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Lecture IV

Pure Graph Problems

A graph is fundamentally a set of mathematical relations (called incidence relations) connecting two sets,
a vertex set V and an edge set E. A simple notion of an edge e ∈ E is where e is a pair of vertices u, v ∈ V .
The pair can be ordered e = (u, v) or unordered e = {u, v}, leading to two different kinds of graphs. We shall
denote1 such a pair by “u−v”, and rely on context to determine whether an ordered or unordered edge is
meant. For unordered edges, we have u−v = v−u; but for ordered edges, u−v 6= v−u unless u = v. We say
the vertices u and v are incident on u−v. Graphs are useful for modeling abstract mathematical relations
in in computer science as well as in many other disciplines. Here are some examples of graphs:
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Figure 1: (a) Political map of 7 countries (b) Adjacency relationship of countries

Adjacency between Countries In Figure 1(a), we have a map of the political boundaries separating 7
countries. Figure 1(b) shows a graph with vertex set V = {1, 2, . . . , 7} representing these countries.
An edge i−j represent relationship between countries i and j that share a continuous common border.
Note that countries 2 and 3 share two contintinuous common borders, and so we have two copies of
the edge 2−3.

Flight Connections A graph can represent the flight connections of a particular airline, with the set V
representing the airports and the set E representing the flight segments that connect pairs of airports.
Each edge will typically have auxilliary data associated with it. For example, the data may be numbers
representing flying time of that flight segment.

Hypertext Links In hypertext documents on the world wide web, a document will generally have links
(“hyper-references”) to other documents. We can represent these linkages structure by a graph whose
vertices V represent individual documents, and each edge u−v ∈ V × V indicates that there is a link
from document u to document v.

In many applications, our graphs have associated data such as numerical values (“weights”) attached to
the edges and vertices. These are called weighted graphs. The flight connection graph above is an example
of this. Graphs without such numerical are called pure graphs. In this chapter, we restrict attention to
pure graph problems; weighted graphs will be treated in later chapters. The algorithmic issues of pure
graphs mostly relate to the concepts of connectivity and paths. These algorithms can be embedded in one
of two graph searching strategies called depth-first search (DFS) and breadth-first search (BFS). Two other
important, if less elementary, problems of pure graphs are: testing if two graphs are isomophic, and testing

1We have taken this highly suggestive notation from [2].
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if a graph is planar. We will treat planarity testing. Tarjan [3] was one of the first to systematically study
the DFS algorithm and its applications. A lucid account of basic graph algorithms may be found Sedgewick
[2].

§1. Bigraphs and Digraphs

Basic graph definitions are given. In this book, “graphs” refer to either bigraphs or
digraphs. All graphs are assumed to be simple.

Set-Theoretic Notations for Simple Graphs. A graph G is basically given by two sets, V and E.
These are called the vertex set and edge set, respectively. We begin by describing “simple graphs” in the
three most important cases. The terminology “simple” will become clear later.

For any set V and integer k ≥ 0, let

V k, 2V ,

(
V

k

)

denote, respectively, the k-fold Cartesian product of V , power set of V and the set of k-subsets of
V . The first two notations (V k, 2k) are standard notations; the last one is less so. These notations have a
certain “umbral quality” because they satisfy the following equations on set cardinality:

∣∣V k
∣∣ = |V |k,

∣∣2V
∣∣ = 2|V |,

∣∣∣∣
(

V

k

)∣∣∣∣ =
(|V |

k

)
.

We can characterize our 3 varieties of graphs as follows:

• A hypergraph is a pair G = (V, E) where E ⊆ 2V .

• A digraph is a pair G = (V, E) where E ⊆ V 2.

• A bigraph is a pair G = (V, E) where E ⊆ (
V
2

)
.

We have a common notation u−v (u, v ∈ V ) for edges of a digraph or bigraph G = (V, E). This convention
is useful when we give definitions that cover both digraphs and bigraphs. Similarly, the term “graph” will
cover digraphs and bigraphs. Some basic graph terminology is collected in §I (Appendix A).

Integrated View. The following may be skipped if desired, but it is useful to give a general view of
graphs. Given two arbitrary sets V, E, an incidence function on V, E is I : E → 2V . Fix an index set J .
A J-graph is a set G = {Iα : α ∈ J} of incidence functions, each indexed by an element of J . If v ∈ Iα(e),
we say2 e is α-incident (or simply “incident”) on v. Conversely, we say v α-bounds e. In case |J | = 1,
we identify G with the sole incidence function. Elements of V and E are called vertices and edges of G.
Sometimes vertices are called nodes, and edges called arcs.

Two edges e, e′ ∈ E are parallel if for each α ∈ J , Iα(e) = Iα(e′). We call G a simple graph if it has
no parallel edges. Non-simple graphs are also called multigraphs. For instance, the adjacency relationship

2The incidence terminology is somewhat variable in the literature. In our terminology, “incidence” and “bounding” are
inverses: e is incident on v iff v bounds e. The bounding concept comes from a geometric interpretation: the endpoints of a line
segments is said to bound the line segment, the edges of a polygon is said to bound the polygon, and so on in higher dimensions.
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between countries (see Figure 1) may require a multigraph representation, since two countries can be adjacent
along more than one continuous common border segment. In particular, Figure 1(b) shows a multigraph
with two parallel edges connecting vertices 2 and 3. A multigraph can be represented by a simple graph
together with a positive integer weight (called the edge multiplicity) associated with each simple edge.

The three main varieties of graphs can be viewed as J-graphs:

• Hypergraphs. Here |J | = 1. There are no constraints on the sole incidence relation I : E → 2V . A
simple hypergraph is also called a “set system”; an edge e ∈ E is then identified with a subset of V
and called a “hyperedge”.

