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Lecture VI

AMORTIZATION

Many algorithms amount to a sequence of operations on a data structure. For instance, the well-known
heapsort algorithm is a sequence of insert’s into an initially empty priority queue, followed by a sequence
of deleteMin’s from the queue until it is empty. Thus if ci is the cost of the ith operation, the algorithm’s
running time is

∑2n
i=1 ci, since there are 2n operations for sorting n elements. In worst case analysis, we

ensure that each operation is efficient, say ci = O(log n), leading to the conclusion that the overall algorithm
is O(n log n). The idea of amortization exploits the fact that we may be able to obtain the same bound∑2n

i=1 ci = O(n log n) without ensuring that each ci is logarithmic. We then say that the amortized cost
of each operation is logarithmic. Thus “amortized complexity” is a kind of average complexity although it
has nothing to do with probability. Tarjan [9] gives the first systematic account of this topic.

Why amortize? Even in problems where we could have ensured each operation is logarithmic time, it
may be advantageous to achieve only logarithmic behavior in the amortized sense. This is because the extra
flexibility of amortized bounds may lead to simpler or more practical algorithms. In fact, many “amortized”
data structures are relatively easy to implement. To give a concrete example, consider any balance binary
search tree scheme. The algorithms for such trees must perform considerable book-keeping to maintain its
balanced shape. In contrast, we will see an amortization scheme for binary search tree which is considerably
simpler and “lax” about balancing. The operative word in such amortized data structures is1 laziness: try
to defer the book-keeping work to the future if it can be helped. This will be clearer when we discuss splay
trees below.

This lecture is in 3 parts: we begin by introducing the potential function framework for doing
amortization analysis. Then we introduce two data structures, splay trees and Fibonacci heaps, which
can be analyzed using this framework. We give a non-trivial application of each data structure: splay trees
are used to maintain the convex hull of a set of points in the plane, and Fibonacci heaps are used for
implement Prim’s algorithm for minimum spanning trees.

§1. The Potential Framework

We formulate an approach to amortized analysis using the concept of “potential functions”. Borrowing
a concept from Physics, we imagine data structures as storing “potential energy” that can be released to do
useful work. First, we view a data structure such as a binary search tree as a persistent object that has a
state which can be changed by operations (e.g., insert, delete, etc). The characteristic property of potential
functions is that they are a function of the current state of the data structure alone, independent of the
history of how the data structure was derived.

A “Counter Example”. We begin with a simple example. Suppose that we have a binary counter C
that is represented by a linked list of 0’s and 1’s. The only operation on C is to increment its value. For
instance, if C = (011011) then after incrementing, C = (011100). This linked list representation determines
our cost model: the cost to increment C is defined to be the length of the suffix of C of the form 01∗. (We
may assume that C begins with a 0-bit in its binary representation, so a suffix of this form always exists.)
Thus in our example, the cost is 3 since C has the suffix 011. The problem we consider is to analyse the cost
of a sequence of n increments, starting from an initial counter value of 0. In the worst case, an increment
operation costs Θ(lg n). Therefore a worst-case analysis would conclude that the total cost is O(n lg n).

1In algorithmics, it appears that we like to turn conventional vices (greediness, laziness, gambling with chance, etc) into
virtues.
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We can do better by using amortized analysis: let us associate with C a potential Φ = Φ(C) that is
equal to the number of 1’s in its list representation. For instance, Φ(011011) = 4. Informally, we will “store”
Φ(C) units of work in C. To analyze the increment operation, we consider two cases. (I) Suppose the least
significant bit of C is 0. Then the increment operation just changes this bit to 1. We can charge this
operation 2 units – one unit to do the work and one unit to pay for the increase in potential. (II) Suppose an
increment operation changes a suffix 0111 · · ·11︸ ︷︷ ︸

k

of length k ≥ 2 into 1000 · · ·00︸ ︷︷ ︸
k

: the cost incurred is Θ(k).

Notice that the potential Φ decreases by k − 2. This decrease “releases” k − 2 units of work that can pay
for Θ(k − 2) of the cost incurred. So we only need to charge this operation 2 units. Thus, in both cases (I)
and (II), we only charge 2 units of work for an operation, and so the total charges over n operations is only
2n. We conclude that the amortized cost of incrementing C is O(1).

Abstract Formulation. We present now one abstract formulation of amortization analysis. It is assumed
that we are analyzing the cost of a sequence

p1, p2, . . . , pn

of requests on a data structure D. We view a data structure D as comprising two parts: its contents and
its state, with the state representing some organization of the contents. The term “request” is meant to
cover two types of operations: updates that modify the contents of D and queries that are a function of
the contents and that does mot modify the contents. A query is not required to modify the state of D, but
it may be advantageous to do so.

For example, D may be a binary tree storing a set of keys; the contents of D are these keys and the
state of D is the binary tree itself. When looking up a key in D, we need not change the state of D.
Nevertheless, we might wish to do some rotations to bring the searched for node nearer to the root. This is
the “move-to=front” heuristic which we will discuss later.

The data structure D is dynamically changing: at any moment, it is in some state, and each request
transforms the current state of D. Let Di be the state of the data structure after request pi, with D0 the
initial state.

Each pi has a non-negative cost, denoted Cost(pi). This cost depends on the complexity model which
is part of the problem specification. To carry out an amortization argument, we must specify a charging
scheme and a potential function. Unlike the cost function, the charging scheme and potential function
are not inherent to the complexity model. They are artifacts of our analysis and may require some amount
of ingenuity to be formulated.

A charging scheme is just any systematic way to associate a non-negative number Charge(pi) to each
operation pi. Informally, we “levy” a charge of Charge(pi) on the operation. We emphasize that this levy
need not have any obvious relationship to the cost of pi. The credit of this operation is defined to be the
“excess charge”,

Credit(pi) :=Charge(pi)−Cost(pi). (1)

In view of this equation, specifying a charging scheme is equivalent to specifying a credit scheme. The credit
of an operation can be a negative number (in which case it is really a “debit”).

A potential function is a non-negative real function Φ on the set of possible states of D satisfying

Φ(D0) = 0.

We call Φ(Di) the potential of state Di. The amortization analysis amounts to verifying the following
inequality at every step:

Credit(pi) ≥ Φ(Di)− Φ(Di−1). (2)
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We call this the credit-potential invariant. We denote the increase in potential by

∆Φi :=Φ(Di)− Φ(Di−1).

Thus equation (2) can be written: Credit(pi) ≥ ∆Φi.

The idea is that credit is stored as “potential” in the data structure.2 Since the potential function and
the charging scheme are defined independently of each other, the truth of the invariant (2) is not a foregone
conclusion. It must be verified for each case.

If the credit-potential invariant is verified, we can call the charge for an operation its amortized cost.
This is justified by the following derivation:∑n

i=1 Cost(pi) =
∑n

i=1(Charge(pi)−Credit(pi)) (by the definition of credit)
≤ ∑n

i=1 Charge(pi)−
∑n

i=1 ∆Φi (by the credit-potential invariant)
=

∑n
i=1 Charge(pi)− (Φ(Dn)− Φ(D0)) (telescopy)

≤ ∑n
i=1 Charge(pi) (since Φ(Dn)− Φ(D0) ≥ 0).

When invariant (2) is a strict inequality, it means that some credit is discarded and the analysis is
not tight in this case. For our “counter” example, the invariant is tight in every case! This means that our
preceding derivation is an equality at each step until the very last step (when we assume Φ(Dn)−Φ(D0) ≥ 0).
Thus we have the exact cost of incrementing a counter from 0 to n is exactly equal to

n∑
i=1

ci = 2n− Φ(Dn)

where Φ(Dn) is the number of 1’s in the binary representation of n.

The distinction between “charge” and “amortized cost” should be clearly understood: the former is a
definition and the latter is an assertion. A charge can only be called an amortized cost if the overall scheme
satisfies the credit-potential invariant.

So what is Amortization? Reviewing the amortization framework, we are given a sequence of n requests
on a data structure. We are also given a cost model (this may be implicit) which tells us the true cost ci for
the ith operation. We want to upper bound the total cost

∑n
i=1 ci. In the amortization analysis, we hope

to achieve a bound that is tighter than what can be achieved by replacing each ci by the worst case cost.
This requires the ability to take advantage of the fact that the cost of each type of request is variable, and
depends on the current state of the data structure.

The potential method is a formalized form of amortization analysis where we invent a charging scheme
and a potential function. The charging scheme tells us that to charge c̃i for the ith request. After verifying
that the credit-potential invariant holds for each operation, we may conclude that the charge is an amortized
cost. But the potential function can be generalized in several ways: it need not be defined just for the data
structure, but could be defined for any suitable abstract feature. Moreover, the charge for an operation
could be split up in several ways, and applied to several potential functions Φj (j = 1, 2, . . . , k). We also do
not need to assume that Φj ≥ 0. If finally Φj < 0 we just have to ensure that −Φj to our charges and make
sure that ∑

i=1

ci ≤
∑
i=1

c̃i −
k∑

j=1

Φj .

2Admittedly, we are mixing financial and physical metaphors. The credit or debit ought to be put into a “bank account”
and so Φ could be called the “current balance”.
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Exercises

Exercise 1.1: Our model and analysis of counters can yield the exact cost to increment from any initial
counter value to any final counter value. Show that the exact number of work units to increment a
counter from 68 to 125 is 190. ♦

Solution 1.1: It costs 2n − Φ(Dn work units to count from 0 to n. Since 125 = (1, 111, 101)2 and 68 =
(1, 000, 100)2 and so it costs exactly 2(125− 68)− Φ(D125) + Φ(D68) = 194− 6 + 2 = 190. ♠

Exercise 1.2: Let us generalize the example of incrementing binary counters. Suppose we have a collection
of binary counters, all initialized to 0. We want to perform a sequence of operations, each of the type

inc(C), double(C), add(C, C′)

where C, C′ are names of counters. The operation inc(C) increments the counter C by 1; double(C)
doubles the counter C; finally, add(C, C′) adds the contents of C′ to C while simultaneously set the
counter C′ to zero. Show that this problem has amortized constant cost per operation.

