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Lecture I
OUTLINE OF ALGORITHMICS

We assume the student is familiar with computer programming and has a basic course in data structures.
Problems solved using computers can be roughly classified into problems-in-the-large and problems-in-the-
small. The former is associated with large software systems such as an airlines reservation system, compilers
or text editors. The latter1 is identified with mathematically well-defined problems such as sorting, multi-
plying two matrices or solving a linear program. The methodology for studying the large and small problems
are quite distinct: Algorithmics is the study of the small problems and their algorithmic solution. In this
introductory lecture, we presents an outline of this enterprise. Throughout this book, computational
problems (or simply “problems”) refer to problems-in-the-small. It is the only kind of problem we address.

READING GUIDE: This chapter is mostly informal and depends on some prior understanding of al-
gorithms. The rest of this book has no dependency on this chapter, save the definitions in §8 concerning
asymptotic notations. Hence a light reading may be sufficient. We recommend re-reading this chapter after
finishing the rest of the book, when many of the remarks here may take on more concrete meaning.

§1. What is Algorithmics?

Algorithmics is the systematic study of efficient algorithms for computational problems; it includes
techniques of algorithm design, data structures, and mathematical tools for analyzing algorithms.

Why is algorithmics important? Because algorithms is at the core of all applications of computers.
These algorithms are the “computational engines” that drive larger software systems. Hence it is important
to learn how to construct algorithms and to analyze them. Although algorithmics provide the building blocks
for large application systems, the construction of such systems usually require additional non-algorithmic
techniques (e.g., database theory) which are outside our scope.

We can classify algorithmics according to its applications in subfields of the sciences and mathematics:
thus we have computational geometry, computational topology, computational number theory, computer
algebra, computational statistics, computational finance, computational physics and computational biology.

Another way to classify algorithmics is to look at the generic tools and techniques that are largely
independent of subject matter. Along this line, we identify four basic themes:

(a) data-structures (e.g, linked lists, stacks, search trees)

(b) algorithmic techniques (e.g., divide-and-conquer, dynamic programming)

(c) basic computational problems (e.g., sorting, graph-search, point location)

(d) analysis techniques (e.g., recurrences, amortization, randomized analysis)

These themes interplay with each other. For instance, some data-structures naturally suggest certain al-
gorithmic techniques. Or, an algorithmic technique may entail certain analysis methods (e.g., divide-and-
conquer algorithms require recurrence solving). Complexity theory provides some unifying concepts for
algorithmics; but complexity theory is too abstract to capture many finer distinctions we wish to make.
Thus algorithmics often makes domain-dependent assumptions. For example, in the subfield of computer

1If problems-in-the-large is macro-economics, then the latter is micro-economics.
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algebra, the complexity model takes each algebraic operation as a primitive while in the subfield of compu-
tational number theory, these algebraic operations are reduced to some bit-complexity model primitives. In
this sense, algorithmics is, say, more like combinatorics (which is eclectic) than group theory (which starts
out from a unified framework).

§2. What are Computational Problems?

Despite its name, the starting point for algorithmics is computational problems, not algorithms. But
what are computational problems? We mention three main categories.

(A) Input-output problems. Here is the simplest formulation: A computational problem is a precise
specification of input and output formats, and for each input instance I, a description of the set of possible
output instances O = O(I).

The word “formats” emphasizes the fact the input and output representation is part and parcel of the
problem. In practice, standard representations may be taken for granted (e.g., numbers are assumed to be
in binary and set elements are arbitrarily listed without repetition). Note that the input-output relationship
need not be functional: a given input may have several acceptable outputs.

Example: Sorting Problem: Input is a sequence of numbers (a1, . . . , an) and output is a
rearrangement of these numbers (a′1, . . . , a

′
n) in non-decreasing order. An input instance is (2, 5, 2, 1, 7), with

corresponding output instance (1, 2, 2, 5, 7).

Example: Primality Testing: Input is a natural number n and output is either YES (if n
is prime) or NO (if n is composite). This is an example of decision or recognition problem, where
the outputs have only two possible answers (YES/NO, 0/1, Accept/Reject). Such problems play an im-
portant role in complexity theory. One can generalize this to problems whose output comes from a finite
set. For instance, in computational geometry, the decision problems tend to have three possible answers:
Positive/Negative/Zero or IN/OUT/ON. For instance, the point classification problem is where we are
given a point and some geometric object such as a triangle or a cell. The point is either inside the cell,
outside the cell or on the boundary of the cell.

(B) Static preprocessing problems. A generalization of input-output problems is what we call pre-
processing problem: given a set S of objects, construct a data structure D(S) such that for an arbitrary
‘query’ (of a suitable type) about S, we can use D(S) to efficiently answer the query. This problem is a
“static” preprocessing problem because the members of the set S does not change under the querying.

Example: Ranking Problem: preprocessing input is a set S of numbers. A query on S is a
number q for which we like to determine its rank in S. The rank of q is S is the number of items in S that
are smaller than or equal to q. A standard solution to this problem is the binary search tree data structure
D(S) and the binary search algorithm on D(S).

Example: Post Office Problem: Many problems in computational geometry and database
search are the preprocessing type. The following is a geometric-database illustration: given a set S of points
in the plane, find a data structure D(S) such that for any query point p, we find an element in S that is
closest to p. (Think of S as a set of post offices and we want to know the nearest post office to any position
p). Note that the 1-dimensional version of this problem is closely allied to the ranking problem.
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Two algorithms are needed to solve a preprocessing problem: one to construct D(S) and another to
answer queries. They correspond to the two stages of computation: an initial preprocessing stage to
construct D(S), and a subsequent querying stage in which the data structure D(S) is used. There may
be a tradeoff between the preprocessing complexity and the query complexity: D1(S) may be faster
to construct than an alternative D2(S), but answering queries using D1(S) is less efficient than D2(S). But
our general attitude to prefer D2(S) over D1(S) in this case: we prefer data structures D(S) that support
the fastest possible query complexity. Our attitude is often justified because the preprocessing complexity
is a one-time cost.

Preprocessing problems can be seen as a special case of partial evaluation problems. In such problems,
we construct partial answers or intermediate structures based on part of the inputs; these partial answers or
intermediate structures must anticipate all possible extensions of the partial inputs.

(C) Dynamization and Online problems. Now assume the input S is a set, or more generally some
kind of aggregate object. If S can be modified under queries, then we have a dynamization problem:
with S and D(S) as above, we must now design our solution with an eye to the possibility of modifying S
(and hence D(S)). Typically, we want to insert and delete elements in S while at the same time, answer
queries on D(S) as before. A set S whose members can vary over time is called a dynamic set and hence
the name for this class of problems.

Here is another formulation: we are given a sequence (r1, r2, . . . , rn) of requests, where a request is one
of two types: either an update or a query. We want to ‘preprocess’ the requests in an online fashion,
while maintaining a time-varying data structure D: for each update request, we modify D and for each query
request, we use D to compute and retrieve an answer (D may be modified as a result).

In the simplest case, updates are either “insert an object” or “delete an object” while queries are “is
object x in S?”. This is sometimes called the set maintenance problem. Preprocessing problems can be
viewed as a set maintenance problem in which we first process a sequence of insertions (to build up the set
S), followed by a sequence of queries.

Example: Dynamic Ranking Problem: Any preprocessing problem can be systematically
converted into a set maintenance problem. For instance, the ranking problem turns into the dynamic
ranking problem in which we dynamically maintain the set S subject to intermittent rank queries. The
data structures in solutions to this problem are usually called dynamic search trees.

Example: Graph Maintenance Problems: Dynamization problems on graphs are more com-
plicated than set maintenance problems (though one can still view it as maintaining a set of edges). One
such problem is the dynamic connected component problem: updates are insertion or deletion of edges
and/or vertices. Queries are pairs of vertices in the current graph, and we want to know if they are in the
same component. The graphs can be directed or undirected.

Example: Online Scheduling Problems: In this case, each request ri (i = 1, . . . , n) is a
task that needs to be serviced. The requirement of the online problem is that the service decision si (to
service it or not, when to serve it, etc) must be made before the next request is seen. We can view this
as an optimization problem, where we are trying to maximize some function f(s1, s2, . . . , sn) of the service
decisions. There is a growing literature for a class of such algorithms that are “competitive” in the sense
f(s1, . . . , sn) is at least some constant factor of the optimal solution (s∗1, . . . , s

∗
n).

(D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem from the viewpoint of
our subject. Suppose your boss asks your IT department to “build an integrated accounting system-cum-
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employee database”. This may be a real world scenario but it is not a legitimate topic for algorithmics
because part of the task is to figure out what the input and output of the system should be, and there are
probably other implicit non-quantifiable criteria (such as available technology and economic realities).

§3. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, we must choose the tools for solving it. This is
given by the computational model. Any conventional programming languages such as C or Java (suitably
abstracted, so that it does not have finite space bounds, etc) can be regarded as a computational model. A
computational model is specified by

(a) the kind of data objects that it deals with

(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger units called programs.

Programs can be viewed as individual instances of a computational model. For instance, the Turing model of
computation is an important model in complexity theory and the programs here are called Turing machines.

Models for Sorting. To illustrate computational models, we consider the problem of sorting. The sorting
problem has been extensively studied under several computational models. We briefly describe just three
of them: the comparison-tree model, the comparator circuit model, and the tape model. In each
models, the data objects are elements from a linear order.