• Digraphs. Here J = {0, 1} and |I0(e)| = |I1(e)| = 1 for all e ∈ E. We call I0(e) the start vertex and
I1(e) the stop vertex of e. If I0(e) = I1(e), we call e a self-loop. Simple digraphs3 are also known
as directed graphs because an edge e can be written as an ordered pair (I0(e), I1(e)) = I0(e)−I1(e).
The edge u−v is said to be directed from start vertex u to stop vertex v.

• Bigraphs. We can define bigraphs in two equivalent ways: (a) We can regard a bigraph as a hypergraph
in which |I(e)| = 2 for all e ∈ E. (b) We can regard a bigraph as a digraph with no self-loops and
where the edges in E can be partitioned into pairs such that if e, e′ ∈ E are paired then I0(e) = I1(e′)
and I1(e) = I0(e′). If the digraph is simple, we conclude that u−v is an edge iff v−u is an edge, and
these two are paired. Simple bigraphs are more commonly4 called undirected graphs because its
edges are bi-directional: u−v and v−u are considered the same edge.

Non-standard example. Suppose V is the set of people living at a particular instant, and E represents
the set of universities. Let J = {p, t, s}. Let G be a J-graph where |Ip(e)| = 1. If Ip(e) = {u}, it means u is
the president of the university e. The sets It(e) and Is(e) are, respectively, the faculty members and students
of the university. Clearly, we can extend the index set J to represent other people who are associated with
a university in some definite capacity.

Graphical representation of graphs. Bigraphs and digraphs are “linear graphs” in which each edge
is incident on one or two vertices. Such graphs have natural graphical representation: elements of V are
represented by points (or circles) in the plane and elements of E are represented by finite curve segments
connecting these points. Of course, we can distinguish the type of each edge-vertex incidence with a label
from the set J .

In Figure 2(a), we display a bigraph (V, E) where V = {a, b, c, d, e} and E =
{a−b, b−c, c−d, d−a, c−e, b−d}. In Figure 2(b), we display a digraph (V, E) where V = {1, 2, . . . , 6}
and E = {1−5, 5−4, 4−3, 3−2, 2−1, 1−6, 2−6, 3−6, 4−6, 5−6, 5−2, 5−3, 2−3}. We display a digraph edge
u−v by drawing an arrow from the start vertex u to the stop vertex v. Thus, in Figure 2(b), all the edges
involving vertex 6 has 6 as the stop vertex and so the arrow heads are all pointed at 6. Thus edges are
“directed” from the start to the stop vertex. In contrast, the curve segments in bigraphs are undirected
(bi-directional).

Auxilliary Data Convention. Very often we want to associate some additional date with a graph. For
instance, we may want to designate two vertices s, t ∈ V as the source and destination vertices. In this case
we may write G = (V, E; s, t). In general, auxilliary data will be separated from the pure graph data by a
semi-colon, G = (V, E; · · · ).

3Some texts define “simple digraphs” to have the additional property of not having self-loops.
4This terminology is special to this book. Since the term “digraph” is standard, the coinage “bigraph” seems justified.

Incidentally, do not confuse bigraphs with the standard concept of “bipartite graphs”.
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Figure 2: Bigraph and digraph.

Exercises

Exercise 1.1: Prove or disprove: there exists a bigraph G = (V, E) where |V | is odd and the degree of each
vertex is odd. ♦

Exercise 1.2:
(i) How many bigraphs, digraphs, hypergraphs are there on n vertices?
(ii) How many non-isomorphic bigraphs, digraphs, hypergraphs are there on n vertices? Estimate these
with upper and lower bounds. ♦

Exercise 1.3: A trigraph is G = (V, E) where E ⊆ (
V
3

)
. An element f ∈ E is called a face (not “edge”).

A pair {u, v} ∈ (
V
2

)
is called an edge provided {u, v} ⊆ f for some face f ; in this case, we say f is

incident on e, and e bound f). The trigraph is an (abstract) surface if each edge bounds exactly
two faces. How many nonisomorphic surfaces are there on n = |V | vertices? First consider the case
n = 4, 5, 6. ♦

End Exercises

§2. Path Concepts

Most of the basic concepts related to pure graphs revolve around the notion of a path. Let G = (V, E)
be a graph (i.e., digraph or bigraph).

If u−v is an edge, we say that v is adjacent to u. Note that adjacency is an asymmetric relation for
digraphs but symmetric for bigraphs. A typical usage is this: “for each v adjacent to u, do . . . v . . .”.

Let p = (v0, v1, , . . . , vk), (k ≥ 0) be a sequence of vertices. We call p a path if vi is adjacent to vi−1 for
all i = 1, 2, . . . , k. In this case, we can denote p by (v0−v1− · · · −vk).

The length of p is k (not k + 1). The path is trivial if it has length 0, p = (v0). Call v0 is the source
and vk the target of p. Both v0 and vk are endpoints of p. We also say p is a path from v0 to vk The
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path p is closed if v0 = vk and simple if all its vertices, with the possible exception of v0 = vk, are distinct.
Note that a trivial path is always closed and simple.

The reverse of p = (v0−v1− · · · −vk) is the path

pR :=(vk−vk−1− · · · −v0).

In a bigraph, p is a path iff pR is a path.

Define δG(u, v), or simply δ(u, v), to be the minimum length of a path from u to v. If there is no path
from u to v, then δ(u, v) = ∞. We also call δ(u, v) the link distance from u to v – this terminology
will be useful when δ(u, v) is later generalized to weighted graphs, and when we still need to refer to the
ungeneralized concept. It is easy to see that

• δ(u, v) ≥ 0, with equality iff u = v.

• (Triangular Inequality) δ(u, v) ≤ δ(u, w) + δ(w, v).

• When G is a bigraph, then δ(u, v) = δ(v, u).

These three properties amounts to saying that δ(u, v) is a metric on V in the case of a bigraph.

Subpaths. Let path p and q be two paths:

p = (v0−v1− · · · −vk), q = (u0−u1− · · · −v`),

If p terminates at the vertex where path q begins, i.e., vk = u0, then the operation of concatenation is
well-defined. The concatenation of p and q gives a new path, written

p; q :=(v0−v1− · · · −vk−1−vk−u1−u2− · · · −u`).