To be precise, we must define the cost model. The length of a counter is the number of bits used to store
its current value (so the length can change). The cost to double a counter C is just 1 (you only need to
prepend a single bit to C). The cost of add(C, C′) is the number of bits that the standard algorithm
needs to look at (and possibly change) when when adding C and C′. E.g., if C = 11, 1001, 1101 and
C′ = 110, then C + C′ = 11, 1010, 0011 and the cost is 9. This is because the algorithm only has to
look at 6 bits of C and 3 bits of C′. Note that the first 4 bits of C is not looked at (you can think of
them being simply “copied” to the output, although this happens by just not doing anything). After
this operation, C has the value 11, 1010, 0011 and C′ has the value 0.
HINT: The potential of a counter C should take into account the number of 1’s as well as the bit-length
of the counter.

REMARK: in our cost model, add(C, C′) and add(C′, C) have the same cost. How to implement this
so that our cost model is realistic is left for the next exercise.

♦

Exercise 1.3: In the previous counter problem, we define a cost model for add(C, C′) that depends only on
the bit patterns in C and C′. In particular, the cost of add(C, C′) and add(C′, C) are the same. How
can you implement this algorithm so that the cost model is realistic?

HINT: To understand the issues, suppose C = 11, 1010, 0011 and C′ = 11 as in the previous problem.
Instead of add(C, C′), suppose we want to implement add(C′, C). How can you implement this so that
the cost of 9 is still realistic? If you simply “add C to C′” in the obvious way, the real cost would be
the sum of the lengths of C and C′, namely 2 + 10 = 12. One possibility is to first “add C′ to C, then
rename these counters”. But to implement it this way, you need detect which counter is longer, and to
always add the shorter counter to the longer. Another way is to copy the initial results of the addition
to an intermediate counter before committing yourself as to which counter will be zero’d out.

♦

Exercise 1.4: Joe Smart says: it stands to reason that if we can increment counters for an amortized cost of
O(1), we should be able to also support the operation of “decrementing a counter” in addition to those
in the previous exercise. Someone pointed out that the potential functions that have been used so far
does not bear out this conjecture of Smart. Joe responded, saying that the failure of any particular
potential function is no counter example to his claim.
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(a) Can you please give Joe a more convincing argument?
(b) In what way is Joe’s intuition about the symmetry of decrement and increments correct? Formalize
this by a result about amortized cost. ♦

Exercise 1.5: Generalize the previous exercise by assuming that the counters need not be initially zero,
but may contain powers of 2. ♦

End Exercises

§2. Splay Trees

The splay tree data structure of Sleator and Tarjan [8] is a practical approach to implementing all
operations listed in §III.2. The genesis of the splay tree concept is a simple heuristic called the move-to-
front heuristic – it basically says that if we want to repeatedly access items in a list, then it is a good idea
to move any accessed item to the front of the list, to facilitate future accesses to this item. Of course, there
is no guarantee that we would want to access this item again in the future. But even if we never again access
this item, we have not lost much because the cost of moving the item has already been paid for (using the
appropriate accounting method). Amortization (and probabilistic) analysis can be used to prove that this
heuristic is a good idea. This material is in appendix A.

The analogue of the move-to-front heuristic for maintaining binary search trees should be clear: after
we access (lookUp) a key K in a tree T , we must move it to the root. What if K is not in T ? Recall that
the successor of K in T is the smallest key K ′ in T such that K ≤ K ′; the predecessor of K in T is the
largest key K ′ in T such that K ′ ≤ K. Thus K does not have a successor (resp., predecessor) in T if K is
larger (resp., smaller) than any key in T . Also, the successor and predecessor coincide with K iff K is in T .
We characterize the splay operation as follows:

splay(Key K,Tree T )→ T ′ (3)

re-structures the binary search tree T into an equivalent binary search tree T ′ so that the key K ′ at the root
of T ′ is equal to either the successor or predecessor of K in T . We are indifferent as to whether K ′ is the
successor or predecessor. In particular, if K is smaller than any key in T , then K ′ is the smallest key in T .
A similar remark applies if K is larger than any key in T . The analysis of the splay operation (3) is made
under the following assumption:

T is non-empty and all the keys in T are distinct.

Since T is non-empty, any key K will have a successor or predecessor (perhaps not both) in T and splay(K, T )
can always be well-defined. See Figure 1 for examples of splaying.

Before describing the splay algorithm, we show how it will be used.

Reduction to Splaying. We now implement the fully mergeable dictionary ADT (§III.2). The imple-
mentation is quite simple: every ADT operation is reducible to one or two splaying operations.
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Figure 1: Splaying key 4 (an intermediate step shown).

• lookUp(Key K,Tree T ): first perform splay(K, T ). Then examine the root of the resulting tree to
see if K is at the root. lookUp is a success iff K is at the root. It is important to realize that we
deliberately modify the tree T by splaying it. This is necessary for our analysis.

• insert(Item X,Tree T ): perform the standard binary search tree insertion of X into T . Assuming this
insertion is successful (i.e., X.Key is not a duplicate in T ), we then splay the node containing X.Key.

• merge(Tree T1, T2) → T : recall that all the keys in T1 must be less than any key in T2. First let
T ← splay(+∞, T1). Here +∞ denotes an artificial key larger than any real key in T1. So the root of
T has no right child. We then make T2 the right subtree of T .

• delete(Key K,Tree T ): first perform splay(K, T ). If the root of the resulting tree does not contain
K, there is nothing to delete. Otherwise, delete the root and merge the left and right subtrees, as
described in the previous bullet.

• deleteMin(Tree T ): we perform T ′ ← splay(−∞, T ) and return the right subtree of T ′.

• split(Key K,Tree T ) → T ′: perform splay(K, T ) so that the root of T now contains the successor
or predecessor of K in T . Split off the right subtree of T , perhaps including the root of T , into a new
tree T ′.

Reduction to SplayStep. Splaying T at key K is easily accomplished in two stages:

• Perform the usual binary tree search for K. Say we terminate at a node u that contains K in case
T contains such a node. Otherwise, let u be the last node that we visit before the binary tree search
algorithm attempts to follow a null pointer. This node u contains the successor or predecessor of K in
T .

• Now repeatedly call the subroutine
splayStep(u)

until u becomes the root of T . Termination is guaranteed because splayStep(u) always reduce the
depth of u.

It remains to explain the SplayStep subroutine. We need a terminology: A grandchild u of a node v
is called a outer left grandchild if u is the left child of the left child of v. Similarly for outer right
grandchild. So an outer grandchild is either an outer left or outer right grandchild. If a node has a
grandparent and is not an outer grandchild, then it is a inner grandchild.
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splayStep(Node u):
There are three cases.

Base Case. If u.parent is the root,
then we simply rotate(u) (see Figure 6).

Case I. Else, if u is an outer grandchild,
perform two rotations: rotate(u.parent), followed by rotate(u). See Figure 2.

Case II. Else, u is an inner grandchild and we perform a double rotation (rotate(u) twice). See Figure 2.

splayStep(u)

splayStep(u)

u

v

w u

v

w

u

v

w u

v w

Case I

Case II

A B

C

D A

B

C D

A B

C

D

C A B D

Figure 2: SplayStep at u: Cases I and II.

In Figure 1, we see two applications of splayStep(4). Sleator and Tarjan calls the three cases of SplayStep
the zig (base case), zig-zig (case I) and zig-zag (case II) cases. It is easy to see that the depth of u decreases
by 1 in a zig, and decreases by 2 otherwise. Hence, if the depth of u is h, the splay operation will halt in
about h/2 splayStep’s. Recall in §III.6, we call the zig-zag a “double rotation”.

We illustrate the fact that splay(K, T ) may return the successor or predecessor: let T0 be the splay tree
in Figure 3. If we call splay(6, T0), the result will be T1 in the figure, where u.Key = 7. But if we call
splay(6, T1), the result will be the tree T2 in the figure, where u.Key = 5. What if you call splay(6, T2)?

Before moving to the analysis of splay trees, consider the possible behavior of this data structure. Notice
that the search trees are by no means required to be balanced. Imagine a sequence of insertions to an empty
tree: if the key of each successive insertion is larger than the previous one, we would end up with a linear
structure.

Top Down Splaying. We now introduce a variation of splaying. The Sleator-Tarjan splay algorithms
requires two passes over the splay path. Suppose we wish to have a one-pass algorithm. The basic idea is
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Figure 3: Splaying may return successor or predecessor

this: for each node that we “visit” in our search path, we will make it the root before we “visit” it. Initially,
we begin at the root so the basic idea is satisfied. The next node (if any) we visit is either the left or right
child of the root. So our basic idea amounts to just performing a left or right rotation at the root, and now we
continue recursively. This idea has a pitfall (Exercise). The correct solution is as follows. Let the top-down
splaying procedure be denoted topSplay(KeyK,Nodeu). We have 4 possible states of our algorithm:

• State 0: Both uL and uR have not been visited.

• State 1: uL but not uR has been visited.

• State 2: uR but not uL has been visited.

• State 3: Both uL and uR have been visited.

Here is the transition rule for the states.

State 0: Initially, we are in state 0. If u.Key > K, then rotate u.left and we move into state 1; if u.Key < K,
then we rotate u.right and we move into state 2.

State 1: If u.Key > K then we next move into state 3 and perform the actions

v ← u.left.right; rotate(v); rotate(v); topSplay(K, v).

Otherwise, u.Key < K and remain in state 1 and perform the actions

v ← u.right; rotate(v); topSplay(K, v).

State 2: This is symmetrical to State 1.

State 3: Once we are in state 3, we remain in state 3. If u.Key > K then v ← u.left.right else v ←
u.right.left. In any case, perform the actions

rotate(v); rotate(v); topSplay(K, v).

An alternative description is to perform cases I, II or III in direct analogy to SplayStep.

Exercises

Exercise 2.1: Perform the following splay tree operations, starting from an initially empty tree.

insert(3, 2, 1, 6, 5, 4, 9, 8, 7), lookUp(3), Del(7), insert(12, 15, 14, 13), split(8).