The first model, comparison-trees, has only one primitive operation, viz., comparing the two elements
x, y resulting in one of two outcomes x < y or x ≥ y. Such a comparison is usually denoted “x : y”. We
compose these primitive comparisons into a tree program by putting them at the internal nodes of binary
tree. Tree programs represent flow of control and are more generally called decision trees. Figure 1(a)
illustrates a comparison-tree on inputs x, y, z. The output of the decision tree is specified at each leaf. For
instance, if the tree is used for sorting, we would want to write the sorted order of the input elements in
each leaf. If the tree is used to find the maximum element of the input set, then each leaf would specify the
maximum element.
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Figure 1: (a) A comparison-tree and (b) a comparator circuit

In the comparator circuit model, we also have one primitive operation which takes two input elements x, y
and returns two outputs: one output is max{x, y}, the other min{x, y}. These are composed into circuits
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which are directed acyclic graphs with n input nodes (in-degree 0) and n output nodes (out-degree 0) and
some number of comparator nodes (in-degree and out-degree 2). In contrast to tree programs, the edges
(called wires) in such circuits represent actual data movement. Figure 1(b) shows a comparator circuit on
inputs x, y, z. Depending on the problem, the output of the comparator circuit may be the set of all output
lines (x′, y′, z′ in Figure 1(b)) or perhaps some subset of these lines.

A third model for sorting is the tape model. Assume one or more sequential tapes which can store the
elements to be sorted. Each tape is either in the state of being read or being written. The key property of
such tapes is that they allow only sequential access. Hence the tape positions can be changed in two ways:
advance to the next element or reset (meaning go to the first element). Initially, the input has n elements
stored in one tape. Finally, the elements are written out, in sorted order, on one of the tapes. We have a
main memory that can only store m of these elements. Typically, m << n and m may even be fixed. The
instantaneous state of the algorithm will specify, for each tape, whether it is being read or being written,
and the position of its the tape head. The reading and writing on each tape can proceed independently. We
can detect the condition of reading past the last element in a tape. The sorting algorithm dictates the input
and output behavior on each tape, including which tape(s) to be reset for reading or writing.

The tape model was important in the early days of computing when main memory was expensive and
physical tapes is the standard medium for storing large databases. Interestingly, with the advent of the
web-age, a variant of this model called streaming data model is coming back. Now we are faced with
hugh amounts of real time data, and instead of sorting, we often need to compute some function of the data.
Because of the large volume of data, we do not want to store this information but allow only one pass over
the data. For more information about the tape model, we refer to Knuth [3, Chap. 5.4], under external
sorting.

Algorithms versus programs. To use a computational model to solve a given problem, we must make
sure there is a match between the data objects in the problem specification and the data objects handled
by the computational model. If not, we must specify some suitable encoding of the former objects by the
latter. Similarly, the input and output formats of the problem must be represented in some way. After
making explicit such encoding conventions, we may call A an algorithm for P if, if the program A indeed
computes a correct output for every legal input of P . Thus the term algorithm is a semantical concept,
signifying a program in its relation to some problem. In contrast, programs are purely syntactic objects.
E.g., the programs in figure 1(a,b) are both algorithms to compute the maximum of x, y, z. But what is the
output convention for these two algorithms?

Uniform versus Non-uniform Computational Models. While problems generally admit inputs of
arbitrarily large sizes (see discussion of size below), some computational models define programs that admit
inputs of a fixed size only. This is true of the decision tree and circuit models of computation. In order to
solve problems of infinite sizes, we must take a sequence of programs P = (P1, P2, P3, . . .) where Pi admits
inputs of size i. We call such a program P a non-uniform program since we have no á priori connections
between the different Pi’s. For this reason, we call the models whose programs admit only finite size inputs
non-uniform models. The next section will introduce a uniform model called the RAM Model. Pointer
machines (see Chapter 6) and Turing machines are other examples of uniform models. The relationship
between complexity in uniform models and in non-uniform models is studied in complexity theory.

Problem of Merging Two Sorted Lists. Let us illustrate the difference between uniform and non-
uniform algorithms. A subproblem that arises in sorting is the merge problem where we are given two
sorted lists (x1, x2, . . . , xm) and (y1, y2, . . . , yn) and we want to produce a sorted list (z1, z2, . . . , zm+n) where
{z1, . . . , zm+n} = {x1, . . . , xm, y1, . . . , yn}. Assume these sorted lists are non-decreasing. Here is a algorithm
for this problem, written in a generic conventional programming language:
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Merge Algorithm
Initialize

i← 1, j ← 1.
Loop

while (i ≤ m and j ≤ n)
if xi ≤ yj

Output(xi) and i← i + 1.
else

Output(yj) and j ← j + 1.
Terminate

if i > m
Output the rest of the y’s.

else
Output the rest of the x’s.

This is a uniform algorithm for merging two lists. For each m,n, this algorithm can be “unwounded” into a
comparison-tree Tm,n for merging two sorted lists of sizes m and n (Exercise). Hence family {Tm,n : m,n ∈ N}
is a non-uniform algorithm for merging two lists.

Program Correctness. This has to do with the relationship between an program and a computational
problem. A program that is correct relative to a problem is, by definition, an algorithm for that problem. It
is usual to divide correctness into two parts: partial correctness and halting. Partial correctness says that
the algorithm gives the correct output provided it halts. In some algorithms, correctness may be trivial but
this is not always true.

Exercises

Exercise 3.1: What problems do the programs in Figure 1(a) and (b) solve, respectively? You have some
leeway in giving them suitable interpretations. ♦

Exercise 3.2: (a) Extend the program in Figure 1(a) so that it sorts three input elements {x, y, z}.
(b) In general, define what it means to say that a comparison-tree program sorts a set {x1, . . . , xn} of
elements. ♦

Exercise 3.3: Design a tree program to merge two sorted lists (x, y, z) and (a, b, c, d). The height of your
tree should be 5 (the optimum). ♦

End Exercises

§4. The RAM Model

The computational models such as decision-tree model are rather special, and suitable only for sorting-
like problems. We now present a more general model which is suitable for most problems we shall encounter.
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This is a uniform computational model called the random-access memory model (RAM model). It is
basically an abstract assembly language. The RAM model can be regarded as a generalization of an even
simpler model called the Register model. We describe a register machine first.

(a) Data objects. We assume infinitely many (storage) registers, each indexed by an integer
0,±1,±2,±3, . . .. Register 0 is special and is known as the accumulator. Each register can store an
integer. Note that the integer is arbitrarily large (in contrast to real computers whose integer are limited to
32- or 63-bit values).

(b) Primitive Operations. Each operation has the 4-field format

[〈LABEL〉 :]〈OPERATOR〉〈ARG〉[〈COMMENTS〉]

where 〈LABEL〉 and 〈COMMENTS〉 are arbitrary non-empty alphabetic strings – the square brackets
indicate that these are optional fields. There is one argument 〈ARG〉 whose nature is determined by the
〈OPERATOR〉. The argument 〈ARG〉 is either an integer (denoted n below) or a label (denoted ` below).
The contents of register n is a number, denoted c(n). Let c : Z → Z be the contents function. The
operators, their arguments and actions are specified in the following table:

Operator Argument Semantics
GET n c(0)← c(n).
PUT n c(n)← c(0).
ZERO n c(n)← 0.
INC n c(n)← c(n) + 1.
ADD n c(0)← c(0) + c(n).
SUB n c(0)← c(0)− c(n).
MUL n c(0)← c(0)× c(n).
DIV n c(0)← c(0)÷ c(n), error if c(n) = 0.
JUMP ` Go to label `.
JPOS ` If c(0) > 0 then go to `.
JNEG ` If c(0) < 0 then go to `.
HALT The computation halts.

(c) Semantics. A register program is any finite sequence of such primitive operations. Associated with
the program is a process called a computation, which is a sequence of transformations of the contents
function. The first transformation is defined by executing the first instruction of the program. The transfor-
mation corresponding to each instruction is given by the last column of the above table. For instance, “GET
4” will put update the value of c(0) to the value c(4), but no other register contents are changed. Subse-
quently, transformations are defined by successive instructions of the program, unless there is a successful
jump to some label `. In that case, the next instruction with label ` is executed (multiply defined labels
is no problem). The computation halts on encountering the HALT operation, or when there is no “next”
instruction, or jumping to some non-existent label.

(d) Input/Output conventions. We assume that a finite number of registers is initialized with an encoding
of the input, while the rest of the registers are initially zero. The convention for the output is some simple
function of the final contents function. E.g., the output is defined to be c(0). As an exercise, the reader may
write a RAM program to compute the maximum of three numbers (convention: the input numbers are in
the registers 1, 2, 3 and the maximum value is to be output in register 0).

Random Access Feature. Notice that a register program can only access a fixed set of registers. In
order to allow a program to access an arbitrary number of registers, we introduce “indirect addressing”, a
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concept from computer architecture. We allow another form of integer argument, denoted @n where n ∈ N.
This means we are using the value c(c(n)) instead of c(n) as the actual argument for the operation. Thus
c(n) is interpreted as the address of the actual argument. We call @n an “indirect argument”. For instance,
“GET @4” results in the assignment c(0)← c(c(4)). If register 4 contains 256, and register 256 contains −1,
this means c(0) is assigned the value −1. Similarly, “PUT @4” will place the value c(0) into register 256.
Thus, a RAM program is basically a register program in which we allow indirect addressing.

Variants. By design, the instruction set of our RAM is parsimonious and rather primitive. There are
obvious variants where we enrich the instruction set which amount to combinations of these primitive in-
structions. We can also allow another kind of integer argument denoted = n. In this case the value n itself
is being used. This is called a “literal argument”. Literal arguments are useful for GET and the arithmetic
instructions, but meaningless for PUT instruction.

The above model may be called an integer RAM model. This can be generalized to the real RAM
model where where the registers can store an arbitrary real number, and possibly augmenting the primitive
operations with other real functions (such as computing square roots). When we use a register n for indirect
addressing (@n), we need to have some convention for handling the case where its contents c(n) is not an
integer.