Note that the common vertex vk and u0 are identified in the new path. Clearly concatenation of paths is
associative: (p; q); r = p; (q; r), which we may simply write as p; q; r. We say that a path p contains q as
a subpath if p = p′; q; p′′ for some p′, p′′. If in addition, q is a closed path, we can excise q from p to
obtain the path p′; p′′. Whenever we write a concatenation expression “p; q”, etc, we will assume that the
operation is well-defined.

Cycles. Two paths p, q are cyclic equivalent if there exists paths r, r′ such that

p = r; r′, q = r′; r.

We write p ≡ q in this case. Clearly p must both be closed path because the source of r and the target of
r′ mut be the same in order for r′; r to be well-defined, but this means that the source and target of p are
identical. Similarly, q must be a closed path.

It is easily checked that cyclic equivalence is a mathematical equivalence relation. For instance, the
following four closed paths are cyclic equivalent:

(1−2−3−4−1) ≡ (2−3−4−1−2) ≡ (3−4−1−2−3) ≡ (4−1−2−3−4).

The first and the third closed paths are cyclic equivalent because of the following decomposition:

(1−2−3−4−1) = (1−2−3); (3−4−1), (3−4−1−2−3) = (3−4−1); (1−2−3).
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We define a cycle as an equivalence class of closed paths. If the equivalence class of p is the cycle Z, we call
p a representative of Z; if p = (v0, v1, . . . , vk) then we write Z as

Z = [p] = [v1−v2− · · ·−vk] = [v2−v3− · · ·−vk−v1].

Note that if p has k+1 vertices, then [p] is written with only k vertices since the last vertex may be omitted.
In particular, a trivial path p = (v0) gives rise to the cycle which is an empty sequence Z = [ ]. We call this
the trivial cycle. In case of digraphs, we can have self-loops of the form u−u and p = (u, u) is a closed
path. The corresponding cycle is [u].

Path concepts that are invariant under cyclic equivalence are “transferred” to cycles automatically: for
instance, we may speak of the length or reverse of a cycle, etc. A cycle [v1− · · · −vk] is simple if the
vertices v1, . . . , vk are distinct. If we excise a finite number of closed subpaths from a closed path p, we
obtain a closed subpath q; call [q] a subcycle of [p]. For instance, [1−2−3] is a subcycle of

[1−2−a−b−c−2−3−d−e−3].

From the general transfer principle, we say a cycle Z = [p] is trivial iff p is a trivial path. We next wish
to define the notion of a “cyclic graph”. For a digraph G, we say it is cyclic if it contains any nontrivial
cycle. But for bigraphs, this simple definition will not do. For instance, for any edge u−v in a bigraph, we
get the closed path (u−v−u) and hence the non-trivial cycle [u−v]. Thus we come to an important definition
where there is a split between digraphs and bigraphs.

We proceed as follows. First, we define a closed path p = (v0−v1− · · · −vk) to be reducible if one of the
following two conditions hold:

• vi−1 = vi+1 for some i = 1, . . . , k − 1,

• k ≥ 2 and v1 = vk−1.

Otherwise p is said to be irreducible. Note not a reducible graph is automatically non-simple. A cycle
Z = [p] is reducible iff any of its representative is reducible. So the trivial cycle and self-loop cycle [u] is
irreducible. Finally, we define a bigraph to be cyclic if it contains any irreducible non-trivial cycle. Note
that irreducible non-trivial cycles has length at least 3.

Connectivity. Let G = (V, E) be a graph (either di- or bigraph). Two vertices u, v in G are connected if
there is a path from u to v and a path from v to u. Equivalently, δ(u, v) and δ(v, u) are both finite. Clearly,
connectedness is an equivalence relation on V . A subset C of V is a connected component of G if it is an
equivalence class of this relation. For short, we may simply call C a component of G. Alternatively, C is a
non-empty maximal subset of vertices in which any two are connected. Thus V is partitioned into disjoint
components. If G has only one connected component, it is said to be connected. When |C| = 1, we call it
a trivial component. The subgraph of G induced by C is called a component graph of G. NOTE: It is
customary, and for emphasis, we may add the qualifier “strong” when discussing components of digraphs.

For example, the graph G6 in Figure 3(a) has C2 = {2, 3, 5} as a component. The component graph
corresponding to C is shown in Figure 3(b). The other components of G are {1}, {4}, {6}, all trivial.

Given G, we define the reduced graph Gc = (V c, Ec) whose vertices comprise the components of G,
and whose edges are (C, C′) ∈ Ec such that there exists an edge from some vertex in C to some vertex in
C′. This is illustrated in Figure 3(c).
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Figure 3: (a) Digraph G6, (b) Component graph of C = {2, 3, 5}, (c) Reduced graph Gc
6

CLAIM: Gc is acycic. In proof, suppose there is a non-trivial cycle Zc in Gc. This translates into a cycle
Z in G that involves at least two components C, C′. The existence of Z contradicts the assumption that
C, C′ are distinct components.

Note that the reduced graph is essentially trivial for bigraphs, so this concept is only applied to digraphs.
But for bigraphs, we will later introduce a stronger notion of connectivity, called bi-connectivity.

DAGs and Trees. We have just defined cyclic bigraphs and digraphs. A graph is acyclic if it is not
cyclic. Acyclic graphs is a very important subclass of graphs. The common acronym for a directed acyclic
graph is DAG. A tree is a DAG in which there is a unique vertex u0 called the root such that there exists
a unique path from u0 to any other vertex. Trees are ubiquitous in computer science. Thus, we have free
trees, rooted trees, ordered trees, search trees, etc.

A free tree is a connected acyclic bigraph. Such a tree it has exactly |V | − 1 edges and for every pair of
vertices, there is a unique path connecting them. These two properties could also be used as the definition
of a free tree. A rooted tree is a free tree together with a distinguished vertex called the root. We can
convert a rooted tree into a directed graph in two ways: by directing each of its edges away from the root (so
the edges are child pointers), or by directing each edge towards the root (so the edges are parent pointers).

