this “tree” is not realizable
unless a and logb a are integers! We further associate a “size” of n/bi and “cost” of f(n/bi) to each node at
level i (root is at level i = 0). Then T (n) is just the sum of the costs at all the nodes. The Master Theorem
says this: In case (0), the total cost associated with nodes at any level is Θ(nlogb a) and there are logb n levels
giving an overall cost of Θ(nlogb a log n). In case (+1), the cost associated with the root is Θ(T (n)). In case
(−1), the total cost associated with the leaves is Θ(T (n)).

Exercises

Exercise 9.1: State the solution, up to Θ-order of the following recurrences:

T (n) = 10T (n/10) + log10 n.

T (n) = 100T (n/10) + n10.

T (n) = 10T (n/100) + (log n)log log n.

T (n) = 16T (n/4) + 4lg n.

♦

Exercise 9.2: Solve the following using the Master’s theorem whenever possible. If the Master’s theorem
is inapplicable, say so (or, you can solve it by other means).

T (n) = 3T (n/25) + log3 n.

T (n) = 25T (n/3) + (n/ log n)3.
T (n) = T (

√
n) + n.

HINT: in the third problem, the Master theorem is applicable after a simple transformation. ♦

Exercise 9.3: Solve the master recurrence when f(n) = nlogb a logk n, for any k ≥ 1. NOTE: the Master
Theorem is not applicable here, but the method of its proof is applicable. ♦

c© Chee-Keng Yap Basic Version September 23, 2004

§9. Examples Lecture II Page 28

Exercise 9.4: Re-prove the master theorem, but now apply the range transformation to the master recur-
rence before applying the domain transformation. ♦

Exercise 9.5: Show that the master theorem applies to the following variation of the master recurrence:

T (n) = a · T (
n + c

b
) + f(n)

where a > 0, b > 1 and c is arbitrary. ♦

Exercise 9.6:
(a) Solve T (n) = 2nT (n/2) + nn by direct expansion.
(b) Try to generalize the Master theorem to handle some cases of T (n) = anT (n/bn) + f(n) where
an, bn are both functions of n. ♦

End Exercises

§9.3. Generalized Master Theorem

Let us introduce what might be called the multiterm master recurrence:

T (n) = f(n) +
k∑

i=1

aiT

(
n

bi

)
(60)

where k ≥ 1, ai > 0 (for all i = 1, . . . , k) and b1 > b2 > · · · > bk > 1. The critical constant here is α such
that

k∑
i=1

ai

bα
i

= 1. (61)

It is clear that α exists since the above sum tends to 0 (resp., ∞) as α →∞ (resp., α → −∞).

Theorem 4 (Multiterm Master Theorem)

T (n) =


Θ(nα) if f(n) = O(nα−ε), for some ε > 0,
Θ(nα log n) if f(n) = Θ(nα)
Ω(f(n) if

∑k
i=1 aif(n/bi) ≤ cf(n), for some c < 1.

This can be shown by real induction.

Example: in linear time algorithms for medians (see Lecture XXX), we encounter recurrence of the form

T (n) ≤ T (7n/10) + T (n/5) +O(n).

By our multiterm master theorem, this has solution T (n) = Θ(n).

Exercises

c© Chee-Keng Yap Basic Version September 23, 2004

§10. Orders of Growth Lecture II Page 29

Exercise 9.7: The following recurrence arises in the analysis of the running time of the “conjugation tree”
in computational geometry:

T (n) = T (n/2) + T (n/4) + lg7 n.

Solve for T (n). ♦

End Exercises

§10. Orders of Growth

The reader should first review the basic properties of the exponential and logarithm functions in
the appendix.

Learning to judge the growth rates of complexity functions is a fundamental skill in algorithmics. This
section is a practical one, designed to help students develop this skill.

Most complexity functions in practice are the so-called logarithmico-exponential functions (for short,
L-functions): such functions f(x) are real and defined for all x ≥ x0 for some x0 depending of f . An L-
function is either the identity function x or a constant c ∈ R, or else obtained as a finite composition with
the functions

A(x), ln(x), ex

where A(x) denotes a real branch of an algebraical function. For instance, A(x) =
√

x is the function that
picks the real square-root of x. The reader may have noticed that all the common complexity functions are
totally ordered in the sense that for any f, g, either f � g or g � f . A theorem4 of Hardy [4] confirms this:
if f and g are L-functions then f ≤ g (ev.) or g ≤ f (ev.). In particular, each L-function f is eventually
non-negative, 0 ≤ f (ev.), or non-positive, f ≤ 0 (ev.).

The following are the common categories of functions you will encounter:

CATEGORY SYMBOL EXAMPLES
vanishing term o(1) 1

n , 2−n

constants Θ(1) 1, 2− 1
n

polylogs logk n (for any k > 0) Hn, log2 n
polynomials nk (for any k > 0) n3,

√
n

non-polynomials nΩ(1) n!, 2n, nlog log n

Note that n! and Hn are not L-functions, but they can be closely approximated by L-functions. The last
category forms a grab-bag of anything growing faster than a polynomial. These 6 categories form a hierarchy
of increasingly larger Θ-order.