Higher Level Languages. In practice, we may write our program using a more abstract language or a
“higher level” language. Thus, we may use well-known constructs such as for-loops and if-then-else, and
even allow recursion. Nevertheless, such extensions of the model can be translated into a standard RAM
program.

Exercises

Exercise 4.1: Recall the Merge Algorithm described in §3. Please convert it into a RAM program. ♦

Exercise 4.2: Write RAM algorithms for the following problems:
(a) Sort a sequence of input numbers.
(b) Compute the GCD of two integers.
(c) Solve the ranking problem (§2). You need two algorithms, for preprocessing and for answering
queries.
(d) Solve the dynamic ranking problem (§2). You need four algorithms here: to initialize an empty
data structure, to insert, to delete, and to answer rank queries.
Be sure to state your input/output conventions. Also, describe any data structures you use. ♦

Exercise 4.3: Reduce the number of primitive operators (listed in table above) for our RAM model to a
minimum. Show that your minimal RAM model can simulate our original RAM model. ♦

Exercise 4.4: Show how to implement higher level language constructs such as for-loops, if-then-else, case-
statements in our RAM model. ♦

End Exercises
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§5. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving our problem. What is a criteria to choose among
different algorithms within a model? For this, we need to introduce a complexity model.

In most computational models, there are usually natural notions of time and space. These are two
examples of computational resources. Naturally, resources are scarce and algorithms consume resources
when they run. We want to choose algorithms that minimize the use of resources. In our discussions, we
focus on only one resource at a time, usually time (occasionally space). So we avoid issues of trade-offs
between two resources.

Next, for each primitive operation executing on a particular data, we need to know how much of the
resource is consumed. For instance, in Java, we could define each execution of the addition operation on two
numbers a, b to use time log(|a| + |b|). But it would be simpler to say that this operation takes unit time,
independent of a, b. This simpler version is our choice throughout these lectures: each primitive operation
takes unit time, independent of the actual data.

How is the running time for sorting 1000 elements related to the running time for sorting 10 elements?
The answer lies in viewing running time as a function of the number of input elements, the “input size”. In
general, problems usually have a natural notion of “input size” and this is the basis for understanding the
complexity of algorithms.

So we want a notion of size on the input domain, and measure resource usage as a function of input size.
The size size(I) of an input instance I is a positive integer. We make a general assumption about the size
function: there are inputs of arbitrarily large size.

For our running example of the sorting problem, it may seem natural to define the size of an input
(a1, . . . , an) to be n. But actually, this is only natural because we usually use computational models that
compares a pair of numbers in unit time. For instance, if we must encode the input as binary strings (as in
the Turing machine model), then input size is better taken to be

∑n
i=1(1 + log(1 + |ai|)).

Suppose A is an algorithm for our problem P . For any input instance I, let TA(I) be the total amount
of time used by A on input I. Naturally, TA(I) = ∞ if A does not halt on I. Then we define the worst
case running time of A to be the function TA(n) where

TA(n) := sup{TA(I) : size(I) = n}

Using “sup” here is only one way to “aggregate” the set of numbers {TA(I) : size(I) ≤ n}. In general, we
may apply a set-valued function G to the set,

TA(n) = G({TA(I) : size(I) ≤ n})

For instance, if G is the average function and we get average time complexity.

To summarize: a complexity model is a specification of
(a) the computational resource,
(b) the input size function,
(c) the unit of resource, and
(d) the method G of aggregating.
Once the complexity model is fixed, we can associate to each algorithm A a complexity function TA.

Example: Consider the Comparison Tree Model for sorting. Let T (n) be the worst case number
of comparisons needed to sort n elements. Any tree program to sort n elements must have at least n! leaves,
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since we need at least one leaf for each possible sorting outcome. Since a binary tree with n! leaves has
height at least dlg(n!)e.

Lemma 1. Every tree program for sorting n elements has height at least dlg(n!)e, i.e., T (n) ≥ dlg(n!)e.

This lower bound is called the Information Theoretic Lower Bound for sorting.

Example: In our RAM model (real or integer version), let the computational resource be time,
where each primitive operation takes unit time. The input size function is the number of registers used for
encoding the input. The aggregation method is the worst case (for any fixed input size). This is called the
unit time complexity model.

Complexity of Merging. Define M(m,n) to be the minimum height of any comparison tree for merging
two sorted lists of sizes m and n, respectively. We can prove the following bounds

M(m,n) ≤ m + n− 1

and
M(m,n) ≥ 2 min{m,n} − δ(m,n)

where δ(m,n) = 1 if m = n and δ(m,n) = 0 otherwise. The upper bound comes from the algorithm for
merging described in §3: each comparison results in at least one output. But the last element can be output
without any comparison. Hence we never make more comparisons than m + n− 1. The lower bound comes
from the following example: assume the input is x1 < x2 < · · · < xm and y1 < · · · < yn where m ≥ n. We
assume that

x1 < y1 < x2 < y2 < x3 < · · ·xn < yn < xn+1 < · · ·xm.

Note that each yi must be compared to xi and xi+1 (for i = 1, . . . , n− 1). Moreover, yn must be compared
to xn, and in case δ(m,n) = 0, yn must also be compared to xn+1. This proves M(m,n) ≥ 2n − δ(m,n),
where n = min{m,n}. This method of proving lower bounds is called the adversary argument.

A corollary of the above upper and lower bounds are some exact bounds for the complexity of merging:

M(m,m) = 2m− 1

and
M(m,m + 1) = 2m.

Thus the uniform algorithm is optimal in these cases. More generally, M(m,m + k) = 2m + k − 1 for
k = 0, . . . , 4 and m ≥ 6 (see [3] and Exercise).

Now consider the other extreme where the two input lists are as disparate in lengths as possible: M(m, 1).
In this case, the information theoretic bound says that M(m, 1) ≥ dlg(m + 1)e (why?). Also, by binary
search, this lower bound is tight. Hence we now know another exact value:

M(m, 1) = dlg(m + 1)e .

A non-trivial result from Hwang and Lin says

M(2, n) = dlg 7(n + 1)/12e+ dlg 14(n + 1)/17e .

More generally, the information-theoretic bound says

M(m,n) ≥ lg
(

m + n

m

)
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since there are
(
m+n

n

)
ways of merging the two sorted lists. To see this, imagine that we already have the

sorted list of m + n elements: but which of these elements come from the list of size m? There are
(
m+n

m

)
ways of choosing these elements.

Thus we have two distinct methods for proving lower bounds on M(m,n): the adversary method is better
when |m−n| is small, and the information theoretic bound is better when this gap is large. The exact value
of M(m,n) is known for several other cases, but a complete description of this complexity function remains
an open problem.

Other Complexity Measures. There are complexity models, especially in computational geometry, in
which an output size function is taken into account. The complexity function would now take at least
two arguments, T (n, k) where n is the input size, but k is the output size. This is the output-sensitive
complexity model.

Remarks:
1. Another kind of complexity measure is the size of a program. In the RAM model, this can be the number
of primitive instructions. We can measure the complexity of a problem P in terms of the size s(P ) of the
smallest program that solves P . This complexity measure assigns a single number s(P ), not a complexity
function, to P . This program size measure is an instance of static complexity measure; in contrast,
time and space are examples of dynamic complexity measures. Here “dynamic” (“static”) refers to fact
that the measure depends (does not depend) on the running of a program. Complexity theory is mostly
developed for dynamic complexity measures.
2. The comparison tree complexity model ignores all the other computational costs except comparisons. In
most situations this is well-justified. But it is possible2 to create conjure up ridiculous algorithms which
minimize the comparison cost, at an exhorbitant cost in other operations.

Exercises

Exercise 5.1: How many comparisons are required in the worst case to sort 10 elements? Give a lower
bound in the comparison tree model. Note: to do the computation by hand, it is handy to know that
10! = 3, 628, 800 and 220 = 1, 048, 576. ♦

Exercise 5.2: How good is the information theoretic lower bound for sorting 3 elements a sharp bound? In
other words, can you find upper bounds that matches the information-theoretic lower bound? Repeat
this exercise for 4 and 5 elements. ♦

Exercise 5.3: The following is a variant of the previous exercise. Is it always possible to sort n elements
using a comparison tree with n! leaves? Check this out for n = 3, 4, 5. ♦

Exercise 5.4: (a) Consider a variant of the unit time complexity model for the integer RAM model, called
the logarithmic time complexity model. Each operand takes time that is logarithmic in the
address of the register and logarithmic in the size of its operands. What is the relation between the
logarithmic time and the unit time models?
(b) Is this model realistic in the presence of the arithmetic operators (ADD, SUB, MUL, DIV). Discuss.

♦
2My colleague, Professor Robert Dewar suggests the following example: given n numbers to be sorted, we first search for

all potential comparison trees for sorting n elements. To make this search finite, we only evaluate comparison trees of height
at most n dlg ne. Among those trees that we have determined to be able to sort, we pick one of minimum height. Now we run
this comparison tree on the given input.
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Exercise 5.5: Describe suitable complexity models for the “space” resource in integer RAM models. Give
two versions, analogous to the unit time and logarithmic time versions. What about real RAM models?