Exercises

Exercise 2.1: Let u be a vertex in a graph G. Can u be adjacent to itself if G is a bigraph? If G is a
digraph? ♦

Exercise 2.2: Describe an efficient algorithm which, given two closed paths p = (v0−v1− · · ·−vk) and
q = (u0−u1− · · · −u`), determine whether they represent the same cycle (i.e., are equivalent). What
is the complexity of your algorithm? Make explicit any assumptions you need about representation of
paths and vertices. ♦

Exercises
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§3. Graph Representation

The representation of graphs in computers is relatively straightforward if we assume array capabilities or
pointer structures. The three main representations are:

• Edge list: a linked list of the vertices of G and a list edges of G. The lists may be singly- or doubly-
linked. E.g., the edge list representations of the two graphs in Figure 2 would be

{a−b, b−c, c−d, d−a, d−b, c−e}
and

{1−6, 2−1, 2−3, 2−6, 3−2, 3−6, 4−3, 4−6, 5−2, 5−3, 5−6}.
• Adjacency list: a list of the vertices of G and for each vertex v, we store the list of vertices that are

adjacent to v. If the vertices adjacent to u are v1, v2, . . . , vm, we may denote an adjacency list for u by
u : (v1, v2, . . . , vm). E.g., the adjacency list representation of the graphs in Figure 2 are

{a : (b, d), b : (a, d, c), c : (b, d, e), d : (a, b, c), e : (c)}
and

{1 : (5, 6), 2 : (1, 3, 6), 3 : (2, 6), 4 : (3, 6), 5 : (4, 6), 6 : ()}
• Adjacency matrix: this is a n× n Boolean matrix where the (i, j)-th entry is 1 iff vertex j is adjacent

to vertex i. E.g., the adjacency matrix representation of the graphs in Figure 2 are

a
b
c
d
e




0 1 0 1 0
1 0 1 1 0
0 1 0 1 1
1 1 1 0 0
0 0 1 0 0




a b c d e

,

1
2
3
4
5
6




0 0 0 0 0 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 1 1 0 1
0 0 0 0 0 0




1 2 3 4 5 6 .

Note that the matrix for bigraphs are symmetric. The adjacency matrix can be generalized to store
arbitrary values to represent weighted graphs.

Size Parameter. Two size parameters are used in measuring the computational complexity of graph
problems: |V | and |E|. These are typically denoted by n and m. It is clear that m is not completely
independent, but satisfies the bounds 0 ≤ m ≤ n2. If m = o(n2) for graphs in a family G, we say G is a
sparse family of graphs; otherwise the family is dense. For example, the family G of planar graphs is sparse
because m = O(n) in planar graphs. Some computational techniques can exploit sparsity of input graphs.

Thus, the first two method of representing graphs use O(m + n) space while the last method uses O(n2)
space. Thus the last method cannot exploit sparsity of the graph.

Arrays. If A is an array, and i ≤ j are integers, we write A[i..j] to indicate that the array A has j − i + 1
elements which are indexed from i to j. Thus A contains the set of elements {A[i], A[i + 1], . . . , A[j]}.

In description of graph algorithms, it is convenient to assume that the vertex set of a graph is V =
{1, 2, . . . , n}. The list structures can now be replaced by arrays indexed by the vertex set, affording great
simplification in our examples. For instance, this allows us to iterate over all the vertices using an integer
variable. To associate an attribute A with each vertex, we can use an array A[1..n] where A[i] is the value
of the A-attribute of vertex i.
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Coloring Scheme. In many graph algorithms we need to keep track of some “processing status” of the
vertices. Initially, the vertices are unprocessed, and finally they are processed. It may be important to denote
intermediate statuses of being partially processed. Viewing the status as colors, we then have a three-color
scheme: white or gray or black. They correspond to unprocessed, partially processed and completely
processed statuses. Alternatively, the three colors may be called unseen, seen and done (resp.). Initially,
all vertices are unseen or white. The color transitions of each vertex are always in this order:

white ⇒ gray ⇒ black,
unseen ⇒ seen ⇒ done.

(1)

For instance, let the color status be represented by the integer array color[1..n], with the convention that
white/unseen is 0, gray/seen is 1 and black/done is 2. Then color transition for vertex i is achieved by
the increment operation color[i]++. Sometimes, a two-color scheme is sufficient: in this case we omit the
gray color or the done status.

§4. Breadth First Search

In many graph problems, we need a graph traversal algorithm, that is, an algorithm that systematically
“visits” each vertex and edge of a graph. Here is the intuitive description of the algorithms: start from any
vertex s0 and “visit every edge and vertex that can be reached from s0”. If there are any other unvisited
vertex s1, we repeat this process with s0 replaced by s1, and so on.

But how do we “visit every edge and vertex that can be reached from s0”? Starting from s0, we “process”
each edge that we discover from paths starting at s. In general, we will discover several edges at the same
time (in a sense) and these edges must be put into a “container” until they can be processed. There are two
standard containers: either a queue or a stack. These two datastructures give rise to the two algorithms for
graph traversal: Breadth First Search (BFS) and Depth First Search (DFS), respectively.

Both traversal methods apply to digraphs and bigraphs. However, BFS is often described for bigraphs
only and DFS for digraphs only. We will follow this tradition. In both algorithms, we assume that the input
graph G = (V, E; s0) is represented by adjacency lists, and s0 ∈ V is called the source for the search.

The idea of BFS is to systematically visit vertices that are nearer to s0 before visiting those vertices that
are further away. For example, suppose we start searching from vertex s0 = a in the bigraph of Figure 4(a).
From vertex a, we first visit the vertices b and d which are distance 1 from vertex a. Next, from vertex b, we
find vertices c and d that are distance 1 away; but we only visit vertex c but not vertex d (which had already
been visited). And so on. The trace of this search can be represented by a tree as shown in Figure 4(a). It
is called the “BFS tree”.