Show the splay tree after each step. ♦
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Figure 4: Splay trees T1, T2

Exercise 2.2: Show the result of merge(T1, T2) where T1, T2 are the splay trees shown in Figure 4. ♦

Exercise 2.3: Consider the insertion of the following sequence of keys into an initially empty tree:
1,−1, 2,−2, 3,−3, . . . , n,−n. Let Tn be the final splay tree.
(a) Show Tn for n = 1, 2, 3.
(b) Prove the obvious conjecture about the shape of Tn. ♦

Exercise 2.4: To splay a tree at a key K, our algorithm begins by doing the conventional lookUp of K. If
K is not in the tree, and u is the last node reached, then clearly u has at most one child. Prove that
u contains the successor or predecessor of K. ♦

Exercise 2.5: Let T be a binary search tree in which every non-leaf has one child. Thus T has a linear
structure with a unique leaf.
(a) What is the effect of lookUp on the key at the leaf of T ?
(b) What is the minimum number of lookUp’s to make T balanced? ♦

Exercise 2.6: In our operations on splay trees, we usually begin by performing a splay. This is not the case
in our insertion algorithm. But we can consider the following variant for insertion an item X into T :
first, perform splay(X.Key, T ) to give us an equivalent tree T ′. Now examine the key K ′ at root of T ′:
if K ′ = X.Key, we declare an error (recall that keys must be distinct). If K ′ > X.Key, we can install
a new root containing X , and K ′ becomes the right child of X ; the case K ′ < X.Key is symmetrical.
In either case, the new root has key equal to X.Key. See Figure 5. Prove that, in a certain sense, this
method is always inferior to the original insertion algorithm. HINT: what is the increase in potential
when we install a new root in T ′? ♦

Exercise 2.7: (Top Down Splaying)
(a) Explain the “pitfall” mentioned for the obvious implementation of the top-down splaying algorithm.
(b) Give an efficient implementation of topSplay as described above. Efficiency here means trying to
reduce the number of pointer manipulations, and this may entail combining the pointer manipulations
of several rotations.
(c) Do an empirical study of Top Down Splaying, comparing its performance to standard Splaying.

♦

Exercise 2.8: A splay tree is a binary search tree that arises from a sequence of splay tree operations,
starting from empty trees.
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Figure 5: Alternative Method to Insert a key K.

(a) Is every binary search tree a splay tree?
(b) Let T and T ′ be equivalent binary search trees (i.e., they store the same set of keys). Can we
transform T to T ′ by repeated splays? ♦

End Exercises

§3. Splay Analysis

Our main goal next is to prove:

(*) The amortized cost of each splay operation is O(log n) assuming at most n items in a tree.

Before proving this result, let us show that it is a “true” amortization bound. In other words, the worst
case bound is not logarithmic. In fact, the worst case bound is linear. To see this, consider the repeated
insertion of the keys 1, 2, 3, . . . , n into an initially empty tree. It is not hard to see that this results in a tree
that is just a linear list: if a non-leaf contains the key i, then its left child contain the key i−1. In particular,
there is a unique leaf containing the key 1. Thus a single lookup on key 1 will take Θ(n) work.

To start the amortized analysis, we must devise a potential function: let Size(u) denote, as usual, the
number of nodes in the subtree rooted at u. Define its potential to be

Φ(u) = blg Size(u)c .
Note that Size(u) = 1 iff u is a leaf. Thus Φ(u) = 0 iff u is a leaf. Initially, the data structure has no items
and has zero potential. If S = {u1, u2, . . . uk} is a set of nodes, we may write Φ(S) or Φ(u1, u2, . . . uk) for
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the sum
∑

u∈S Φ(u). If S is the set of nodes in a splay tree T or in the entire data structure then Φ(S) is
called the potential of (respectively) T or the entire data structure.

Lemma 1 (key) Let Φ be the potential function before we apply splayStep(u), and let Φ′ be the potential
after. The credit-potential invariant is preserved if we charge the SplayStep

3(Φ′(u)− Φ(u)) (4)

units of work in cases I and II. In the base case, we charge one extra unit, in addition to the charge (4).

The main goal (*) follows easily from this key lemma. To see this, suppose that splaying at u reduces
to a sequence of k SplaySteps at u and let Φi(u) be the potential of u after the ith SplayStep. The total
charges to this sequence of SplaySteps is

1 +
k∑

i=1

3[Φi(u)− Φi−1(u)] = 1 + 3[Φk(u)− Φ0(u)]

by telescopy. Note that the “1” comes from the fact that the last SplayStep may belong to the base case.
Clearly this total charge is at most 1 + 3 lg n. To finish off the argument, we must account for the cost of
looking up u. But it easy to see that this cost is proportional to k and so it can be covered by charging one
extra unit to every SplayStep. This only affects the constant factor in our charging scheme. This concludes
the proof of the main goal.

We now address address the Key Lemma. The following is a useful remark about rotations:

Lemma 2 Let Φ be the potential function before a rotation at u and Φ′ the potential function after. Then
the increase in potential of the overall data structure is at most

Φ′(u)− Φ(u).

The expression Φ′(u)− Φ(u) is always non-negative.

v

u

A B

C

u

v

A

B C

rotate(u)

Figure 6: Rotation at u.

Proof. We refer to Figure 6. The increase in potential is

∆Φ = Φ′(u, v)− Φ(u, v)
= Φ′(v)− Φ(u) (as Φ′(u) = Φ(v))
≤ Φ′(u)− Φ(u) (as Φ′(u) ≥ Φ′(v)).
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It is obvious that Φ′(u) ≥ Φ(u). Q.E.D.

Proof of Key Lemma. The base case is almost immediate from lemma 2: the increase in potential is
at most Φ′(u) − Φ(u). This is at most 3(Φ′(u) − Φ(u)) since Φ′(u) − Φ(u) is non-negative. The charge of
1 + 3(Φ′(u)− Φ(u)) can therefore pay for the cost of this rotation and any increase in potential.

Refer to Figure 2 for the remaining two cases. Let the sizes of the subtrees A, B, C, D be a, b, c, d,
respectively.

Consider case I. The increase in potential is

∆Φ = Φ′(u, v, w)− Φ(u, v, w)
= Φ′(v, w) − Φ(u, v) (as Φ′(u) = Φ(w))
≤ 2(Φ′(u)− Φ(u)) (as 2Φ′(u) ≥ Φ′(v, w), 2Φ(u) ≤ Φ(u, v)).

Since Φ′(u) ≥ Φ(u), we have two possibilities: (a) If Φ′(u) > Φ(u), then the charge of 3(Φ′(u)−Φ(u)) can pay
for the increased potential and the cost of this splay step. (b) Next suppose Φ′(u) = Φ(u). By assumption,
Φ′(u) = blg(3 + a + b + c + d)c and Φ(u) = blg(1 + a + b)c are equal. Thus 1 + a + b > 2 + c + d, and so
3 + a + b + c + d > 2(2 + c + d) and

Φ′(w) = blg(1 + c + d)c < blg(3 + a + b + c + d)c = Φ(u).

Also,
Φ′(v) ≤ Φ′(u) = Φ(u) ≤ Φ(v).

Combining these two inequalities, we conclude that

Φ′(w, v) < Φ(u, v).

Hence ∆Φ = Φ′(w, v) − Φ(u, v) < 0. Since potentials are integer-valued, this means that ∆Φ ≤ −1. Thus
the change in potential releases at least one unit of work to pay for the cost of the splay step. Note that in
this case, we charge nothing since 3(Φ′(u)− Φ(u)) = 0. Thus the credit-potential invariant holds.

Consider case II. The increase in potential is again ∆Φ = Φ′(v, w) − Φ(u, v). Since Φ′(v) ≤ Φ(v) and
Φ′(w) ≤ Φ′(u), we get

∆Φ ≤ Φ′(u)− Φ(u).

If Φ′(u) − Φ(u) > 0, then our charge of 3(Φ′(u) − Φ(u)) can pay for the increase in potential and the cost
of this splay step. Hence we may assume otherwise and let t = Φ′(u) = Φ(u). In this case, our charge is
3(Φ′(u)− Φ(u)) = 0, and for the credit potential invariant to hold, it suffices to show

∆Φ < 0.

It is easy to see that Φ(v) = t, and so Φ(u, v) = 2t. Clearly, Φ′(v, w) ≤ 2Φ′(u) = 2t. If Φ′(v, w) < 2t, then
∆Φ = Φ′(v, w) − Φ(u, v) < 0 as desired. So it remains to show that Φ′(v, w) = 2t is impossible. For, if
Φ′(v, w) = 2t then Φ′(v) = Φ′(w) = t (since Φ′(v), Φ′(w) are both no larger than t). But then

Φ′(u) =
⌊
lg(Size

′(v) + Size
′(w) + 1)

⌋ ≥ ⌊
lg(2t + 2t + 1)

⌋ ≥ t + 1,

a contradiction. This proves the Key Lemma.

We conclude with the main result on splay trees.

Theorem 3 A sequence of m splay tree requests (lookUp, insert, merge, delete, split) involving a total
of n items takes O(m log n) time to process. As usual, we assume that the potential of the data structure is
initially 0.
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Proof. This follows almost immediately from (*) since each request can be reduced to a constant number of
splay operations plus O(1) extra work. We need to attend to one detail in Insertion. Here, we introduce a
new node with potential at most lg n. This increase of potential must be charged but clearly this additional
does not change our overall cost. Similarly for Merge and Deletion. Q.E.D.

Sherk [7] has generalized splaying to k-ary search trees. In such trees, each node stores an ordered
sequence of t− 1 keys and t pointers to children where 2 ≤ t ≤ k. This is similar to B-trees.

Application: Splaysort Clearly we can obtain a sorting algorithm by repeated insertion into a splay tree.
Such an algorithm has been implemented [5]. Splaysort has the ability to take advantage of “presortedness”
in the input sequence and hence may run faster than Quicksort for some inputs. One way to quantify
presortedness is to count the number of pairwise inversions in the input sequence.