♦

Exercise 5.6: Justify the claim that M(m, 1) = dlg(m + 1)e. ♦

Exercise 5.7: Using direct arguments, give your best upper and lower bounds for M(2, 10). ♦

Exercise 5.8: Prove that M(m,m + i) = 2m + i− 1 for i = 2, 3, 4 for m ≥ 6. ♦

Exercise 5.9: Prove that M(k,m) ≥ k lg2(m/k) for k ≤ m. HINT: split the list of length m into three
sublists of roughly equal sizes. ♦

Exercise 5.10: Open problem: determine M(m, 3) and M(m,m + 5) for all m. ♦

Exercise 5.11: With respect to the comparator circuit and tree program models in §3, describe suitable
complexity models for each. ♦

End Exercises

§6. Algorithmic Techniques: How to design algorithms

Now that we have some criteria to judge algorithms, we begin to design algorithms. There emerges some
general paradigms of algorithms design: (i) Divide-and-conquer (e.g., merge sort)
(ii) Greedy method (e.g., Kruskal’s algorithm for minimum spanning tree)
(iii) Dynamic programming (e.g., multiplying a sequence of matrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustrate divide-and-conquer: Suppose you want to
sort an array A of n elements. Assume n is a power of 2. Here is the Merge Sort algorithm on input A:

1. (Basis) If n is 1 simply return the array A.

2. (Divide) Divide the elements of A into two subarrays B and C of size n/2 each.

3. (Recurse) Recursively, call the Merge Sort algorithm on B. Do the same for C.

4. (Conquer) Merge the sorted arrays B and C and put the result back into array A.

There is only one non-trivial step, the merging of two sorted arrays. We leave this as an exercise.

There are many variations or refinements of these paradigms. E.g., Kirkpatrick and Seidel [2] introduced
a form of divide-and-conquer (called “marriage-before-dividing”) that leads to an output-sensitive convex
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hull algorithm. There may be domain specific versions of these methods. E.g., plane sweep is an incremental
method suitable for problems on points in Euclidean space.

Closely allied with the choice of algorithmic technique is the choice of data structures. A data structure
is a representation of a complex mathematical structure (such as sets, graphs or matrices), together with
algorithms to support certain querying or updating operations. The following are some basic data structures.

(a) Linked lists: each list stores a sequence of objects together with operations for (i) accessing the first
object, (ii) accessing the next object, (iii) inserting a new object after a given object, and (iv) deleting
any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations for insertion and deletion of
objects. The queue discipline specifies which object is to be deleted. There are two3 basic disciplines:
last-in first-out (LIFO) or first-in first-out (FIFO). Note that recursion is intimately related to LIFO.

(c) Binary search trees: each tree stores a set of elements from a linear ordering together with the op-
erations to determine the smallest element in the set larger than a given element. A dynamic binary
search tree supports, in addition, the insertion and deletion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports the operations of (i) inserting a
new element into the set, (ii) deleting an element, and (iii) testing if a given element is a member of
the set.

(e) Priority queues: each queue stores a set of elements from a linear ordering together with the operations
to (i) insert a new element, (ii) delete the minimum element, and (iii) return the minimum element
(without removing it from the set).

Exercises

Exercise 6.1: (a) Give a pseudo-code description of Merge(B,C,A) which, given two sorted arrays B and
C of size n each, returns their merged (hence sorted) result into the array A of size 2n.
(b) Why did we assume n is a power of 2 in the description of merge sort? How can we justify this
assumption in theoretical analysis? How can we handle this assumption in practice? ♦

Exercise 6.2: Design an incremental sorting algorithm based on the following principle: assuming that the
first m elements have been sorted, try to add (“insert”) the m + 1st element into the first m elements
to extend the inductive hypothesis. ♦

End Exercises

§7. Analysis: How to estimate complexity

We have now a measure TA of the complexity of our algorithm A, relative to some complexity model.
Unfortunately, the function TA is generally too complex to admit a simple description, or to be expressed
in terms of familiar mathematical functions. Instead, we aim to give upper and lower bounds on TA. This

3A discipline of a different sort is called GIGO, or, garbage-in garbage-out. This is really a law of nature.
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constitutes the subject of algorithmic analysis which is a major part of this book. The tools for this
analysis depends to a large extent on the algorithmic paradigm or data structure used by A. We give two
examples.

Example: (Divide-and-conquer) If we use divide-and-conquer then it is likely we need to solve
some recurrence equations. In our Merge Sort algorithm, assuming n is a power of 2, we obtain the following
recurrence:

T (n) = 2T (n/2) + Cn

for n ≥ 2 and T (1) = 1. Here T (n) is the (worst case) number of comparisons needed by our algorithm to
sort n elements. The solution is T (n) = Θ(n log n). In the next chapter, we study the solutions of such
equations.

Example: (Amortization) If we employ certain data-structures that might be described as “lazy”
then amortization analysis might be needed. Let us illustrate this with the problem of maintaining a binary
search tree under repeated insertion and deletion of elements. Ideally, we want the binary tree to have
height O(log n) if there are n elements in the tree. There are a number of known solutions for this problem
(see Chapter 3). Such a solution achieves the optimal logarithmic complexity for each insertion/deletion
operation. But it may be advantageous to be lazy about maintaining this logarithmic depth property: such
laziness may be rewarded by a simpler coding or programming effort. The price for laziness is that our
complexity may be linear for individual operations, but we still logarithmic cost in the amortized sense.
To illustrate this idea, suppose we allow the tree to grow to non-logarithmic depth as long as it does not cost
us anything (i.e., there are no queries on a leaf with big depth). But when we have to answer a query on a
“deep leaf”, we take this opportunity to restructure the tree so that the depth of this leaf is now reduced (say
halved). Thus repeated queries to this leaf will make it shallow. The cost of a single query could be linear
time, but we hope that over a long sequence of such queries, the cost is amortized to something small (say
logarithmic). This technique prevents an adversary from repeated querying of a “deep leaf”. Unfortunately,
this is not enough because the very first query into a “deep leaf” has to be amortized as well (since there may
be no subsequent queries). To anticipate this amortization cost, we “pre-charge” the requests (insertions)
that lead to this inordinate depth. Using a financial paradigm, we put the pre-paid charges into some bank
account. Then the “deep queries” can be paid off by withdrawing from this account. Amortization is both
an algorithmic paradigm as well as an analysis technique. This will be treated in Chapter 6.

§8. Asymptotics: How robust is the model?

This section contains important definitions for the rest of the book.

We started with a problem, selected a computational model and an associated complexity model, designed
an algorithm and managed to analyze its complexity. Looking back at this process, we are certain to find
arbitrariness in our choices. For instance, would a simple change in the set of primitive operations change
the complexity of your solution? Or what if we charge two units of time for some of the operations? Of
course, there is no end to such revisionist afterthoughts. What we are really seeking is a certain robustness
or invariance in our results.

What is a complexity function? In this book, we call a partial real function

f : R→ R

a complexity function (or simply, “function”). We use complexity functions to quantify the complexity
of our algorithms. Why do we consider partial functions? For one thing, many functions of interest are only
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defined on positive integers. For example, the running time TA(n) of an algorithm A that takes discrete
inputs is a partial real function (normally defined only when n is a natural number). Of course, if the domain
of TA is taken to be N, then TA(n) would be total. So why do we think of R as the domain of TA(n)? Again,
we often use functions such f(n) = n/2 or f(n) =

√
n, to bound our complexity functions, and these are

naturally defined on the real domain; all the tools of analysis and calculus becomes available to analyze such
functions. Many common real functions such as f(n) = 1/n or f(n) = log n are partial functions because
1/n is undefined at n = 0 and log n is undefined for n ≤ 0. If f(n) is not defined at n, we write f(n) =↑,
otherwise f(n) =↓. Since complexity functions are partial, we have to be careful about operations such as
functional composition.

Designated variable and Anonymous functions. In general, we will write “n2” and “log x” to refer
to the functions f(n) = n2 or g(x) = log x, respectively. Thus, the functions denoted n2 or log x are
anonymous (or self-naming). This convention is very convenient, but it relies on an understanding that
“n” in n2 or “x” in log x is the designated variable in the expression. For instance, the anonymous
complexity function 2xn is a linear function if n is the designated variable, but an exponential function if
x is the designated variable. The designated variable in complexity functions, by definition, range over real
numbers. This may be a bit confusing when the designated variable is “n” since in mathematical literature,
n is usually a natural number.

Robustness or Invariance issue. Let us return to the robustness issue which motivated this section.
The motivation was to state complexity results that have general validity, or independent of many apparently
arbitrary choices in the process of deriving our results. There are many ways to achieve this: for instance,
we can specify complexity functions up to “polynomial smearing”. Two real functions f, g,are equivalent in
this sense if for some c > 0, f(n) ≤ cg(n)c and g(n) ≤ cf(n)c for all n large enough. This is extremely robust
but alas, too drastic for most purposes. The most widely accepted procedure is to take two smaller steps:

• Step 1: We are interested in the eventual behavior of functions (e.g., if T (n) = 2n for n ≤ 1000 and
T (n) = n for n > 1000, then we want to regard T (n) as a linear function).

• Step 2: We distinguish functions only up to multiplicative constants (e.g., n/2, n and 10n are indis-
tinguishable),

These two decisions give us most of the robustness properties we desire, and are captured in the following
language of asymptotics.