More precisely, recall that δ(u, v) denote the distance from u to v in a graph. The characteristic property
of the BFS algorithm is that we will visit u before v whenever

δ(s0, u) < δ(s0, v) <∞. (2)

If δ(s0, u) = ∞, then u will not be visited from s0. The BFS algorithm does not explicitly compute the
relation (2) to decide the next node to visit: this will be a consequence of using the queue data structure.

The key to the BFS algorithm is the queue ADT which supports the insertion and deletion of an item
following the First-In First-Out (FIFO) discipline. If Q is a queue and x an item, we denote the insert and
delete operations by

Q.enqueue(x), x← Q.dequeue(),

respectively. To keep track of the status of vertices we will use the color scheme in the previous section (see
(1)). We could use two or three colors, but our purposes two suffice: white/gray or unseen/seen.
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Figure 4: BFS Tree.

We formulate our BFS algorithm as a shell for accomplishing application-specific functions:

BFS Algorithm

Input: G = (V, E; s0) a graph (bi- or di-).
Output: This is application specific.
. Initialization:

0 Initialize the queue Q to contain just s0.
1 INIT(G, s0)

. Main Loop:
while Q 6= ∅ do

2 u← Q.dequeue(). / Begin processing u
3 for each v adjacent to u do / Process edge u−v
4 PREVISIT(v)
5 if v is unseen then
6 color v seen
7 VISIT(v, u) / v is seen from u
8 Q.enqueue(v).
9 POSTVISIT(u)

This algorithm is a “shell” because we have embedded in it several subroutines

INIT, PREVISIT, VISIT and POSTVISIT

that are application-specific; these subroutines will be assumed to be null operations unless otherwise spec-
ified. Note that VISIT(v, u) represents visiting v from u. If this BFS algorithm is a standalone code, then
INIT(G, s0) may be expected to initialize the color of all vertices to unseen, and s0 has color seen.

There is an underlying tree structure in each BFS computation: the root is s0. If v is seen from u (see
Line 6 in the BFS Algorithm), then the edge u−v is an edge in this tree. This tree is called the BFS tree
(see Figure 4(a)). A BFS listing at s0 is a list of all the vertices reachable from s0 in which a vertex u
appears before another vertex v in the list whenever (2) holds. E.g., let G be the bigraph in Figure 2(a) and
s0 is vertex a. Then two possible BFS listing at a are

(a, b, d, c, e) and (a, d, b, c, e). (3)
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We can produce such a listing just by enumerating the vertices of the BFS tree in the order they are visited.

We now show how to program the shell subroutines in BFS to solve a variety of problems:

• Suppose you wish to print a BFS listing of the vertices reachable from s0. Then POSTVISIT(u) simply
prints the name of u. Other subroutines can remain null operations.

• Suppose you wish to compute the BFS tree T . If we view T as a set of edges, then INIT(G, s0) could
initial a set T to be empty. In VISIT(v, u), we add the edge u−v to T .

• Suppose you wish to determine the depth d[u] of each vertex u in the BFS Tree. Then INIT(G, s0)
could initialize

d[u] =
{ ∞ if u 6= s0,

0 if u = s0.

and in VISIT(v, u), we set d[v] = 1 + d[u]. Also, the coloring scheme (unseen/seen) could be imple-
mented using the array d[1..n] instead of having a separate array.

BFS Analysis. We shall analyze the behavior of the BFS algorithm on a bigraph. A basic property that
is implicit in the following discussion is that the BFS algorithm terminates – this is left as an Exercise. For
instance, termination assures us that each vertex of the BFS tree will eventually become the front element
of the queue.

Let δ(v) ≥ 0 denote the depth of a vertex v in the BFS tree. Note that if v is visited from u, then
δ(v) = δ(u) + 1. We first prove a simple lemma:

Lemma 1 (Monotone 0− 1 Property) Let the vertices in the queue Q at an arbitrary moment be
(u1, u2, . . . , uk) for some k ≥ 1, with u1 the earliest enqueued vertex and uk the last enqueued vertex. The
following invariant holds:

δ(u1) ≤ δ(u2) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u1). (4)

Proof. The result is clearly true when k = 1. Suppose (u1, . . . , uk) is the state of the queue at the beginning
of the while-loop, and (4) holds. In Line 2, we removed u1 and assign it to the variable u. Now the queue
contains (u2, . . . , uk) and clearly, it satisfies the corresponding inequality

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u2).

Suppose in the for-loop, in Line 8, we enqueued a node v that is adjacent to u = u1. Then Q contains
(u2, . . . , uk, v) and we see that

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ δ(v) ≤ 1 + δ(u2)

holds because δ(v) = 1+δ(u1) ≤ 1+δ(u2). In fact, every vertex v enqueued in this for-loop has this property.
This proves the invariant (4). Q.E.D.

This lemma shows that δ(ui) is monotone non-decreasing; it is also a 0 − 1 property in the sense that
δ(uj) − δ(ui) = 0 or 1 for all 1 ≤ i ≤ j ≤ k. From this lemma, we deduce other basic properties the BFS
algorithm:
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Lemma 2

(i) For any edge u−v, |δ(u)− δ(v)| ≤ 1.
(ii) For each vertex u in the BFS Tree,

δ(u) = δ(s0, u),

i.e., δ(u) is the length of the shortest path from s0 to u.