Exercises

Exercise 3.1: Where in the proof is the constant “3” actually needed in our charge of 3(Φ′(u)−Φ(u))? ♦

Exercise 3.2: Adapt the proof of the Key Lemma to justify the following variation of SplayStep:

VarSplayStep(u):

(Base Case) if u is a child or grandchild of the root,
then rotate once or twice at u until it becomes the root.

(General Case) else rotate at u.parent, followed by two rotations at u.

♦

Exercise 3.3: Let T be a splay tree on n nodes, and let T ′ be the result of inserting a new key into T using
the standard insertion algorithm. So, the new key appears as a leaf u in T ′ but in all other respects
T and T ′ are identical. Prove that Φ(T ′)− Φ(T ) = O(lg n). HINT: consider the path π from u to the
root of T ′ and try to bound the increased potential at each node in π by a telescoping sum. ♦

Exercise 3.4:
(i) Is it true that splays always decrease the height of a tree? The average height of a tree? (Define
the average height to be the average depth of the leaves.)
(ii) What is the effect of splay on the last node of a binary tree that has a linear structure, i.e., in which
every internal node has only one child? HINT: First consider two simple cases, where all non-roots is
a left child and where each non-root is alternately a left child and a right child. ♦

Exercise 3.5: Assume that node u has a great-grandparent. Give a simple description of the effect of the
following sequence of three rotations: rotate(u.parent.parent); rotate(u.parent); rotate(u). ♦

Exercise 3.6: Does our Key Lemma hold if we define Φ(u) = dlg Size(u)e? ♦

Exercise 3.7: For any node u,
Φ(uL) = Φ(uR)⇒ Φ(u) = Φ(uL) + 1

where uL, uR are the left and right child of u. ♦
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Exercise 3.8: Modify our splay trees to maintain (in addition to the usual children and parent pointers)
pointers to the successor and predecessor of each node. Show that this can be done without affecting
the asympotic complexity of all the operations (lookUp, insert, delete, merge, split) of splay trees.

♦

Exercise 3.9: We consider some possible simplifications of the splayStep.
(A) One-rotation version: Let splayStep(u) simply amount to rotate(u).
(B) Two-rotation version:

SplayStep(u):

(Base Case) if u.parent is the root, rotate(u).
(General Case) else do rotate(u.parent), followed by rotate(u).

For both (A) and (B):
(i) Indicate how the proposed SplayStep algorithm differs from the original.
(ii) Give a general counter example showing that this variation does not permit a result similar to the
Key Lemma. ♦

Exercise 3.10: Modify the above algorithms so that we allow the search trees to have identical keys. Make
reasonable conventions about semantics, such as what it means to lookup a key. ♦

Exercise 3.11: Can we use the simpler potential function Φ(u) = lgSize(u) in our splay analysis? ♦

End Exercises

§4. Application to Convex Hulls

The following application is interesting because it illustrates the idea of an implicit binary search
tree. The usual notion of keys is inapplicable. But by using information distributed at a node u and its
children uL and uR, we are able to perform tests to make decision which simulates searching in a binary
search tree.

Given a set X of n ≥ 1 points in the plane, its convex hull CH(X) is the smallest convex subset of the
plane that contains X . As CH(X) is a convex polygon, we may represent it as a sequence

H = (v1, v2, . . . , vm), 1 ≤ m ≤ n

where vi ∈ X and these vi’s appear as consecutive vertices of the polygon CH(X). We shall use H and
CH(X) interchangeably. We want to dynamically maintain H subject to two types of requests:

tangent(p, H) and insert(p, H)

where p is a new point. If p is outside H , tangent(p, H) will return a pair (q, r) of distinct points on H such
that the lines pq and pr are both tangential to H . E.g., in Figure 7(a), v3, v5 are the tangent points from p.

We call q and r the tangent points of H from p. If p is inside the current hull, we return “↑” since H has
no tangent points from p. The request insert(p, H) means we want to update H to represent CH(X ∪{p}).
Note that if p is inside the current hull, H is unchanged.
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H HUv1

v2

v3

v9
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v3

v4
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vS vS

v5

v4

(a) (b)

p p

Figure 7: (a) H = (v1, . . . , v9), (b) HU = (v1, . . . , v6).

Reduction to Half-Hulls. We may assume that v1 and v` (1 ≤ ` ≤ m) has the smallest and largest
x-coordinates among the vi’s (ties are arbitrarily broken). We can break H into two convex chains,

HU = (v1, v2, . . . , v`), HL = (v1, vm, vm−1, . . . , v`+1, v`).

Note that HU and HL share precisely their common endpoints. Assuming that HU lies above the segment
v1v`, we call HU the upper hull and HL the lower hull of H . Let vS = (0,−∞) and vN = (0, +∞) be
points3 at infinity (the South and North Poles, respectively). Note that HU is essentially the convex hull of
X ∪ {vS}: indeed,

CH((X ∪ {vS} = (v1, v2, . . . , v`, vS).

Similarly, HL is essentially the convex hull of X ∪ {vN}. Collectively, HU and HL are the two half-hulls of
X .

By symmetry, we henceforth focus on upper hulls. The requests tangent(p, HU ) and insert(p, HU ) can
be defined in the natural way. We can implement insert(p, H) simply as

insert(p, HU ); insert(p, HL).

Clearly p is inside H iff p is inside both HU and HL. Now suppose p is not inside HU = (v1, . . . , v`). Then
tangent(p, HU ) returns the pair (q, r) of tangent points of HU from p where q lies to the left of r. For
instance, tangent(p) returns v3, v5 in Figure 7. There are two special cases. If p is left of v1, then q = vS ; if
p is right of v` then r = vS . The details of how to reduce tangent(p, H) to half-hulls is left to an exercise.

Reduction to Fully Mergeable Dictionary Operations. The fully mergeable dictionary ADT was
introduced in §III.2. Basically, we want the ability to split and merge our search trees. Let us now assume
that the upper hull HU is stored in a splay tree T using the x-coordinates of vertices as keys. We implement
the requests

insert(p, T ) and tangent(p, T ).

We assume that nodes in T have successor and predecessor pointers.
3We could define vS and vN to be (r,−∞) and (r′, +∞), respectively, for any r, r′ <∞.

c© Chee-Keng Yap November 12, 2004



§4. Application to Convex Hulls Lecture VI Page 16

To find the tangent points (q, r) from a query point p = (p.x, p.y), we first do a lookup on p.x. Suppose
as a result of this lookup, we determine the two consecutive hull vertices vi, vi+1 such that

vi.x < p.x ≤ vi+1.x (1 ≤ i < `). (5)

We can then decide if p is inside the upper hull or not — this amounts to whether p is below the line vi, vi+1

or not. If inside, we return ↑. Otherwise, we want to return the pair (q, r) of tangent points from p. Consider
how we locate q (locating r is similar). We know that q = vi0 for some i0 ≤ i. Moreover, for any point vk

where k ≤ i, we can decide whether k = i0, k < i0 or k > i0 according to the following cases:

(CASE (i) vk−1 and vk+1 lie below vkp.
Then i0 = k. Here, if k = 1 then v0 is the south pole (which lies below any line).

CASE (ii) vk−1, but not vk+1, lies below vkp.
Then i0 > k.

CASE (iii) vk+1, but not vk−1, lies below vkp.
Then i0 < k.

We have ignore degeneracies in our three cases. This will be discussed in detail shortly. We can use this
3-way decision to perform an “implicit binary search” for q = vi0 using the following broad outline:

Outline for FindLeftTangentPoint(p, T ):

1. Initialize u to the root of T .
2. Repeat:

Let vk (1 ≤ k < `) be the vertex stored at u.
If vk.x ≥ p.x, set u← u.leftChild.
Else, we have the three possibilities described above:

If CASE (i), return(vk).
If CASE (ii), set u← u.rightChild.
If CASE (iii), set u← u.leftChild.

We encourage the reader to convince himself or herself that this outline is basically sound. What is
missing are the details and special cases, which we next address.

We want to make the above algorithm outline precise, by reducing every numeric test to either a simple
comparison of numbers or a single LeftTurn Predicate defined as follows: given any three points p, q, r,

LeftTurn(p, q, r) =




0 if the points p, q, r lies on a line
+1 if the path (p, q, r) make a left turn at q
−1 if the path (p, q, r) make a right turn at q

(6)

In an Exercise below, you will see how this is easily implemented as the sign of a certain 3× 3 determinant.
We should observe a peculiarity – we call this a “predicate” even though this is a 3-valued function. In logic,
predicates are usually 2-valued (true or false). This is a general phenomenon in geometry, and we might call
such 3-valued predicates a geometric predicate as opposed to the standard logical predicate.

We can now address the issue of degeneracy more precisely. Let us say that the input set X of points
is degenerate if there exists three distinct points p, q, r ∈ X such that LeftTurn(p, q, r) = 0; otherwise,
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X is nondegenerate. We will assume X is nondegenerate in the following. The main reason for this is
pedagogical: the non-degenerate cases are clearer and more important for understanding. We also note that
there are general techniques in computational geometry for handling degeneracies, but that is beyond our
scope. See Exercises.

We present the algorithm – it is left as an exercise to show that this is correct under the nondenegeracy
assumption.

FindLeftTangentPoint(p, T ):

INPUT: p is outside the convex hull H represented by T
OUTPUT: The LeftTangent of p to H .
1. Initialize u to the root of T .
2. Repeat:

Let u0 = u.succ and u1 = u.pred (these may be NULL).
If (p.x < u.x)

If (u0 = NULL), ReturnvS (South Pole)
u← u.leftChild and break.

if ((u0 6= NULL) and LeftTurn(u0, u, p) = 1))
u← u.leftChild and break.

if ((u1 6= NULL) and LeftTurn(u, u1, p) = −1))
u← u.rightChild and break.

Return(u); – check that this is correct regardless
– of whether u0 or u1 are NULL.

Next consider the implementation of insert(p, T ). We first perform tangent(p, T ) and assume the non-
trivial case where a pair (q, r) of tangent points are returned. Then we need to delete from T those vertices
vi that lies strictly between q and r, and replace them by the point p. This is easily accomplished using the
operations of split and merge on splay trees. This is left for an exercise.

We conclude with the following. Let D be our data structure for the convex hull H (so D is basically a
pair of splay trees).