Eventuality. This is Step 1 in our search for invariance. Given two functions, we say “f ≤ g eventually”,
written

f ≤ g (ev.), (1)

if f(x) ≤ g(x) holds for all x large enough. More precisely, this means there is some x0 such that the
following statement is true:

(∀x)[x ≥ x0 ⇒ f(x) ≤ g(x)]. (2)

We must be careful: what does “f(x) ≤ g(x)” mean when either f(x) or g(x) may be undefined? The answer
depends on the quantifier that bounds (i.e., that controls) x, whether x is bounded by an existential quantifier
or by a universal quantifier. If a universal quantifier (as in (1)), we declare the predicate “f(x) ≤ g(x)” to be
true if either f(x) or g(x) is undefined. If an existential quantifier, we declare the predicate “f(x) ≤ g(x)”
to be false if either f(x) or g(x) is undefined. So (2) can be expanded into:

(∀x)[x ≥ x0 ∧ f(x) =↓ ∧ g(x) =↓ .⇒ .f(x) ≤ g(x)].
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REMARK: We can generalize this treatment of quantification over any partial predicate P (x) on a real
variable x. By partial predicate, we mean P (x) may be undefined for some values of x. In the previous
example, P (x) is just “f(x) ≤ g(x)”. The universally quantified statement “(∀x)[P (x)]” should be interpreted
as saying “for all x ∈ R, if P (x) is defined then P (x) is true”. Similarly, the existentially quantified statement
“(∃x)[P (x)]” says “there exists some x ∈ R such that P (x) is defined and P (x) is true”. Note that the
definition of “holding eventually” involves both kinds of quantifiers. To show the role of the x variable, we
may also write (1) as

f(x) ≤ g(x) (ev. x).

Clearly, this is a transitive relation.

The “eventually” terminology is quite general: if a predicate R(x) is parametrized by x in some real
domain D ⊆ R, and R(x) holds for all x ∈ D larger than some x0, then we say R(x) holds eventually
(abbreviated, ev.). We can also extend this to predicates R(x, y, z) on several variables. A related notion is
this: if R(x) holds for infinitely many values of x ∈ D, we say R(x) holds infinitely often (abbreviated,
i.o.).

If g ≤ f (ev.) and f ≤ g (ev.), then clearly

g = f (ev.).

Thus means f(x) = g(x) for sufficiently large x, whenever both sides are defined. Most natural functions f
in complexity satisfies f ≥ 0 (ev.) and are non-decreasing eventually.

Domination. We now take Step 2 towards invariance. We say g dominates f , written

f � g,

if there exists C > 0 such that f ≤ C · g(ev.). Equivalently, f � g is written as g � f . This notation
naturally suggests the transitivity property: f � g and g � h implies f � h. Of course, the reflexivity
property holds: f � f . If f � g and g � f then we write

f � g.

Clearly � is an equivalence relation. The equivalence classes of f is called the Θ-order of f ; more on this
below. If f � g but not g � f then we write

f ≺ g.

E.g., 1 + 1
n ≺ n ≺ n2.

The big-Oh notation. We write
O(f)

(and read order of f or big-Oh of f) to denote the set of all complexity functions g such that

0 � g � f.

Note that each function in O(f) dominates 0. In other words, if g = O(f) then there is some C > 0 and x0

such that for all x ≥ x0, if g(x) =↓ and f(x) =↓ then 0 ≤ g(x) ≤ Cf(x).

E.g., The set O(1) is the set of functions f that is bounded. The function 1 + 1
n is a member of O(1).

The simplest usage of this O-notation is as follows: we write

g = O(f)
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(and read ‘g is big-Oh of f ’ or ‘g is order of f ’) to mean g is a member of the set O(f). The equality
symbol ‘=’ here is “uni-directional”: g = O(f) does not mean the same thing as O(f) = g. Below, we
will see how to interpret the latter expression. The equality symbol in this context is called a one-way
equality. Why not just use ‘∈’ for the one-way equality? A partial explanation is that one common use of
the equality symbol has a uni-directional flavor where we transform a formula from an unknown form into
a known form, separated by an equality symbol. Our one-way equality symbol for O-expressions lends itself
to a similar manipulation. For example, the following sequence of one-way equalities

f(n) =
n∑

i=1

(i +
n

i
) =

(
n∑

i=1

i

)
+

(
n∑

i=1

n

i

)
= O(n2) +O(n log n) = O(n2)

may be viewed as a derivation to show f is at most quadratic.

Big-Oh expressions. The expression ‘O(f(n))’ is an example of an O-expression, which we now define.
In any O-expression, there is a designated variable which is the real variable that goes4 to infinity. For
instance, the O-expression O(nk) would be ambiguous were it not for the tacit convention that ‘n’ is normally
the designated variable. Hence k is assumed to be constant. We shall define O-expressions as follows:

(Basis) If f is the symbol for a function, then f is an O-expression. If n is the designated variable for
O-expressions and c a real constant, then both ‘n’ and ‘c’ are also O-expressions.

(Induction) If E,F are O-expressions and f is a symbol denoting a complexity function then the following
are O-expressions:

O(E), f(E), E + F, EF, −F, 1/F, EF .

Each O-expression E denotes a set Ẽ of partial real functions in the obvious manner: in the basis case,
a function symbol f denotes the singleton set f̃ = {f}. Inductively, the expression E + F (for instance)
denotes the set Ẽ + F of all functions f + g where f ∈ Ẽ and g ∈ F̃ .

Examples of O-expressions:

2n −O(n2 log n), nn+O(log n), f(1 +O(1/n))− g(n).

If E,F are two O-expressions, we may write

E = F

to denote Ẽ ⊆ F̃ , i.e., the equality symbol stands for set inclusion! This generalizes our earlier “f = O(g)”
interpretation. Some examples of this usage:

O(n2)− 5O(log n) = O(nlog n), n + (log n)O(
√

n) = nlog log n, 2n = O(1)n−O(1).

An ambiguity arises from the fact that if O does not occur in an O-expression, it is indistinguishable from
an ordinary expression. We must be explicit about our intention, or else rely on the context in such cases.
Normally, at least one side of the one-sided equation ‘E = F ’ contains an occurrence of ‘O’, in which case,
the other side is automatically assumed to be an O-expression. Some common O-expressions are:

• O(1), the bounded functions.

4More generally, we can consider x approaching some other limit, such as 0.
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• 1±O(1/n), a set of functions that tends to 1±.

• O(n), the linearly bounded functions.

• nO(1), the functions bounded by polynomials.

• O(1)n or 2O(n), the functions bounded by simple exponentials.

• O(log n), the functions bounded by some multiple of the logarithm.

Extended big-Oh notations. We introduce two simple extensions of the O-notation:
1) Inequality interpretation: For O-expressions E,F , we may write E 6= F to mean that the set of
functions denoted by E is not contained in the set denoted by F . For instance, f(n) 6= O(n2) means that
for all C > 0, there are infinitely many n such that f(n) > Cn2.
2) Subscripting convention: We can subscript the big-Oh’s in an O-expression. For example,

OA(n), O1(n2) + O2(n log n).

The intent is that each subscript (A, 1, 2) picks out a specific but anonymous function in (the set denoted
by) the unsubscripted O-notation. Furthermore, within a given context, two occurrences of an identically
subscripted O-notation are meant to refer to the same function.

For instance, if A is a linear time algorithm, we may say that “A runs in time OA(n)” to indicate that
the choice of the function OA(n) depends on A. Further, all occurrences of “OA(n)” in the same discussion
will refer to the same anonymous function. Again, we may write

n2k = Ok(n), n2k = On(2k)

depending on one’s viewpoint. Especially useful is the ability to do “in-line calculations”. As an example,
we may write

g(n) = O1(n log n) = O2(n2)

where, it should be noted, the equalities here are true equalities of functions.

Related Asymptotic Notations: The above discussion extends in a natural way to several other related
notations.

Big-Omega notation: Ω(f) is the set of all complexity functions g such that for some constant C > 0,

C · g ≥ f ≥ 0 (ev.).

Note that Ω(f) is empty unless it is eventually non-negative. Clearly, big-Omega is just the reverse of
the big-Oh relation: g is in Ω(f) iff f = O(g).

Theta notation: Θ(f) is the intersection of the sets O(f) and Ω(f). So g is in Θ(f) iff g � f .

Small-oh notation: o(f) is the set of all complexity functions g such that for all C > 0,

C · f ≥ g ≥ 0 (ev.).

Thus g is in o(f) implies g(n)/f(n)→ 0 as n→∞. Also, o(f) ⊆ O(f). A related notation is this: we
say

f ∼ g

if f = g ± o(g) or f(x) = g(x)[1± o(1)].
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Small-omega notation: ω(f) is the set of all functions g such that for all C > 0,

C · g ≥ f ≥ 0 (ev.).

Thus g is in ω(f) implies g(n)/f(n)→∞ as n→∞. Clearly ω(f) ⊆ Ω(f).

For each of these notations, we again define the ◦-expressions (◦ ∈ {Ω,Θ, o, ω}), use the one-way inequality
instead of set-membership or set-inclusion, and employ the subscripting convention. Thus, we write “g =
Ω(f)” instead of saying “g is in Ω(f)”. We call the set ◦(f) the ◦-order of f . Here are some immediate
relationships among these notations:

• f = O(g) iff g = Ω(f).

• f = Θ(g) iff f = O(g) and f = Ω(g).

• f = O(f) and O(O(f)) = O(f).

• f + o(f) = Θ(f).

• o(f) ⊆ O(f).

• g = ω(f) iff f = o(g).

Lower Bounds. Based on our asymptotic notations, we can specify lower bounds on a complexity function
f(n) in one of three form:

• f(n) = Ω(g(n)).

• f(n) 6= O(g(n)).

• f(n) 6= o(g(n)).

It is not hard to see that each form is less stringent than the previous. See Exercise for how these are used
in practice.

Discussion. There is some debate over the best way to define the asymptotic concepts. There is consid-
erable divergence in the literature on the details. Here we note just two alternatives:
1. Perhaps the most common definition follows Knuth [4, p. 104] who defines “g = O(f)” to mean there is
some C > 0 such that |f(x)| dominates C|g(x)|. Using this definition, both O(−f) and −O(f) would mean
the same thing as O(f). Our definition, on the contrary, allows us to distinguish5 between 1 +O(1/n) and
1−O(1/n).
2. Again, we could have defined O(f) more simply to comprise those g such that for some C > 0,
g ≤ C · f (ev.). That is, we omit the requirement g ≥ 0 (ev.) from our original definition. This defini-
tion is attractive because of its simplicity. But with this “simplified definition”, O(f) contains arbitrarily
negative functions. Thus, the expression 1−O(1/n) is useful as an upper and lower bound under our official
notation. But with the simplified definition, the expression 1−O(1/n) has no value as an upper bound. Our
official definition opted for something that is intermediate between this simplified version and Knuth’s.