Proof. (i) We may assume by way of contradiction that δ(u) − δ(v) ≥ 2. There is a moment in the BFS
computation when the queue Q contains v at the front of the queue, and then dequeued. We next enter a for-
loop to the examine vertices adjacent to v. But when u is considered, it will be unseen (since δ(u)−δ(v) ≥ 2
implies u has not yet been put in the queue). But this implies u would be visited from v, and δ(u) = δ(v)+1.
This is a contradiction.
(ii) Let π : (u0−u1−u2− · · · −uk) be a shortest path from u0 = s0 to uk = u of length k ≥ 1. It is sufficient to
prove that δ(uk) = k. For i ≥ 1, part(i) tells us that δ(ui) ≤ δ(ui−1)+1. This implies δ(uk) ≤ k+ δ(u0) = k.
On the other hand, the inequality δ(uk) ≥ k is immediate because, δ(s0, uk) = k by our choice of π, and
δ(uk) ≥ δ(s0, uk) because there is a path of length δ(uk) from s0 to uk. Q.E.D.

As corollory: if we print the vertices u1, u2, . . . , uk of the BFS tree, in the order that they are enqueued,
this would represent a BFS listing. This is because δ(ui) is non-decreasing with i, and δ(ui) = δ(s0, ui).

Another basic property is:

Lemma 3 (BFS Property) If δ(u) < δ(v) then u is VISITED and POSTVISITED before v.

The edges of the graph G can be classified into the following types by the BFS Algorithm (cf. Figure 4(b)):

• Tree edges: these are the edges of the BFS tree.

• Level edges: these are edges between vertices in the same level of the BFS tree. E.g., edge bd in
Figure 4(b).

• Cross Level edges: these are non-tree edges that connect vertices in two different levels. But note
that the two levels differ by exactly one. E.g., edge cd in Figure 4(b).

• Unseen edges: these are edges that are not used during the computation. The involved vertices not
reachable from s0.

It is easy to see that each of the types of edges can arise. But is the classification exhaustive (complete)?
It is, because any other kind of edges must connect vertices at non-adjacent levels of the BFS tree, and this
is forbidden by Lemma 2(i). Hence we have:

Theorem 4 If G is a bigraph, the above classification of edges is complete.

We will leave it as an exercise to fill in our BFS shell in order to produce the above classification of edges.
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Driver Program. In our BFS algorithm we assume that a source vertex s0 ∈ V is given. This is guaranteed
to visit all vertices reachable from s0. What if we need to process all vertices, not just those reachable from
a given vertex? In this case, we write a “driver program” that repeatedly calls our BFS algorithm. We
assume a global initialization which sets all vertices to unseen. Here is the driver program:

BFS Driver Algorithm

Input: G = (V, E) a graph.
Output: Application-dependent.
. Initialization:

1 Color all vertices as unseen.
2 GLOBAL INIT(G)

. Main Loop:
3 For each vertex v in V do
4 if v is unseen then
5 call BFS((V, E; v)).

Computing the Connected Components of a Bigraph Suppose we wish to compute the connected
components of a bigraph G. Assuming V = {1, . . . , n}, let us interprete this task as computing an integer
array c[1..n] satisfying the property c[u] = c[v] iff u, v belongs to the same component. Intuitively, c[u] is the
name of the component that contains u. The component number is arbitrary.

To accomplish this task, we assume a global variable called count that is initialized to 0 by
GLOBAL INIT(G). Inside the BFS algorithm, the INIT(G, s0) subroutine simply increments the count
variable. Finally, the VISIT(v, u) subroutine simply assigns c[v]← count. The correctness of this algorithm
should be clear. If we want to know the number of components in the graph, we can output the value of
count at the end of the driver program.

Time Analysis. Let us determine the time complexity of the BFS Algorithm and the BFS Driver program.
We will count the time for the application-specific subroutines: but as long as these subroutines are O(1)
time our complexity analysis will remain valid. Also, it is assumed that the Adjacency List representation
of graphs is used. The time complexity will be given as a function of n = |V | and m = |E|.

The arguments are fairly standard: The initialization is O(1) time and the main loop is Θ(m′) where
m′ ≤ m is the number of reachable edges. This giving a total complexity of Θ(m′).

Next consider the BFS Driver program. The initialization is Θ(n) and line 3 is executed n times. For
each actual call to BFS, we had shown that the time is Θ(m′) where m′ is the number of reachable edges.
Summing over all such m′, we obtain a total time of Θ(m). Hence the Driver program takes time Θ(n+ m).

Exercises

Exercise 4.1: Prove that every vertex that is reachable from the source will be seen by BFS. ♦

Exercise 4.2: Prove that the BFS algorithm terminates. ♦
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Exercise 4.3: Show that each node is VISITED and POSTVISITED at most once. Is this true for PRE-
VISIT as well? ♦

Exercise 4.4: Fill in the shell subroutines so that the BFS Algorithm will correctly classify every edge of
the input bigraph. ♦

Exercise 4.5: Let G = (V, E; λ) be a connected bigraph in which each vertex v ∈ V has an associated value
λ(v) ∈ R.
(a) Give an algorithm to compute the sum

∑
v∈V λ(v).

(b) Give an algorithm to label every edge e ∈ E with the value |λ(u)− λ(v)| where e = u−v. ♦

Exercise 4.6: Why does the above algorithm for computing the connected component of a bigraph fail
when we apply it to a digraph? ♦

Exercise 4.7: (a) Let G = (V, E) be a connected bigraph. For any vertex v ∈ V define

radius(v, G) := max
u∈V

distance(u, v)

where distance(u, v) is the length of the shortest path from u to v. The center of G is the vertex v0

such that radius(v0, G) is minimized. We call radius(v0, G) the radius of G and denote it by radius(G).
Define the diameter diameter(G) of G to be the maximum value of distance(u, v) where u, v ∈ V .
Prove that 2 · radius(G) ≥ diameter(G).
(b) Draw a graph in which 2radius(G) 6= diameter(G).
(c) Give an efficient algorithm to compute the diameter of a undirected tree (i.e., connected acyclic
undirected graph). What is the complexity of your algorithm? ♦

Exercise 4.8: Conjecture why the BFS Algorithm is little-used in the processing of digraphs. ♦

End Exercises

§5. Simple Depth First Search

The DFS algorithm turns out to be more subtle than BFS. In some applications, however, it is sufficient
to use a simplified version that is as easy as the BFS algorithm. In fact, it might even be easier because we
can exploit recursion.