Theorem 4

(i) Using the data structure D to represent the convex hull H of a set of points, we can support insert(p, D)
and tangent(p, D) requests with an amortized cost of O(log |H |) time per request.
(ii) From D, we can produce the cyclic order of points in H in time O(|H |). In particular, this gives an
O(n log n) algorithm for computing the convex hull of a set of n points.

REMARKS:
(a) There are about half a dozen known algorithms for convex hulls in the literature (see Exercise for some).
The above is not the simplest way to achieve this result.
(b) Our data structure D for representing convex hulls is only semi-dynamic because we do not support the
deletion of points. If we want to allow deletion of points, then points that are inside the current convex hull
must be represented in the data structure. Overmars and van Leeuwen designed a data structure for a fully
dynamic convex hull that uses O(log2 n) time for insertion and deletion.

Exercises

Exercise 4.1: What is “convex hull” in 1-dimension? ♦
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Exercise 4.2: Let a, b, c ∈ R
2.

(i) Show that if

M =


 ax ay 1

bx by 1
cx cy 1




then detM is twice the signed area of the triangle ∆(a, b, c). Thus, a, b, c are collinear or coincident iff
detM = 0. Also, show that det M > 0 iff a, b, c list the vertices counter-clockwise about the triangle.
(ii) What is the relation between sign(detM)) and LeftTurn(a, b, c)?
(iii) Let R be the smallest axes-parallel triangle that contains ∆(a, b, c). Then at least one of the
vertices of ∆(a, b, c) must be at a corner of R. Without loss of generality, let a be the south-west
corner of R, b touches the right vertical edge of R and c touches the top horizontal edge of R. Let r be
the rectangle with one corner at a and whose opposite corner is (cx, by). Show by a direct geometric
argument that the area of ∆(a, b, c) is equal to (|R|−|r|)/2 where |R|, |r| are the areas of the rectangles
R, r (respectively). Hence |R| − |r| is the area of the “L” shape R \ r.
(iv) Verify that the result of (iii) also follows from (i). ♦

Exercise 4.3: Prove the correctness of the FindLeftTangent(p, T ) algorithm. ♦

Exercise 4.4: Treatment of Degeneracy. Recall our definition of degeneracy in the previous question.
(i) First define carefully what we mean by the convex hull (and upper hull) of X in case of degeneracies.
You have two choices for this. Also define what we mean by “left-tangent” of p in case p lines on a line
through two consecutive vertices of the convex hull.
(ii) Modify the FindLeftTangent(p, T ) algorithm so that it works correctly for all inputs, degenerate
or not. Actually, you need to describe two versions, depending on which way a degenerate convex hull
is defined, etc. ♦

Exercise 4.5: Fill in the details:
(i) Implementation of tangent(p, H) in terms of tangent(p, HU ) and tangent(p, HL).
(iii) Implementation of insert(p, HU ). ♦

Exercise 4.6: Suppose that we do not need to implement the tangent(·, ·) query. This would be the case
if we are only interested in constructing the convex hull. Show that we can achieve the same O(log n)
per insert(·, ·) by a simpler algorithm. Specifically, we can avoid the implicit binary search procedure.

♦

Exercise 4.7: One of the simplest algorithms for convex hull is what is called the Gift-Wrapping algorithm.
Start with v1 the leftmost point of the convex hull. Now try to find v2, v3, etc in this order. Show that
you can find the next point in O(n) time. How does this algorithm compare to O(n log n) algorithm?

♦

Exercise 4.8: Another simple algorithm is based on divide and conquer: divide the set into two sets XL, XR,
each of size about n/2 and the two sets are separated by some vertical line L. Recursively compute
their convex hulls HL, HR. What kind of operation(s) will allow you to compute CH(X) from HL and
HR? Show that these operations can be implemented in O(n) time. ♦

End Exercises
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§5. Fibonacci Heaps

The Fibonacci heap data structure invented by Fredman and Tarjan gives an efficient implementation
of the mergeable queues abstract data type (ADT), which we now explain.

The mergeable queues ADT. The mergeable queues ADT involves domains of three types: Key, Item
and (mergeable) Queue. As usual, each item stores a key and each queue stores a collection of items. The
ADT represents a collection of queues, supporting these operations:

makeQueue()→ Q returns an empty queue Q
insert(Item x, Queue Q)
union(Queue Q1, Q2)
deleteMin(Queue Q)→ Item x x is minimum item in Q, which is now deleted
decreaseKey(Item x, Key k, Queue Q).

Mergeable queues are clearly extensions of priority queues (§III.2). The above operations are mostly self-
explanatory. In the union of Q1, Q2, the items in Q2 are first moved into queue Q1, then queue Q2 is
destroyed. Thus, the number of queues can increase or decrease over the lifetime of the data structure. The
operation deleteMin(Q) returns a minimum item in Q, and this item is deleted from Q. This operation
is unspecified in case Q is empty. In decreaseKey(x, k, Q), we make k the new key of x in Q. But this
operation assumes k is smaller than the current key of x – otherwise, we may define it to be either an error
or a null-operation (we will leave this decision unspecified).

There may be useful operations that should be provided in practice but omitted above for the sake of
economy: deleting an item, making a singleton queue, getting the minimum item without deleting it. These
can be defined as follows:

delete(Item x, Queue Q) ≡ decreaseKey(x,−∞,Q); deleteMin(Q).
makeQueue(Item x)→ Q ≡ makeQueue()→ Q ; insert(x,Q).
min(Queue Q)→ x ≡ deleteMin(Q)→ x; insert(x,Q).

The Fibonacci heap data structure. Each mergeable queue is implemented by a Fibonacci heap. A
Fibonacci heap H is a collection of trees T1, . . . , Tm with these properties:

• Each tree Ti satisfies the min-heap property. In particular, the root of Ti has the minimum item in Ti.

• The roots of these trees are kept in a doubly-linked list, called the root-list of H .

• There are two fields H.min, H.n associated with H . The field H.min points to the node with a minimum
key, and H.n is the number of items in H .

• For each node x in a tree Ti, we have four pointers that point to (i) the parent of x, (ii) one of its
children, and (iii) two of its siblings. The sibling pointers are arranged so that all the children of x
appears in a circular doubly-linked list called the child-list of x. If y is a child of x, the sibling-list
of y is the child-list of x. Also, we keep track of x.degree (the number of children of x) and x.mark (a
Boolean value to be explained).
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Figure 8: A Fibonacci heap H = (T0, . . . , T3): T0 in detail

This is illustrated in Figure 8. One of the trees T0 is shown in detail: the root a of T0 has 3 children b, c
and d and they each point to a; on the other hand, a points only to b. There are two non-trivial sibling lists:
(b, c, d) and (f, g).

Linking, cutting and marking. We describe some elementary operations used in maintaining Fibonacci
heaps.

(a) If x, y are two roots such that the item in x is not less than the item in y then we can link x and y:
this simply makes y the parent of x. The appropriate fields and structures are updated. E.g., x is deleted
from the root-list, but inserted into the child-list of y, the degree of y incremented, etc. This operation costs
O(1).

(b) The converse to linking is cutting. If x is a non-root in a Fibonacci heap H then we can perform
Cut(x,H): this basically removes x from the child-list of its parent and inserts x into the root-list of H .
The appropriate data variables are updated. E.g., the degree of the parent of x is decremented. Again, this
operation costs O(1).

(c) We say x is marked if x.mark = true, and unmarked otherwise. Initially, x is unmarked. Our rules
will ensure that a root is always unmarked. We mark x if x is not a root and x loses a child (i.e., a child of
x is cut); we unmark x when x itself is cut (and put in the root-list). Moreover, we ensure that a marked x
does not lose another child before x itself is cut (thereby reverting to unmarked status).

To do amortized analysis, we define a potential function. The potential of a Fibonacci heap H is defined
as

Φ(H) := t(H) + 2 ·m(H)

where t(H) is the number of trees in H and m(H) is the number marked items in H . The potential of a
collection of Fibonacci heaps is just the sum of the potentials of the individual heaps.

One more definition: let D(n) denote the maximum degree of a node in a Fibonacci heap with n items.
We will show later that D(n) ≤ 2 lg n.
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Remark: The reader may observe how “low-tech” this data structure appears – along with the humble
array structure, linked-lists is among the simplest data structures. Yet we intend to achieve the best known
overall performance for mergeable queues with Fibonacci heaps. This should be viewed as a testimony to
the power of amortization.

§6. Fibonacci Heap Algorithms

We now implement the mergeable queue operations. Our goal is to achieve an amortized cost of O(1) for
each operation except for deleteMin, which will have logarithmic amortized cost.

Recall that for each operation p, we have a cost Cost(p) which will be mostly self-evident in the following
description. We must define a charge Charge(p). The credit is thereby determined: Credit(p) =
Charge(p)−Cost(p). This charging scheme will achieve the stated goal in the previous paragraph: Θ(1)
charges for all the non-deletion operations, and Θ(logn) for the two deletion operations. Finally, we verify
the credit-potential invariant equation (2) for each operation.

makeQueue(): we create an empty root-list. The cost is 1, the charge is 1, so credit is 0, and finally
∆Φ = 0. The credit-potential invariant holds trivially.

The cost and ∆Φ is automatic at this point (our earlier decisions have determined this).
Although we said that the “charge” is part of our creative design, at this point, we
really have little choice if we wish to satisfy the credit-potential invariant. We might
as well define charge to be (at least) the cost plus ∆Φ.

insert(H, x): we create a new tree T containing only x and insert T into the root-list of H . Update
H.min, etc. Let us check the credit-potential invariant:

Cost ≤ 1, Charge = 2, Credit ≥ 1, ∆Φ = 1.

union(H1, H2): concatenate the two root-lists and call it H1. Update min[H1], etc. Checking the credit-
potential invariant:

Cost ≤ 1, Charge = 1, Credit ≥ 0, ∆Φ = 0.

deleteMin(H): we remove H.min from the root-list, and the child-list of H.min can now be regarded as
the root-list of another Fibonacci heap. These two circular lists can be concatenated in constant time into
a new root-list for H . If t0 is the old value of t(H), the new value of t(H) is at most t0 + D(n). Next we
need to find the new value of H.min. Unfortunately, we do not know the new minimum item of H . There is
no choice but to scan the new root-list of H . While scanning, we might as well4 spend some extra effort to
save future work. This is a process called consolidation which is explained next.