5On the other hand, there is no easy way to recover Knuth’s definition using our definitions. It may be useful to retain
Knuth’s definition using the special notation |O|(f(n)), etc.
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We are following Cormen et al [1] in restricting the elements of O(f) to complexity functions that
dominate 0. This approach has its own burden: thus whenever we say “g = O(f)”, we have to check that
g dominates 0 (cf. exercise 1 below). In practice, this requirement is not much of a burden, and is silently
passed over. If |f − g| = O(1), we cannot simply say “f = g +O(1)” without further analysis, because the
correct statement might be f = g −O(1).

A common abuse is to use big-Oh notations in conjunction with the less-than or greater-than symbol: it
is very tempting to write “f(n) ≤ O(g)” instead of “f(n) = O(g)”. At best, this is redundant. The problem
is that, once this is admitted, one may in the course of a long derivation eventually write “f(n) ≥ E” where
E is an O-expression. The latter is not very meaningful. Hence we regard any use of ≤ or ≥ symbols in
O-notations as illegitimate.

Perhaps most confusion (and abuse) in the literature arises from the variant definitions of the Ω-notation.
For instance, one may have only shown a lower bound of the form g(n) 6= O(f(n)) but this is claimed as a
g(n) = Ω(f(n)) result. In other words, the expression “g = Ω(f)” is interpreted to mean that there exists
(or for all) C > 0 such that for infinitely many x, g(x) ≥ Cf(x).

Evidently, these asymptotic notations can be intermixed. E.g., o(nO(log n) −Ω(n). However, they can be
tricky to understand and there seems to be little need for them.

Exercises

Exercise 8.1: Assume f(n) > 1 (ev.).
(a) Show that f(n) = nO(1) iff there exists k > 0 such that f(n) = O(nk). This is mainly an exercise
in unraveling our notations!
(b) Show a counter example to (a) in case f(n) > 1 (ev.) is false. ♦

Exercise 8.2: Prove or disprove: f = O(1)n iff f = 2O(n). ♦

Exercise 8.3: Unravel the meaning of the O-expression: 1 − O(1/n) + O(1/n2) − O(1/n3). Does the
O-expression have any meaning if we extend this into an infinite expression with alternating signs?

♦

Exercise 8.4: For basic properties of the logarithm and exponential functions, see the appendix in the next
lecture. Show the following (remember that n is the designated variable). In each case, you must
explicitly specify the constants n0, C, etc, implicit in the asymptotic notations.
(a) (n + c)k = Θ(nk). Note that c, k can be negative.
(b) log(n!) = Θ(n log n).
(c) n! = o(nn).
(d) dlog ne! = Ω(nk) for any k > 0.
(e) dlog log ne! ≤ n (ev.). ♦

Exercise 8.5: Provide either a counter-example when false or a proof when true. The base b of logarithms
is arbitrary but fixed, and b > 1. Assume the functions f, g are arbitrary (do not assume that f and g
are ≥ 0 eventually).
(a) f = O(g) implies g = O(f).
(b) max{f, g} = Θ(f + g).
(c) If g > 1 and f = O(g) then ln f = O(ln g). HINT: careful!
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(d) f = O(g) implies f ◦ log = O(g ◦ log). Assume that g ◦ log and f ◦ log are complexity functions.
(e) f = O(g) implies 2f = O(2g).
(f) f = o(g) implies 2f = O(2g).
(g) f = O(f2).
(h) f(n) = Θ(f(n/2)).

♦

Exercise 8.6: Re-solve the previous exercise, assuming that f, g are unbounded and ≥ 0 eventually. ♦

Exercise 8.7: Suppose TA(n) is the running time of an algorithm A.
(a) Suppose you have constructed an infinite sequence of inputs I1, I2, . . . of sizes n1 < n2 < · · · such
that A on Ii takes time more than f(ni). How can you express this lower bound result using our
asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower bound of the form TA(n) 6= O(f(n))? What
must you show about of your constructed inputs I1, I2, . . ..
(c) Again, what does it take to prove a lower bound of the form TA(n) = Ω(f(n))? ♦

Exercise 8.8: Show some examples where you might want to use “mixed” asymptotic expressions. ♦

Exercise 8.9: Discuss the meaning of the expressions n−O(log n) and n+O(log n) under (1) our definition,
(2) Knuth’s definition and (3) the “simplified definition” in the discussion. ♦

End Exercises

§9. Two Dictums of Algorithmics

We state two principles in algorithmics. They will justify many of our procedures and motivate some of
the fundamental questions we ask.

(A) Complexity functions are determined only up to Θ-order. This simply formalizes our motivation for
introducing asymptotic notations, namely, concern for robust complexity results. For instance, we might
prove a theorem that the running time T (n) of an algorithm is “linear time” meaning T (n) = Θ(n). Then
simple and local modifications to the algorithm should generally not affect the validity of this theorem.

There are of course several caveats: A consequence of this dictum is that a “new” algorithm is not
considered significant unless its asymptotic order is less than previous known algorithms. This attitude
could be counter-productive if it is abused. For instance, an asymptotically superior algorithm may actually
be inferior when compared to another slower algorithm on all inputs of realistic sizes. For special problems,
we might be interested in constant multiplicative factors. For instance, let c > 0 be the least constant such
the median of n numbers can be found with ≤ cn comparisons. It is known that c ≥ 2 [John W. John (1985)]
and c ≤ 2.95 [Zwick and Zwick (1994)].

(B) Problems with complexity that are polynomial-bounded are feasible. Moreover, there is an unbridgeable
gap between polynomial-bounded problems and those that are not polynomial-bounded. This principle goes
back to Cobham and Edmonds in the late sixties and relates to the P versus NP question. Hence, the first
question we ask concerning any problem is whether it is polynomially-bounded. The answer may depend on
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the particular complexity model. E.g., a problem may be polynomial-bounded in space-resource but not in
time-resource, although at this moment it is unknown if this possibility can arise. Of course, polynomial-
bounded complexity may not exactly be practical. In practice, a polynomial-time complexity of T (n) = nc

is considered impractical if (say) c is larger than 5. So the “practically feasible class” is a rather small slice
of P .

Despite the caveats, these two dictums turn out to be extremely useful. The landscape of computational
problems is thereby simplified and made “understandable”. The quest for asymptotically good algorithms
helps us understand the nature of the problem. Often, after a complicated but asymptotically good algorithm
has been discovered, we find ways to achieve the same asymptotic result in a simpler (practical) way.

§10. Inherent Complexity: Lower Bounds

Let P be a computational problem. Suppose that we have designed an algorithm A for P and showed
that it beats every known algorithm. But how do we know it would not be beaten in the future? This
anxiety, common to all champions, may be abated somewhat if we could prove that A is somehow optimal.

Another way to look at this is that we want to define the inherent complexity of P . With any problem
P , we want to associate a complexity function TP . This function TP will be defined in terms of the functions
TA where A range over all algorithms for P in our computational model. We can say A is optimal for P if
A is an algorithm for P , and for every other algorithm B for P , we have TA = O(TB). In this case, we may
define the inherent complexity TP of P to be TA. Clearly TP is defined up to Θ-order.

Trouble is, the inherent complexity TP may not exist. It certainly exist in non-uniform complexity
models. For the sorting problem in the comparison model, it is known that TP (n) = n log n and is achieved
by several known algorithms. Such provably optimal non-linear time algorithms are extremely rare. Of
course, linear time algorithms are usually optimal, but for trivial reasons.

Connection to complexity theory. Algorithmics is sometimes viewed as a subarea of complexity theory
(algorithmics used to be called “concrete complexity” although this label has fallen out of use, perhaps
because it sounds too much like a subfield of civil engineering). One view of complexity theory is that it is
the study of inherent complexity. But in fact inherent complexity is just as important in algorithmics. The
true distinction seems to be that algorithmics is the study of the inherent complexity of individual problems
while complexity theory seeks to study properties of classes of problems (cf. [5, Preface]). The use of
complexity classes leads to a way out of the dilemma of the missing optimal algorithms [5]. Because of its
emphasis on individual problems, different machine models becomes interesting for algorithmics as they may
be appropriate for different problems. But complexity theory prefers to use general-purpose machine models
(Turing machines for example). Thus the comparison-tree model is extremely specialized but it is important
for studying the complexity of problems on linear orders. A more general-purpose model would blur many
distinctions in such problems which are of interest in algorithmics.
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§A. APPENDIX: General Notations

We gather some general notations used throughout these lectures. Use this as reference. If there is a
notation you do not understand from elsewhere in the book, this is a first place to look.

Definition. We write X := ...Y... when defining a term X in terms of . . . Y . . ..

Numbers. Denote the set of natural numbers6 by N = {0, 1, 2, . . .}, integers by Z = {0,±1,±2, . . .},
rational numbers by Q = {p/q : p, q ∈ Z, q 6= 0}, the reals R and complex numbers C. The positive and
non-negative reals are denoted R>0 and R≥0, respectively. The set of integers {i, i + 1, . . . , j − 1, j} where
i, j ∈ N is denoted [i..j]. So the size of [i..j] is max{0, j − i + 1}. If r is a real number, let its ceiling dre
be the smallest integer greater than or equal to r. Similarly, its floor brc is the largest integer less than or
equal to r. Clearly, brc ≤ r ≤ dre. For instance, b0.5c = 0, b−0.5c = −1 and d−2.3e = −2.