Here is an account of this simplified DFS algorithm. As in BFS, we color every vertex as unseen or
seen. We similarly define a DFS tree underlying any particular DFS computation: the edges of this tree
are precisely those u−v such that v is seen from u. Starting the search from the source s0, the idea is to
go as deeply as possibly along any path without visiting any vertex twice. When it is no longer possible to
continue a path, we backup towards the source s0. But we only backup enough for us to go forward in depth
again. In illustration, suppose G is the digraph in Figure 2(b), and s0 is vertex 1. Then one possible deepest
path from 1 is (1, 5, 2, 6). From vertex 6, we backup to vertex 2, from where we can advance to vertex 3.
Again we need to backup, and so on. The DFS tree is a trace of this search process; for our present example,
we obtain the tree shown in Figure 5(a).

The Simple DFS algorithm can be compactly presented using recursion as follows:
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Figure 5: DFS Tree.

Simple DFS (recursive form)
Input: G = (V, E; s0) a graph (bi- or dip)

The vertices in V have been colored seen or unseen.
Output Application dependent

1 Color s0 as seen.
2 for each v adjacent to s0 do
3 PREVISIT(v)
4 if v is unseen then
5 VISIT(v, s0).
6 Simple DFS((V, E; v)) / Recursive call
7 POSTVISIT(s0).

In this recursive version, there is no INIT(G, s0) step (we do not want to initialize G with every recursive
call). The first call to this recursive algorithm must be made by some DFS Driver Program which must do
the necessary setup, including initializing the vertex colors:

Simple DFS Driver

Input: G = (V, E) a graph (bi- or dip)
Output: Application-specific

1 GLOBAL INIT(G)
2 Color each vertex in V as unseen.
3 for each v in V do
4 if v is unseen then
5 Simple DFS((V, E; v)) / recursive call

DFS Tree. The root of the DFS tree is s0, and the vertices of the tree are those vertices visited during this
DFS search (see Figure 5(a)). This tree can easily be constructed by appropriate definitions of INIT(G, s0),
VISIT(v−u) and POSTVISIT(u), and is left as an Exercise.

We prove the following basic result.
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Lemma 5 (Unseen Path) Let u, v ∈ V . Then v is a descendent of u in the DFS tree if and only if at the
time that u was first seen, there is5 a “unseen path” from u to v, i.e., a path comprising only of unseen
vertices.

Proof. Let t0 be the time when we first see u.

(⇒) We first prove the easy direction: if v is a descendent of u then there is an unseen path from u to
v at time t0. For, if there is a path (u−u1− · · · −uk−v) from u to v in the DFS tree, then each ui must be
unseen at the time we first see ui−1 (u0 = u and uk+1 = v). Let ti be the time we first see ui. Then we
have t0 < t1 < · · · < tk+1 and thus each ui was unseen at time t0. Here we use the fact that each vertex is
initially unseen, and once seen, will never revert to unseen.

(⇐) We remark that the inductive hypothesis is a little subtle (see Exercise for a wrong approach). The
reason is that the DFS algorithm has its own order for visiting vertices adjacent to each u, and your induction
must account for this order.

First, we define a total order on all paths from u to v: If a, b are two vertices adjacent to a vertex
u and we visit a before b, then we say “a <dfs b (relative to u)”. If p = (u−u1−u2− · · · −uk−v) and
q = (u−v1−v2− · · ·−v`−v) (where k, ` ≥ 0) are two distinct paths from u to v, we say p <dfs q if
u1 = v1, . . . , um = vm and um+1 < vm+1 relative to um. Note that m is well-defined (in particular,
m < min{k, `}). Now define the DFS-distance between u and v to be the length of the <dfs-least unseen
path from u to v at time we first see u. By an unseen path from u to v, we mean one

π : (u−u1− · · ·−uk−v) (5)

where each node u1, . . . , uk, v is unseen at time when we frist see u. If there are no unseen paths from u to
v, the DFS-distance from u to v is infinite.

For any k ∈ N, let IND(k) be the statement: “If the DFS-distance from u to v has length k + 1, and (5)
is the <dfs-least unseen path from u to v, then this path is a path in the DFS tree”. Hence our goal is to
prove the validity of IND(k).

BASE CASE: Suppose k = 0. The <dfs-least unseen path from u to v is just (uv−). So v is adjacent to
u. Suppose there is a vertex v′ such that v′ <dfs v (relative to u). Then there does not exist an unseen path
π′ from v′ to v (otherwise, we get the contradiction (u−v′); π′ <dfs (u−v)). Hence, when we recursively
visit v1, we will never color v as seen. Hence, we will eventually color v as seen from u, i.e., u−v is an edge
of the DFS tree.

INDUCTIVE CASE: Suppose k > 0. As before, if v′ <dfs u1 then we will recursively visit v′, we will
never color any of the vertices u1, u2, . . . , uk, v as seen. Therefore, we will eventually visit u1 from u at some
time t1 > t0. Moreover, the sub path π′ : (u1−u2− · · · −uk−v) is still unseen at this time. We can also
verify that pi′ is the <dfs-least unseen path from u1 to v at time t1. By IND(k − 1), the subpath π′ is in
the DFS tree. Hence π = (u−u1); π′ is in the DFS tree. Q.E.D.

We can classify the edges of the graph G as follows (see Figure 5(b)):

• Tree edges: these are the edges belonging to the DFS tree.

• Back edges: these are non-tree edges u−v ∈ E where v is an ancestor of u. Note: u−u is considerd
a back edge. E.g., edges 2−1 and 3−2 in Figure 5(b).

5If we use the white-black color terminology, this would be called a “white path” as in [1].
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• Forward edges: these are non-tree edges u−v ∈ E where v is a descendent of u. E.g., edges 1−6 and
5−6 in Figure 5(b).

• Cross edges: these are edges u−v that are not classified by the above, but where u, v are visited.
E.g., edges 4−6, 3−6 and 4−3 in Figure 5(b).