Rules for comparing functions. We are interested in comparing functions up to their Θ-order. We list
some simple rules. Most comparisons of interest to us can be reduced to repeated applications of these rules:

4In the literature on L-functions, the notation “f � g” actually means f ≤ g (ev.). There is a deep theory involving such
functions, with connection to Nevanlinna theory.

c© Chee-Keng Yap Basic Version September 23, 2004

§10. Orders of Growth Lecture II Page 30

Sum: In a direct comparison involving a sum f(n) + g(n), ignore the smaller term in this sum.
E.g., given n2 + n log n + 5, you should ignore the “n log n + 5” term. However, beware that if the sum
appears in an exponent, the neglected part may turn out be decisive when the dominant terms are
identical.

Product: If 0 � f � f ′ and 0 � g � g′ then fg � f ′g′. (If, in addition, f ≺ f ′ then we have fg ≺ f ′g′.)
E.g., this rule implies nb ≺ nc when b < c (since 1 ≺ nc−b, by the logarithm rule next).

Logarithm: 1 ≺ log(k+1) n ≺ (log(k) n)c for any integer k ≥ 0 and real c > 0. Here log(k) n refers to the
k-fold application of the logarithm function and log(0) n = n.

Exponentiation: If 1 ≤ f ≤ g (ev.) then df � dg for any constant d > 1. If 1 ≤ f ≤ cg (ev.) for some
c < 1 then df ≺ dg.

Example. Suppose we want to compare nlog n versus (log n)n. By the rule of exponentiation, nlog n ≺
(log n)n follows if we take logs and show that log2 n ≤ 0.5n log log n (ev.). In fact, we show the stronger
log2 n ≺ n log log n. Taking logs again, and by the rule of sum, it is sufficient to show 2 log log n ≺ log n.
Taking logs again, and by the rule of sum again, it is suffices to show log(3) n ≺ log(2) n. But the latter
follows from the rule of logarithms.

Exercises

Exercise 10.1: (i) Simplify the following expressions: (a) n1/ lg n, (b) 22lg lg n−1
, (c)

∑k−1
i=0 2i, (d) 2(lg n)2 , (e)

4lg n, (f) (
√

2)lg n.
(ii) Re-do the above, replacing each occurrence of “2” (explicit or otherwise) in the previous expressions
by some constant c > 2. ♦

Exercise 10.2: Order the following functions (be sure to parse these nested exponentiations correctly): (a)
n(lg n)lg n

, (b) (lg n)nlg n

, (c) (lg n)(lg n)n

, (d) (n/ lg n)nn/(lg n)
. (e) nn(lg n)/n

. ♦

Exercise 10.3: Order the following functions in non-increasing order of growth. Between consecutive pairs
of functions, insert the appropriate ordering relationship: �, �, ≤ (ev.), =.

a b c d e f

1. lg lg n (lg n)lg n 2n 2lg n 2lg∗ n 22n+1

2. (1/3)n n2n nlg lg n en n1/ lg n (lg n)!
3. 2

√
2 lg n (3/2)n 2 lg(n!) n

√
lg n

4. 2(lg n)2 22n

n2 n lg n (n + 1)! 4lg n

5. lg(lg∗ n) lg2 n (1 + 1
n)n nlg n n! 2(lg n)/n

6. (
√

2)lg n lg∗ n (n/ lg n)2
√

n) lg∗(lg n) 1/n
NOTE: to help in the organization of this large list of functions, we ask that you first order each
row. Then the rows are merged in pairs. Finally, perform a 3-way merge of the 3 lists. Show the
intermediate lists of your computation (it allows us to visually verify your work). ♦

Exercise 10.4: (Purdom-Brown)
(a) Show that

∑n
i=1 i! = n![1 + O(1/n)]. NOTE: The summation rule gives only a Θ-order so this is

more precise.
(b)

∑n
i=1 2i ln i = 2n+1[lnn−(1/n)+O(n−2)]. HINT: use ln i = lnn−(i/n)+O(i2/n2) for i = 1, . . . , n.

♦

c© Chee-Keng Yap Basic Version September 23, 2004

§10. Orders of Growth Lecture II Page 31

Exercise 10.5: (Knuth) What is the asymptotic behaviour of n1/n? of n(n1/n − 1)?
HINT: take logs. Alternatively, expand

∏n
i=1 e1/(in). ♦

Exercise 10.6: Estimate the growth behavior of the solution to this recurrence: T (n) = T (n/2)2 + 1. ♦

References

[1] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving divide-and-conquer recurrences.
ACM SIGACT News, 12(3):36–44, 1980.

[2] W. Feller. An introduction to Probability Theory and its Applications. Wiley, New York, 2nd edition
edition, 1957. (Volumes 1 and 2).

[3] D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms. Birkhäuser, 2nd edition,
1982.

[4] G. H. Hardy. Orders of Infinity. Cambridge Tracts in Mathematics and Mathematical Physics, No. 12.
Reprinted by Hafner Pub. Co., New York. Cambridge University Press, 1910.

[5] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers. Doklady
Akad. Nauk SSSR, 145:293–294, 1962.

[6] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-Wesley,
Boston, 2nd edition edition, 1975.

[7] G. S. Lueker. Some techniques for solving recurrences. Computing Surveys, 12(4), 1980.

[8] B. Mishra and A. Siegel. (Class Lecture Notes) Analysis of Algorithms, January 28, 1991.

[9] J. Paul Walton Purdom and C. A. Brown. The Analysis of Algorithms. Holt, Rinehart and Winston,
New York, 1985.

[10] X. Wang and Q. Fu. A frame for general divide-and-conquer recurrences. Info. Processing Letters,
59:45–51, 1996.

c© Chee-Keng Yap Basic Version September 23, 2004