Sets. The size or cardinality of a set S is the number of elements in S and denoted |S|. The empty
set is ∅. A set of size one is called a singleton. The disjoint union of two sets is denoted X ] Y . Thus,
X = X1 ]X2 ] · · · ]Xn to denote a partition of X into n subsets. If X is a set, then 2X denotes the set of
all subsets of X. The Cartesian product X1 × · · · ×Xn of the sets X1, . . . , Xn is the set of all n-tuples of
the form (x1, . . . , xn) where xi ∈ Xi. If X1 = · · · = Xn then we simply write this as Xn. If n ∈ N then a
n-set refers to one with cardinality n, and

(
X
n

)
denotes the set of n-subsets of X.

Functions. If f : X → Y is a partial function, then write f(x) ↑ if f(x) is undefined and f(x) ↓ otherwise.
Function composition will be denoted f ◦ g : X → Z where g : X → Y and f : Y → Z. Thus (f ◦ g)(x) =
f(g(x)). We say a total function f is injective or 1 − 1 if f(x) = f(y) imples x = y; it is surjective or
onto if f(X) = Y ; it is bijective if it is both injective and surjective.

The special functions of exponentiation expb(x) and logarithm logb(x) to base b > 0 are more fully
described in the Appendix of Chapter 2. Although these functions can be viewed as complex functions, we
will exclusively treat them as real functions in this book. In particular, it means logb(x) is undefined for x ≤ 0.
When the base b is not explicitly specified, it is assumed to be some constant b > 1. Two special bases deserve
their own notations: lg x and lnx refer to logarithms to base b = 2 and base b = e = 2.718..., respectively.
For any real i, we write logi x as short hand for (log x)i. E.g., log2 x = (log x)2. But if i is a natural number
then log(i) x will denote the i-fold application of the log-function. E.g., log(2) x = log(log x)) = log log x

and log(0) x = x. In fact, this notation can be extended to any integer i, where i < 0 indicates the |i|-fold
application of exp.

Programs. We write programs in a pseudo-language with standard programming constructs such as if-
then-else and while statements. However, to reduce clutter, we indicate the structure of these programming
constructs by indentation and newlines.

Assignment to programming variables is written x← ..., but we may also write ...→ x when convenient.
We write x++ (resp., ++x) to indicate the increment of a numerical variable x in a program. The value
of this expression is the value of x before (resp., after) incrementing. There is an analogous notation for
decrementing, x−− and −−x.

6Zero is considered natural here, although the ancients do not consider it so. Z comes from the German ‘zahlen’, to count.
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Comments in a program are indicated in two ways: . This is a forward comment and / This is a
backward comment . These comments either precede (in case of forward comment) or follows (in case
of backward comment) the code that it describes. Here is a recursive program to compute the Factorial
function:

F (n)
Input natural number n.
Output n!
. Base Case
1. if n ≤ 1 return(1).
. General Case
2. return(n · F (n− 1)). / This is a recursive call

Note that we use indentation to indicate the block structure of our code.

Logic, Proofs, Induction. The student should know basic propositional (or Boolean) logic. But math-
ematical facts goes beyond propositional logic. Here is an example7 of a mathematical assertion P (x, y)
where x, y are real variables:

P (x, y) : There exists a real z such that if x < y then x < z < y. (3)

The student should know how to parse such assertions. The assertion P (x, y) happens to be true. This is
logically equivalent to

(∀x, y ∈ R)[P (x, y)]. (4)

All mathematical assertions are of this nature. It is said that mathematical truths are universal: truthhood
does not allow exceptions. If an assertion P (x, y) has exceptions, and we can explicitly characterize the
exceptions E(x, y), then the pair P (x, y) ∨ E(x, y) constitute a true assertion.

Assertions contain variables: for example, P (x, y) in (3) contains x, y, z. Each variable has an implied or
explicit range (x, y, z range over “real numbers”), and each variable is either quantified (either by “for all”
or “there exists”) or unquantified. Alternatively, they are either bounded or free. In our example P (x, y),
z is bounded while x, y are free. It is conventional to display the free variables as functional parameters of an
assertion. The symbol ∀ stands for “for all” and is called the universal quantifier. Likewise, the symbol
∃ stands for “there exists” and is called the existential quantifier. Assertions with no free variables
are called statements. We can always convert an assertion into a statement by adding some prefix to
quantify each of the free variables. Thus, P (x, y) can be converted into statements such as in (4) or as in
(∃x ∈ R)(∀y ∈ R)[P (x, y)].

Constructing proofs or providing counter examples to mathematical statements is a basic skill to cultivate.
Three kinds of proofs are widely used: (i) case analysis, (ii) induction, and (iii) contradiction.

A proof by case analysis is often a matter of patience. But sometimes a straightforward enumeration of
the possibilities will yield too many cases; clever insights may be needed to compress the argument. Induction
is sometimes mechanical as well but very complicated inductions can also arise (Chapter 2 treats induction).
Proofs by contradiction usually has a creative element: you need to find an assertion to be contradicted!

In proofs by contradiction, you will need to routinely negate a logical statement. Let us first consider
the simple case of propositional logic. Here, you basically apply what is called De Morgan’s Law: if A are

7When we formalize the logical language of discussion, what is called “assertion” here is often called “formula”.
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B are truth values, then ¬(A ∨B) = (¬A) ∧ (¬B) and ¬(A ∧B) = (¬A) ∨ (¬B). For instance suppose you
want to contradict the proposition A ⇒ B. You need to first know that A ⇒ B is the same as (¬A) ∨ B.
Negating this by de Morgan’s law gives us A ∧ (¬B).

Next consider the case of quantified logic. De Morgan’s law becomes the following: ¬((∀x)P ) is equivalent
to (∃x)(¬P ); ¬((∃x)P ) is equivalent to (∀x)(¬P ). A useful place to exercise these rules is to do some proofs
involving the asymptotic notation (big-Oh, big-Omega, etc). See Exercise.

Formal languages. An alphabet is a finite set Σ of symbols. A finite sequence w = x1x2 · · ·xn of symbols
from Σ is called a word or string over Σ; the length of this string is n and denoted8 |w|. When n = 0,
this is called the empty string or word and denoted with the special symbol ε. The set of all strings over
Σ is denoted Σ∗. A language over Σ is a subset of Σ∗.

Graphs. A hypergraph is a pair G = (V,E) where V is any set and E ⊆ 2V . We call elements of
V vertices and elements of E hyper-edges. In case E ⊆

(
V
k

)
, we call G a k-graph. The case k = 2

is important and is called a bigraph (or more commonly, undirected graph). A digraph or directed
graph is G = (V,E) where E ⊆ V 2 = V × V . For any digraph G = (V,E), its reverse is the digraph
(V,E′) where (u, v) ∈ E iff (v, u) ∈ E′. In this book, the word “graph” shall refer to a bigraph or digraph;
the context should make the intent clear. The edges of graphs are often written ‘(u, v)’ or ‘uv’ where u, v
are vertices. We will prefer9 to denote edge-hood by the notation u−v. Of course, in the case of bigraphs,
u−v = v−u.

Often a graph G = (V,E) comes with auxiliary data, say d1, d2, etc. In this case we denote the graph by

G = (V,E; d1, d2, . . .)

using the semi-colon to mark the presense of auxiliary data. For example:
(i) Often one or two vertices in V are distinguished. If s, t ∈ V are distinguished, we might write G =
(V,E; s, t). This notation might be used in shortest path problems where s is the source and t is the target
for the class of paths under consideration.
(ii) A “weight” function W : V → R, and we denote the corresponding weighted graph by G = (V,E;W ).
(iii) Another kind of auxiliary data is vertex coloring of G, i.e., a function C : V → S where S is any
set. Then C(v) is called the color of v ∈ V . If |S| = k, we call C a k-coloring. The chromatic graph is
therefore given by the triple G = (V,E;C). An edge coloring is similarly defined, C : E → S.

We introduce terminology for some special graphs: If V is the empty set, A graph G = (V,E) is called
the empty graph. If E is the empty set, G = (V,E) is called the trivial graph. Hence empty graphs are
necessarily trivial but not vice-versa. Kn = (V,

(
V
2

)
) denotes the complete graph on n = |V | vertices. A

bipartite graph G = (V,E) is a digraph such that V = V1 ] V2 and E ⊆ V1 × V2. It is common to write
G = (V1, V2, E) in this case. Thus, Km,n = (V1, V2, V1 × V2) denotes the complete bipartite graph where
m = |V1| and n = |V2|.

Two graphs G = (V,E), G′ = (V ′, E′) are isomorphic if there is some bijection φ : V → V ′ such that
φ(E) = E′ (the notation φ(E) has the obvious meaning).

If G = (V,E), G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E then we call G′ a subgraph of G. In case
E′ is the restriction of E to the edges in V ′, then we call G′ the V ′-induced subgraph of G or G′ is the
restriction of G to V ′. We may write G|V ′ for G′.

8This notation should not be confused with the absolute value of a number or the size of a set. The context will make this
clear.

9When we write u−v, it is really an assertion that the (u, v) is an edge. So it is redundant to say “u−v is an edge”.
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A path (from v1 to vk) is a sequence (v1, v2, . . . , vk) of vertices such that (vi, vi+1) is an edge. Thus, we
may also denote this path as (v1−v2− · · ·−vk). A digraph path is a cycle if v1 = vk and k > 1. In the case
of bigraphs, the path is a cycle if v1 = vk, k > 2 and for all 1 < i < k, vi−1 6= vi+1. A graph is acyclic if it
has no cycles. Sometimes acyclic bigraphs are called forests, and acyclic digraph are called dags (“directed
acyclic graph”).