Consolidation. In this process, we are given a root-list of length L (L ≤ t0 + D(n) above). We must visit
every member in the root-list, and at the same time do repeated linkings until there is at most one root of
each degree. We want to do this in O(L) time. By assumption, each root has degree at most D(n).

The basic method is that, for each root x, we try to find another root y of the same degree and link the
two. So we create a ‘new’ root of degree k + 1 from two roots of degree k. If we detect another root of

4OK, we may be lazy but not stupid.
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degree k + 1, we link these two to create another ‘new’ root of degree k + 2, and so on. The way that we
detect the presence of another root of the same degree is by indexing into an array A[1..D(n)] of pointers.
Initialize all entries of the array to Nil. Then we scan each item x in the root-list. If k = x.degree then we
try to “insert” x into A[k]. This means making A[k] point to x. But we only do this if A[x.degree] = Nil;
in case A[x.degree] 6= Nil, then it points to some y. In this case, link x to y or vice-versa. If x is linked to
y, the latter now has degree k + 1 and we try to “insert” y into A[k + 1], and so on. So each failed insertion
leads to a linking, and there are at most L linking operations. Since each linking removes one root, there
are at most L linkings in all. (This may not be obvious if we see this the wrong way!) Thus the total cost
of consolidation is O(L).

Returning to deleteMin, let us check its credit-potential invariant.

Cost ≤ 1 + t0 + D(n), Charge = 2 + 2D(n),
Credit ≥ 1 + D(n)− t0,

∆Φ ≤ 1 + D(n)− t0.

We need to explain our bound for ∆Φ. Let t0, m0 refer to the values of t(H) and m(H) before this deleteMin
operation. If Φ0, Φ1 are (respectively) the potentials before and after this operation, then Φ0 = t0 + 2m0

and Φ1 ≤ 1 + D(n) + 2m0. To see this bound on Φ1, note that no node can have degree more than D(n)
(by definition of D(n)) and hence there are at most 1 + D(n) trees after consolidation. Moreover, there are
at most m0 marked after consolidation. Then ∆Φ = Φ1 − Φ0 ≤ 1 + D(n)− t0, as desired.

decreaseKey(x, k, H): this is the remaining operation and we will exploit the marking of items in a
crucial way. First, we cut x iff x is not a root. Now x is in the root-list, so we can freely decrease the key of x
to k. We need to update H.min, etc. If x was marked, it is now unmarked. If x was not cut, this terminates
the process. Otherwise, let y be the parent of x. If y was unmarked and y is not a root, we now mark y.
But suppose y was marked (i.e., has previously lost a child). Then we are suppose to cut y and recursively
check if the parent of y was cut, and so on. We call this the “cascading cut of y” and captured it using the
following fragment of code:

CascadingCut(y, H):
if (y.mark = false and y 6= root) then y.mark := true;
if y 6= root then

Cut(y, H);
CascadingCut(y.parent, H).

Note that if c ≥ 1 is the number of cuts, then t(H) is increased by c, but m(H) is decreased by c − 1 or c
(the latter iff x was marked). This implies ∆Φ ≤ c− 2(c− 1) = 2− c. If

Cost ≤ c, Charge = 2, Credit ≥ 2− c,

then the credit-potential invariant is verified.

SUMMARY: we have achieved our goal of charging O(1) units to every operation except for deleteMin
which is charged O(1) + D(n). We next turn to bounding D(n).

§7. Degree Bound

Our goal is to show that D(n) = O(log n).
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Recall the ith Fibonacci number i = 0, 1, 2, . . . is defined by Fi = i if i = 0, 1 and Fi = Fi−1 + Fi−2 for
i ≥ 2. Thus the sequence of Fibonacci numbers starts out as

0, 1, 1, 2, 3, 5, 8, . . . .

We will use two simple facts:

(a) Fi = 1 +
∑i−2

j=1 Fj for i ≥ 2.

(b) Fj+2 ≥ φj for j ≥ 0, where φ = (1 +
√

5)/2 > 1.618.

Fact (a) follows easily by induction, or better still, by “unrolling” the recurrence for Fi. For fact (b), we
observe that φ is a solution to the equation x2 − x − 1 = 0 so φ2 = 1 + φ. Clearly F2 = 1 ≥ φ0 and
F3 = 2 ≥ φ1. Inductively,

Fj+2 = Fj+1 + Fj ≥ φj−1 + φj−2 = φj−2(φ + 1) = φj .

Let x be a node in a Fibonacci heap with n items, and let

y1, y2, . . . , yd (7)

be the children of x, given in the order in which they are linked to x. So x.degree = d and y1 is the earliest
child (among y1, . . . , yd) to be linked to x.

Lemma 5

yi.degree ≥



0 if i = 1

i− 2 if i ≥ 2

Proof. This is clearly true for i = 1. For i ≥ 2, note that when yi was linked to x, the degree of x is at least
i− 1 (since at least y1, . . . , yi−1 are children of x at the moment of linking). Hence, the degree of yi at that
moment is at least i− 1. But we allow yi to lose at most one child before cutting yi. Since yi is not cut from
x, the degree of yi is at least i− 2. Q.E.D.

Lemma 6 Let Size(x) denote the number of nodes in the subtree rooted at x and d the degree of x. Then

Size(x) ≥ F2+d, d ≥ 0.

Proof. This is seen by induction on Size(x). The result is true when Size(x) = 1, 2 since in these cases
d = 0, 1, respectively. If Size(x) ≥ 3, let y1, . . . , yd be the children of x as in (7). Then

Size(x) = 1 +
d∑

i=1

Size(yi)

≥ 1 +
d∑

i=1

Fyi.degree+2 (by induction)

≥ 2 +
d∑

i=2

Fi (by last lemma)

= 1 +
d∑

i=1

Fi = Fd+2.
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Q.E.D.

It follows that if x has degree d, then

n ≥ Size(x) ≥ Fd+2 ≥ φd.

Taking logarithms, we immediately obtain:

Lemma 7

D(n) ≤ logφ(n).

This completes our analysis of Fibonacci heaps. It is now clear why the name “Fibonacci” arises.

Exercises

Exercise 7.1: Suppose that instead of cutting a node just as it is about to lose a second child, we cut a
node just as it is about to lose a third child. Carry out the analysis as before. Discuss the pros and
cons of this variant Fibonacci heap. ♦

Exercise 7.2:
(a) Determine φ̂, the other root of the equation x2 − x− 1 = 0. Numerically compute φ̂ to 3 decimal
places.
(b) Determine Fi exactly in terms of φ and φ̂ HINT: Fi = Aφi + Bp̂hi

i
for constants A, B.

(b) What is the influence of the φ̂-term on the relative magnitude of Fi? ♦

End Exercises

§8. Pointer Model of Computation

There is an esthetically displeasing feature in our consolidation algorithm, namely, its use of array indexing
does not seem to conform to the style used in the other operations. Intuitively, unlike the other operations,
indexing does not fit within the “pointer model” of computation. It is instructive to formalize such a model.

A pointer program Π consists of a finite sequence of instructions that operate on an implicit potentially
infinite digraph G. All program variables in Π are of type pointer, but we also manipulate integer values
via these pointers. Each pointer points to some node in G. Each node N in G has four components:

(integer-value, 0-pointer, 1-pointer, 2-pointer).

These are accessed as P.Val, P.0, P.1 and P.2 where P is any pointer variable that points to N . There is a
special node N0 ∈ G and this is pointed to by the Nil pointer. By definition. Nil.Val = 0 and Nil.i = Nil for
i = 0, 1, 2. Note that with 3 pointers, it is easy to model binary trees.
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Pointer expressions. In general, we can specify a node by a pointer expression, 〈pointer-expr〉,
which is either the constant Nil, the New() operator, or has the form P.w where P is a pointer variable and
w ∈ {0, 1, 2}∗. The string w is also called a path. Examples of pointer expressions:

Nil,New(), P, P.0, P.1, P.2, P.1201, P.212012l

where P is a pointer variable. The New() operator (with no arguments) returns a returns a pointer to a
“spanking new node” N where N.0 = N.1 = N.2 = Nil and N.Val = 1. The only way to access a node or
its components is via such pointer expressions.

The integer values stored in nodes are unbounded and one can perform the four arithmetic operations;
compare two integers; and assign to an integer variable from any integer expression (see below).

We can compare two pointers for equality or inequality, and can assign to a pointer variable from another
pointer variable or the constant Nil or the function New(). Assignment to a Nil pointer has no effect. Note
that we are not allowed to do pointer arithmetic or to compare them for the “less than” relation.

The assigment of pointers can be explained with an example:

P.0121← Q.20002

If N is the node referenced by P.012 and N ′ is the node referenced by Q.20002, then we are setting N.1 to
point to N ′. If N is the Nil node, then this assignment has no effect.

Naturally, we use the result of a comparison to decide whether or not to branch to a labelled instruction.
Assume some convention for input and output. For instance, we may have two special pointers Pin and Pout

that point (respectively) to the input and output of the program.

To summarize:

a pointer program is a sequence of instructions (with an optional label) of the following type:

• Value Assignment: 〈pointer-expr.V al〉 ← 〈integer-expr〉;
• Pointer Assignment: 〈path-expr〉 ← 〈pointer-expr〉;
• Pointer Comparison: if 〈pointer-expr〉 = 〈pointer-expr〉 then goto 〈label〉;
• Value Comparison: if 〈integer-expr〉 ≥ 0 then goto 〈label〉;
• Halt

Integer expressions denote integer values. For instance

(74 ∗ P.000)− (Q.21 + P )

where P, Q are pointer variables. Here, P.000, Q.21, P denotes the values stored at the corresponding nodes.
Thus, an integer expression 〈integer-expr〉 is either

• Base Case: any literal integer constant (e.g., 0, 1, 74,−199), a 〈pointer-expr〉 (e.g., P.012, Q, Nil); or

• Recursively:
(〈integer-expr〉〈op〉〈integer-expr〉)
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where 〈op〉 is one of the four arithmetic operations. Recall that Nil.Val = 0. Some details about the semantics
of the model may be left unspecified for now. For instance, if we divide by 0, the program may be assumed
to halt instantly.