Two vertices u, v are connected if there is a path from u to v, and a path from v to u. (Note that in the
case of bigraphs, there is a path from u to v iff there is a path from v to u.) We shall say v is adjacent to u
if u−v. Clearly, connectivity and adjacency are symmetric binary relation. It is easily seen that connectivity
is also reflexive and transitive. This relation partitions the set of vertices into connected components.

In a digraph, out-degree and in-degree of a vertex is the number of edges issuing (respectively) from
and into that vertex. The out-degree (resp., in-degree) of a digraph is the maximum of the out-degrees
(resp., in-degrees) of its vertices. The vertices of out-degree 0 are called sinks and the vertices of in-degree
0 are called sources. The degree of a vertex in a bigraph is the number of adjacent vertices; the degree
of a bigraph is the maximum of degrees of its vertices.

Trees. A connected acyclic bigraph is called a free-tree. A digraph such that there is a unique source
vertex (called the root) and all the other vertices have in-degree 1, is called10 a tree. The sinks in a tree
are called leaves or external nodes and non-leaves are called internal nodes. In general, we prefer a
terminology in which the vertices of trees are called nodes. Thus there is a unique path from the root to
each node in a tree. If u, v are nodes in T then u is a descendent of v if there is a path from v to u.
Every node v is a descendent of itself, called the improper descendent of v. All other descendents of v are
called proper. We may speak of the child or grandchild of any node in the obvious manner. The reverse
of the descendent binary relation is the ancestor relation; thus we have proper ancestors, parent and
grandparent of a node.

The subtree at any node u of T is the subgraph of T obtained by restricting to the descendents of u.
The depth of a node u in a tree T is the length of the path from the root to u. So the root is the unique
node of depth 0. The depth of T is the maximum depth of a node in T . The height of a node u is just the
depth of the subtree at u; alternatively, it is the length of the longest path from u to its descendents. Thus
u has height 0 iff u is a leaf iff u has no children. The collection of all nodes at depth i is also called the ith
level of the tree. Thus level zero is comprised of just the root. We normally draw a tree with the root at
the top of the figure, and edges are implicitly direction from top to bottom.

Binary Trees. These trees are of major importance in computer science. A binary tree is a tree T of
out-degree at most two and every edge is labeled either left or right, with the restriction that if a node
has two outgoing edges, then these two edges have different labels. If there is a left edge from v to u then
we call u a left child of v and u is denoted v.left. Similarly the right child of v is denoted v.right. Note
that if a node has only one child, then that child could be either a left or a right child.

In conventional programming languages, the u.left and u.right are often implemented as pointers.
These pointers are pre-allocated to the node u. Hence, even if u does not have a left child, the pointer
u.left is present but it is set to a special value called nil. In many applications, we further assume that each
node has a pointer to its parent, and this is denoted u.parent.

Any node v in T can be viewed as the root of another binary tree called the subtree at v. The subtree
10One can also define trees in which the sense of the edges are reversed: the root is a sink and all the leaves are sources. We

will often go back and forth between these two view points without much warning. E.g., we might speak of the “path from a
node to the root”. While it is clear what is meant here, but to be technically correct, we ought to speak awkwardly of the path
in the “reverse of the tree”.
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at the left child of v is called the left subtree of v; the left subtree of v is empty if v has no left child.
Similarly for right subtree of v.

Like the admission of 0 to the counting numbers, it is mathematically pleasing to allow the the possibility
of an empty binary tree. An empty binary tree has no nodes.

The following recursive definition of a binary tree is the most convenient form to use in proving facts
about binary trees. A binary tree T with root r(T ) is defined to be a directed graph on a set V of nodes
that satisfies:
BASE CASE: V = ∅ and r(T ) = nil.
INDUCTION: r(T ) ∈ V and there are two binary trees TL, TR such that v0.left = r(TL) and v0.right =
r(TR). Moreover, Ti is a binary tree on a set Vi (i = L,R) and V = VL ] {v0} ] VR.

Viewed T as a graph, its edge set E(T ) is empty in the base case, and inductively given by

E(T ) = {(r(T ), r(Ti)) : r(Ti) 6= nil, i = L,R} ∪ E(TL) ∪ E(TR).

There are 5 paths associated with a node u in a tree T :

1. The unique path from the root of T to u. NOTE: it is often convenient to assume that each node has
a pointer to its parent (in practice, most binary trees do have such pointers). Following these parent
pointers, we can then talk about the unique path from u to the root.

2. The path π = (u0, u1, . . . , u`) where u0 = u and ui is the left child of ui−1 (i = 1, . . . , `) and u` is a
leaf. We call π the left subpath of u. We similarly define the right subpath of u.

3. The path π = (u0, u1, . . . , u`) where u0 = u, u1 is the left child of u0, and (u1, . . . , u`) is the right
subpath of u1. We call π the left spine of u. We similarly define the right spine of u.

In case u has no left child, its left subpath and left spines is the trivial path (u) of length 0. We often
identify a binary tree T with its root u0. So when we speak of the left subtree, right spine, etc., of T , we
mean the left subtree, right spine, etc., of u0.

A binary tree is complete if every leaf has the same depth. It is easy to see that if the depth is d ≥ 0
then the tree has 2d+1−1 nodes and 2d leaves. A node in a binary tree is full if it has two children; a binary
tree is said to be full if every internal node is full. A simple result about non-empty full binary trees is that
it has exactly one fewer internal node than the number of leaves. Thus, if it k ≥ 1 leaves iff it has k− 1 ≥ 0
internal nodes. As corollary, a full binary tree has an odd number of nodes.

A basic fact about binary trees is that if it has n nodes, then its height is at least dlg(1 + n)e − 1 (see
Exercise). Hence the height of a binary tree on n nodes is Ω(lg n). A family of binary trees is balanced if
for each n, there are trees in the family with n nodes and every such tree has height O(log n). The implicit
constant in the O-notation depends on the particular family.

We caution the reader that there is an alternative view of binary trees which we call extended binary
trees; this is described in Chapter III.

Binary Search Trees. The most important use of binary trees is for storing and searching items. A
binary search tree is a binary tree that in addition stores a key at each node. The key at node u is
usually denoted u.Key. Keys are elements from a totally ordered set so that we may compare them. The
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keys in a binary search tree need not be distinct but they must satisfy the binary search tree property:
all the keys in the left (resp., right) subtree of a node v are less (resp., greater) than or equal to the key at v.

The nodes of a binary tree can be listed in one of three standard ways: pre-order, in-order or post-
order. These correspond to listing a node (respectively) (i) before any of its descendents, (ii) after all nodes
in its left subtree but before any of the nodes in its right subtree, and (iii) after all of its descendents. In-order
is also called symmetric order. Node listing is also called tree traversal.

Exercises

Exercise A.1: The following is a useful result about iterated floors and ceilings. It shows that bbn/2c /2c =
bn/4c, for instance.
(a) Let n, b be positive integers. Let N0 :=n and for i ≥ 0, Ni+1 := dNi/be. Show that Ni =

⌈
n/bi

⌉
.

Similarly for floors. HINT: use the fact that Ni+1 ≤ Ni/b + (b− 1)/b.
(b) Let u0 = 1 and ui+1 = b5ui/2c for i ≥ 0. Show that for i ≥ 4, 0.76(5/2)i < ui ≤ 0.768(5/2)i.
HINT: ri :=ui(2/5)i is non-increasing; give a lower bound on ri (i ≥ 4) based on r4. ♦

Exercise A.2: Let x, a, b be positive real numbers. Show that bx/abc ≥ bbx/ac /bc. Is it true that they are
equal? ♦

Exercise A.3: Suppose you want to prove that

f(n) 6= O(f(n/2))

where f(n) = (log n)log n.
(a) Using de Morgan’s law, show that this amounts to saying that for all C > 0, n0 there exists n such
that

(n ≥ n0) ∧ f(n) > Cf(n/2).

(b) Complete the proof by finding a suitable n for any given C, n0. ♦

Exercise A.4: Basic facts about binary trees:
(a) A full binary tree on n leaves has n− 1 internal nodes.
(b) Show that every binary tree on n ≥ 1 nodes has height at least dlg(1 + n)e−1. HINT: define M(h)
to be the maximum number of nodes in a binary tree of height h.
(c) Show that the bound in (b) is tight for each n.
(d) Show that a binary tree on n ≥ 1 leaves has height dlg ne. HINT: use a modified version of M(h).

♦

Exercise A.5: (Erdös-Rado) Show that in any 2-coloring of the edges of the complete graph Kn, there is
a monochromatic spanning tree of Kn. HINT: use induction. ♦

Exercise A.6: Let T be a binary tree on n nodes.
(a) What is the minimum possible number of leaves in T?
(b) Show by strong induction on the structure of T that T has at most

⌊
n+1

2

⌋
leaves. This is an

exercise in case analysis, so proceed as follows: first let n be odd (say, n = 2N + 1) and assume T has
k = 2K + 1 children in the left subtree. There are 3 other cases.
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(c) Give an alternative proof of part (b): show the result for n by a weaker induction on n − 1 and
n− 2.
(d) Show that the bound in part (b) is the best possible by describing a T with

⌊
n+1

2

⌋
leaves. HINT:

first show it when n = 2t − 1. Alternatively, consider binary heaps. ♦

Exercise A.7:
(a) A binary tree with a key associated to each node is a binary search tree iff the in-order listing of
these keys is in non-decreasing order.
(b) Given both the post-order and in-order listing of the nodes of a binary tree, we can reconstruct the
tree. ♦

End Exercises
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