For complexity modeling, we may assume each of the above operations take unit time regardless of the
pointers or the size of the integers involved. Likewise, the space usage can be simplified to just counting the
number of nodes used.

One could embellish it with higher level constructs such as while-loops. Or, we could impoverish it by
restricting the integer values to Boolean values (to obtain a better accounting of the bit-complexity of such
programs). In general, we could have pointer models in which the value of a node P.Val comes from any
domain. For instance, to model computation over a ring R, we let P.Val be an element of R. We might wish
to have an inverse to New(), to delete a node.

List reversal example. Consider a pointer program to reverse a singly-linked list of numbers (we only
use 0-pointer of each node to point to the next node). Our program uses the pointer variables P, Q, R and
we write P ← Q← R to mean the sequential assignments “P ← Q; Q← R;”.

ReverseList:

Input: Pin, pointer to a linked list.
Output: Pout, pointer to the reversal of Pin.

P ← Nil; Q← Pin;
if Q = Nil then goto E;

R← Q.0← P ;
L: if R = Nil then goto E;
T: P ← Q← R← Q.0← P ;

goto L;
E: Pout ← Q.

This program is easy to understand once the invariant assertion preceding line T is understood (see
Figure 9 and exercise).

P Q R P R S

Figure 9: The transformation at line T.

Remark: This model may be more convenient than Turing machines to use as a common basis for
discussing complexity theory issues. The main reservation comes from our unit cost for unbounded integers
operations. In that case we can either require that all integers be bounded, or else charge a suitable cost
M(n) for multiplying n-bit integers, etc, reflecting the Turing machine cost. Of course, the use of pointers
is still non-elementary from the viewpoint of Turing machines, but this is precisely the convenience we gain.

Pointer based consolidation. We outline a purely pointer-based method for consolidation: assume that
if k ≤ D(n) is the maximum degree of any node (past or present) in the Fibonacci heap, we have a doubly-
linked list of nodes

(R0, R1, . . . , Rk).

c© Chee-Keng Yap November 12, 2004



§9. Minimum Spanning Tree Lecture VI Page 27

We call this the “degree register” because every node in the heap of degree i will have a pointer to Ri. Here
k is the largest degree of a node that has been seen so far. Note that when we link x to y then the degree
of y increments by one and when we cut x, then the parent of x decrements by one, and these are the only
possibilities. If item x has its degree changed from i to i± 1 then we can re-register x by pointing it to Ri±1

in constant time. Occasionally, we have to extend the length of the register by appending a new node Rk+1

to the doubly-linked list (when some node attains a degree k + 1 that is larger than any seen so far). It is
thus easy to maintain this degree register. Now suppose we must consolidate a root list J . By going through
the items in J , we can create (with the help of the degree register) a list of lists

(L0, L1, . . . , Lk)

where list Li comprises the roots of degree i in J . This takes O(D(n) + t) operations if J has t elements.
It is now easy to consolidate the lists L0, . . . , Lk into one list in which no two trees have the same degree,
using O(t) time. The cost of this procedure is O(D(n) + t), as in the solution that uses array indexing.

Exercises

Exercise 8.1: State the invariant before line T in the pointer reversal program; then proving the program
correct. ♦

Exercise 8.2: Write the pointer program for the consolidation. ♦

Exercise 8.3: Implement in detail all the Fibonacci heap algorithms using our pointer model, ♦

Exercise 8.4: Write a sorting program and a matrix multiplication program in this model. What is the
time complexity of your algorithms? ♦

End Exercises

§9. Application to Minimum Spanning Tree

An original application of Fibonacci heaps is to compute minimum spanning trees (MST). This was
introduced in Lecture IV §4. We now consider Prim’s algorithm for MST, using the notations of §IV.4. So,
the input is a connected bigraph G = (V, E; C) with cost function C : E → R.

Although our goal is to compute a minimum spanning tree, let us simplify our task by computing only
the cost of a minimum spanning tree. This is consistent with a general point of pedagogy: for many
computational problems that seek to compute a data structure D = D∗ which minimizes an associated cost
function f(D), it is easier to just maintain f(D) than to maintain D. Furthermore, we could subsequently
indicate additional book-keeping steps to transform the algorithm that produces the minimum cost f(D∗)
into an algorithm that produces the optimal data-structure D∗.

Prim-safe sets. It is easy to see that if U is a singleton then U is Prim-safe. Suppose U is Prim-safe and
we ask how U might be extended to a larger Prim-safe set. Let us maintain the following information about
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U :
i) mst[U ], denoting the cost of the minimum spanning tree of G|U .
ii) For each v ∈ V − U , the least cost lcU [v] of an edge connecting v to U :

lcU [v] :=min{C(v, u) : (v, u) ∈ E, u ∈ U}.

We usually omit the subscript U and just write “lc[v]” without confusion.

In order to find a node u∗ ∈ V − U with the minimum lc-value, we will maintain V − U as a single5

mergeable queue Q in which the least cost lc[u] serves as the key of the node u ∈ V − U . Hence extending
the Prim-safe set U by a node u∗ amounts to a deleteMin from the mergeable queue. After the deletion,
we must update the information mst[U ] and lc[v] for each v ∈ V −U . But we do not really need to consider
every v ∈ V − U : we only need to update lc[v] for those v that are adjacent to u∗. The following code
fragment captures our intent.

Update(u∗, U):
1. U ← U ∪ {u∗}. {This step need not be performed}
2. mst[U ]← mst[U ] + lc[u∗].
3. for v adjacent to u∗ and v 6∈ U, do

if lc[v] > C[v, u∗] then
lc[v]← C[v, u∗]}.
DecreaseKey(v, lc[v], Q).

We need not explicitly carry out step 1 because U is implicitly maintained as the complement of the items
in Q. We now present the MST Cost version of Prim’s algorithm.

MST Cost Algorithm:
Input: G = (V, E; C), a connected costed bigraph.
Output: the cost of an MST of G.
Initialize:
1. U ← {v0}; mst[U ]← 0;
2. for v ∈ V − U, do lc[v]← C(v, v0);
3. Set up V − U as a single mergeable queue Q:

Q←MakeQueue();
Insert each element of V − U into Q.

Loop:
4. while Q 6= ∅, do

u∗ ← deleteMin(Q);
Update(u∗, U).

5. return(mst[U ]).

We do not need to maintain U explicitly, although it seems clearer to put this into our pseudo-code above.
In practice, the updating of U can be replaced by a step to add edges to the current MST.

Analysis. The correctness of this algorithm is immediate from the preceding discussion. To bound its
complexity, let n := |V | and m := |E|. Assume that the mergeable queue is implemented by a Fibonacci

5So we are not using the full power of the mergeable queue ADT which can maintain several mergeable queues. In particular,
we never perform the union operation in this application.
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heap. In the Update subroutine, updating the value of lc[v] becomes a DecreaseKey operation. Each
operation in Update can be charged to an edge or a vertex. As each edge or vertex is charged at most
once, and since the amortized cost of each operation is O(1), the cost of all the updates is O(m + n). The
initialization takes O(n) time. In the main procedure, we make n− 1 passes through the whileloop. So we
perform n− 1 deleteMin operations, and as the amortized cost is O(log n) per operation, this has total cost
O(n log n). We have proven:

Theorem 8 The cost of a minimum spanning tree of a graph (V, E; C) can be found in O(|V | log |V |+ |E|)
operations.

Final Remarks. The amortization idea is closely related to two other topics. One is “self-organizing data
structures”. Originally, this kind of analysis is undertaken by assuming the input has certain probability
distribution. McCabe (1965) is the first to discuss the idea of move-to-front rule. See “An account of self-
organizing systems”, W.J. Hendricks, SIAM J.Comp., 5:4(1976); also “Heuristics that dynamically organizes
data structures”, James R. Bitner, SIAM J.Comp., 8:1(1979)82-100. But starting from the work of Sleator
and Tarjan, the competitive analysis approach has become dominant. Albers and Westbrook gives a survey
in [2]. Indeed, competitive analysis is the connection to the other major topic, “online algorithms”. Albers
gives a survey [1].

Exercises

Students should be able to demonstrate understanding of Prim’s algorithm by doing
hand simulations. The first exercise illustrates a simple tabular form for hand simula-
tion.

Exercise 9.1: Hand simulate Prim’s algorithm on the following graph (Figure 10) beginning with v1:

v1 v2

v5

v8 v9 v10 v11 v12

v6 v7

v3 v4

8

82

3 9

6217

3

7

1
9

4
1 3 2

2

105

3 6 2 9

2

Figure 10: Graph of a House

It amounts to filling in the following table, row by row. We have filled in the first two rows already.
i v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 mst[U ] New Edge
1 2 3 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 (v1, v2)
2 * ” ” 8 ” ” ” ” ” ” ” 4 (v1, v4)

Note that the

minimum cost in each row is underscored, indicating the item to be removed from the priority queue.
♦
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Exercise 9.2: Let Gn be the graph with vertices {1, 2, . . . , n} and for 1 ≤ i < j ≤ n, we have an edge (i, j)
iff i divides j. For instance, (1, j) is an edge for all 1 < j ≤ n. The cost of the edge (i, j) is j − i.
(a) Hand simulate (as in the previous exercise) Prim’s algorithm on G10. Show the final MST and its
cost.

1 2 3 4 5 6 7 8 9 10

4

2

8

6

6

3
5

4

Figure 11: G10: edges from node 1 are omitted for clarity.

(b) What can you say about the MST of Gn? Is it unique? What is the asymptotic cost of the MST?
♦

Exercise 9.3: Modify the above algorithm to compute a minimum spanning tree. ♦

Exercise 9.4: Modify the above algorithm to compute a minimum spanning forest in case the input graph
is not connected. ♦

Exercise 9.5: Let G = (V, E; µ) be an edge-costed bigraph and S ⊆ E, U ⊆ V . Let V (S) = {v ∈ V :
∃u, (u, v) ∈ S} denote the vertices of S, and G|U :=(U, E′; µ) where E′ = E∩(

U
2

)
denote the restriction

of G to U . We define S to be prim-safe if S is an MST of G|V (S) and S can be extended into an MST
of G. We define U to be prim-safe if U is singleton or there exists a prim-safe set S of edges such that
U = V (S). Show or give a counter-example:
(a) S is a tree of G|V (S) and can be extended into an MST of G implies S is prim safe.
(b) U is prim-safe implies every MST of G|U is prim-safe. ♦

End Exercises
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§A. APPENDIX: List Update Problem

The splay tree idea originates in the “move-to-front rule” heuristic for following list update problem:
let L be a doubly-linked list of items where each item has a unique key. For simplicity, we usually write L
as a sequence of keys. This list supports the access request. Each access request r is specified by a key
(also denoted r), and we satisfy this request by returning a pointer to the item in L with key r. (We assume
such an item always exist.) We are interested in a special class of algorithms: such an algorithm α, on an
input L and r, searches sequentially in L for the key r by starting at the head of the list. Upon finding the
item with key r, α is allowed to move the item to some position nearer the head of the list (the relative
ordering of the other items is unchanged). Here are three alternative rules which specify the new position of
an updated item:

• (R0) The lazy rule never modifies the list L.

• (R1) The move-to-front rule always make updated item the new head of the list L.

• (R2) The transpose rule just moves the updated item one position closer to the head of the list.

Let αi denote the list update algorithm based on Rule Ri (i = 0, 1, 2). For instance, α1 is the “move-to-front
algorithm”. For any algorithm α, let COSTα(r, L) denote the cost of an update request r on a list L using
α. For i = 0, 1, 2, we write COSTi(r, L) instead of COSTαi(r, L). We may define COSTi(r, L) to be 1 + j
where j is the position of the accessed item in L. If α is an update algorithm, then α(L, r) denotes the
updated list upon applying α to L, r. We extend this notation to a sequence U = 〈r1, r2, . . . , rn〉 of requests,
by defining

α(L, U) := α(α(L, 〈r1, . . . , rn−1〉), rn).

Similarly, COSTα(L, U) or COSTi(L, U) denotes the sum of the individual update costs.

Example: Let L = 〈a, b, c, d, e〉 be a list and c an update request. Then α0(L, c) = L, α1(L, c) =
〈c, a, b, d, e〉 and α2(L, c) = 〈a, c, b, d, e〉. Also COSTi(L, c) = 4 for all i = 0, 1, 2.

Probabilistic Model. We analyze the cost of a sequence of updates under the lazy rule and the move-
to-front rule. We first analyze a probabilistic model where the probability of updating a key ki is pi, for
i = 1, . . . , m. The lazy rule is easy to analyze: if the list is L = 〈k1, . . . , km〉 then the expected cost of a
single access request is

C(p1, . . . , pm) =
m∑

i=1

i · pi.

It is easy to see that this cost is minimized if the list L is rearranged so that p1 ≥ p2 ≥ · · · ≥ pm; let C∗

denote this minimized value of C(p1, . . . , pm).

What about the move-to-front rule? Let p(i, j) be the probability that ki is in front of kj in list L. This
is the probability that, if we look at the last time an update involved ki or kj , the operation involves ki.
Clearly

p(i, j) =
pi

pi + pj
.

The expected cost to update ki is

1 +
m∑

j=1,j 6=i

p(j, i).
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The expected cost of an arbitrary update is

Ĉ :=
m∑

i=1

pi


1 +

m∑
j=1,j 6=i

p(i, j)




= 1 +
m∑

i=1

m∑
j 6=i

pi · p(i, j)

= 1 + 2
∑

1≤j<i≤m

pipj

pi + pj

= 1 + 2
m∑

i=1

pi

i−1∑
j=1

·p(j, i)

≤ 1 + 2
m∑

i=1

pi · (i− 1)

= 2C∗ − 1.

This proves
Ĉ < 2C∗. (8)

Amortization Model. Let us now consider the amortized cost of a sequence of updates

U = (r1, r2, . . . , rn) (9)

on an initial list L0 with m items. Clearly the worst case cost per update is O(m). So, updates over the
sequence U costs O(mn). This worst case bound cannot be improved if we use the lazy rule. The best case
for the lazy rule is O(1) per update, or O(n) overall.

What about the move-to-front rule? In analogy to equation (8), we show that it is never incur more than
twice the cost of any update algorithm. In particular, it is never more than twice cost of an optimal offline
update algorithm α∗: if the cost of α∗ is denoted COST∗, we prove

COST1(L, U) ≤ 2 · COST∗(L, U). (10)

We use an amortization argument based on potential functions. A pair (k, k′) of keys is an inversion in a
pair (L, L′) of lists if k occurs before k′ in L but k occurs after k′ in L′. Fix a list L0 and for any list L,
define its potential Φ(L) to be the number of inversions in (L0, L).

Consider the jth request (j = 1, . . . , n). Let Lj (resp. L∗j ) be the list produced by the move-to-front
(resp. optimal) algorithm after the jth request. Write Φj for Φ(Lj). Let cj and c∗j denote the cost of serving
the jth request under two algorithms (respectively). Let xj be the item accessed in the jth request and kj

is the number of items that are in front of xj in both lists Lj and L∗j . Let `j be the number of items that
are in front of xj in Lj but behind xj in L∗j . Hence

cj = kj + `j + 1, c∗j ≥ kj + 1.

On the other hand, the number of inversions destroyed is `j and the number of inversions created is at most
kj . It follows

Φj − Φj−1 ≤ kj − `j .

Combining these two remarks,

cj + Φj − Φj−1 ≤ 2kj + 1
≤ 2c∗j − 1.
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Summing up over all j = 1, . . . , n, we obtain

COST1(L0, U) =


 n∑

j=1

cj


 + Φn − Φ0

≤
n∑

j=1

(2c∗j − 1), (since Φn ≥ 0, Φ0 = 0)

= 2COST∗(L0, U)− n.

Competitive Algorithms. Let β(k) be a function of k. We say an algorithm α is β(k)-competitive if
there is some constant a, for all input lists L of length k and for all sequences U of requests

COSTα(L, U) ≤ β(k) · COST∗(L, U).

Here COST∗ is the cost incurred by the optimal offline algorithm.

We have just shown that the Move-to-Front algorithm is 2-competitive. This idea of competiveness from
Sleator and Tarjan is an extremely powerful one as it opens up the possibility of measuring the performance
of online algorithms (such as the move-to-front algorithm) without any probabilistic assumption on the input
requests.

Remark. An application of the list update problem is data-compression (Exercise). Chung, Hajela and
Seymour [3] determine that cost of the move-to-front rule over the cost of an optimal static ordering of
the list (relative to some probability of accessing each item) is π/2. See also Lewis and Denenberg [4] and
Purdom and Brown [6].

Exercises

Exercise A.1: We extend the list update problem above in several ways:
(a) One way is to allow other kinds of requests. Suppose we allow insertions and deletions of items.
Assume the following algorithm for insertion: we put the new item at the end of the list and perform
an access to it. Here is the deletion algorithm: we access the item and then delete it. Show that the
above analyses extend to a sequence of access, insert and delete requests.
(b) Extend the list update analysis to the case where the requested key k may not appear in the list.
(c) A different kind of extension is to increase the class of algorithms we analyze: after accessing
an item, we allow the algorithm to to transpose any number of pairs of adjacent items, where each
transposition has unit cost. Again, extend our analyses above. ♦

Exercise A.2: The above update rules Ri (i = 0, 1, 2) are memoryless. The following two rules require
memory.

• (R3) The frequency rule maintains the list so that the more frequently accessed items occur
before the less frequently accessed items. This algorithm, of course, requires that we keep a
counter with each item.

• (R4) The timestamp rule (Albers, 1995) says that we move the requested item x in front of the
first item y in the list that precedes x and that has been requested at most once since the last
request to x. If there is no such y or if x has not been requested so far, do not move x.
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(a) Show that R3 is not c-competitive for any constant c.
(b) Show that R4 is 2-competitive. ♦

Exercise A.3: (Bentley, Sleator, Tarjan, Wei) Consider the following data compression scheme based on
any list updating algorithm. We encode an input sequence S of symbols by each symbol’s position in a
list L. The trick is that L is dynamic: we update L by accessing each of the symbols to be encoded. We
now have a string of integers. To finally obtain a binary string as our output, we encode this string of
integers by using a prefix code for each integer. In the following, assume that we use the move-to-front
rule for list update. Furthermore, we use the prefix code of Elias in Exercise IV.1.1.6 that requires
only

f(n) = 1 + blg nc+ 2 blg(1 + lg n)c
bits to encode an integer n.
(a) Assume the symbols are a, b, c, d, e and the initial list is L = (a, b, c, d, e). Give the integer sequence
corresponding to the string S = abaabcdabaabecbaadae. Also give the final binary string corresponding
to this integer sequence.
(b) Show that if symbol xi occurs mi ≥ 0 times in S then these mi occurrences can be encoded using
a total of

mif(m/mi)

bits where |S| = m. HINT: If the positions of xi in S are 1 ≤ p1 < p1 < · · · < pmi ≤ m then the jth
occurrence of xi needs at most f(pj − pj−1). Then use Jensen’s inequality for the concave function
f(n).
(c) If there are n distinct symbols x1, . . . , xn in S, define

A(S) :=
n∑

i=1

mi

m
f

(
m

mi

)
.

Thus A(S) bounds the average number of bits per symbol used by our compression scheme. Show that

A(S) ≤ 1 + H(S) + 2 lg(1 + H(S))

where

H(S) :=
n∑

i=1

mi

m
lg

(
m

mi

)
.

NOTE: H(S) is the “empirical entropy” of S. It corresponds to the average number of bits per symbol
achieved by the Huffman code for S. In other words, this online compression scheme achieves close to
the compression of the offline Huffman coding algorithm. ♦

End Exercises
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