• Unseen edges: all other edges are put in this category. These are edges u−v in which u is unseen at
the end of the algorithm.

Unfortunately, our simple DFS algorithm cannot easily make these edge classification. In particular, the
bicolor scheme (seen/unseen) is no longer sufficient. E.g., we cannot distinguish between a cross edge from
a forward or back edge. We will defer the problem of classifying edges of the DFS tree to the next section.

Connection with BFS. There is a sense in which BFS and DFS are the same search strategies except
for their use of a different container ADT. Basically, recursion is an implicit way to use the stack ADT. The
stack ADT is similar to the queue ADT except that the insertion and deletion of items into the stack are
based on the Last-In-First-Out (LIFO) discipline. These two operations are denoted

S.push(x), x← S.pop(),

where S is a stack and x an item.

It is instructive to try to make this connection between the DFS and BFS algorithms more explicit. The
basic idea is to avoid recursion in DFS, and to explicitly use a stack in implementing DFS. Let us begin
with a simple experiment: what if we simply replace the queue ADT in BFS by the stack ADT? Here is the
hybrid algorithm which we may call BDFS, obtained mutatis mutandis from BFS algorithm:

BDFS Algorithm

Input: G = (V, E; s0) a graph (bi- or di-).
Output: Application specific
. Initialization:

0 INIT(G, s0) / Make all vertices unseen except for s0

1 Initialize the stack S to contain s0.
. Main Loop:

while S 6= ∅ do
2 u← S.pop().
3 for each v adjacent to u do
4 PREVISIT(v)
5 if v is unseen then
6 color v seen
7 VISIT(v, u)
8 S.push(v).
9 POSTVISIT(u)

This algorithm shares properties of BFS and DFS, but is distinct from both. Many standard computations
can still be accomplished using BDFS. To write a non-recursive version of DFS using this framework, we
need to make several changes.

Let S.top() refer to the top element of the stack. The invariant is that the sequence of vertices in the
stack is path to the current vertex curr. Assume that we have two functions first(u) and next(u, v) that
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gives enables us to iterate over the adjacency list of u: first(u) returns the first vertex that is adjacent to
u, and next(u, v) returns the next vertex after v that is adjacent to u (assuming v is adjacent to u). Both
functions may return a null pointer, and also next(Nil, v) = Nil.

Nonrecursive DFS Algorithm

Input: G = (V, E; s0) a graph (bi- or di-).
Output: Application specific
. Initialization:

0 INIT(G, s0); / Make all vertices unseen except for s0

1 Initialize the stack S to contain s0.
2 curr ← first(s0);

. Main Loop:
while S 6= ∅ do

3 if (curr = Nil)
4 curr ← S.pop()
5 POSTVISIT(curr)
6 curr ← next(S.top(), curr) / may be Nil
7 else
8 PREVISIT(curr)
9 if v is unseen
10 color v seen
11 VISIT(curr, S.top())
12 S.push(curr)
13 curr ← first(curr)

We leave it as an exercise to prove that this code is equivalent to the Simple (recursive) DFS algorithm.

Exercises

Exercise 5.1:
(a) Give the appropriate definitions for INIT(G), VISIT((v, u)) and POSTVISIT(u) so that our DFS
Algorithm computes the DFS Tree, say represented by a data structure T
(b) Prove that the object T constructed in (a) is indeed a tree, and is the DFS tree as defined in the
text. ♦

Exercise 5.2: Why does the following variation of the recursive DFS fail?

Simple DFS (recursive form)
Input: G = (V, E; s0) a graph.

1 for each v adjacent to s0 do
2 if v is unseen then
3 VISIT(v, s0).
4 Simple DFS((V, E; v))
5 POSTVISIT(s0).
6 Color s0 as seen.

♦
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Exercise 5.3: Here is an attempt to prove the unseen path lemma (Lemma 5). Please point out the error
in the following proof: “We use induction on the length ` of any unseen path from u to v. Base Case:
If ` = 1, then the DFS algorithm is sure to visit v from u, and so u−v is an edge in the DFS tree.
Inductive Case: If ` > 1, let v′ be the parent of v in the unseen path from u to v. Then there is an
unseen path from u to v′ of length `− 1. By Induction Hypothesis, v′ will be a descendent of u in the
DFS Tree. Hence, when we visit v′, we will also visit v from v′.” ♦

Exercise 5.4: (a) Construct a small digraph and run the DFS algorithm on it so that all the 5 classifications
of edges appear in your example.
(b) Prove that our classification of edges is complete. ♦

Exercise 5.5: Suppose G is a bigraph. Show that a DFS computation on G will not induce any forward or
cross edges. Prove a complete classification theorem for the edges for bigraphs. ♦

Exercise 5.6: Prove that our nonrecursive DFS algorithm is equivalent to the recursive version. ♦

Exercise 5.7: When might we prefer the BDFS Algorithm in place of the standard DFS or BFS algorithms?
♦

End Exercises

§6. Full Depth First Search

To perform certain computations using the DFS framework, it is useful to compute additional information
about the DFS tree. In particular, we may wish to classify the edges as described in the previous algorithm.
Instead of the bicolor scheme, we tricolor each vertex as unseen/seen/done (or white/gray/black). The
POSTVISIT(u) subroutine can be used to color the vertex u as done. The seen vertices are precisely those
are currently in the recursion stack. A more profound embellishment is to timestamp the vertices. There
are two kinds of time stamp for each vertex time when first encountered, and time when last encountered.
To implement timestamps, we assume a global counter C that is initially 0. Each time we encounter a vertex
u in a significant way (the first time or the last time), we increment C and associate this value to the array
entry firstTime[u] or lastTime[u]. The following code shows the time
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Full DFS Algorithm

Input: G = (V, E; s0) a graph (bi- or di-).
Output: This is application specific.
. Initialization:

0 Initialize the stack S to contain just s0.
1 INIT(G, s0) / clock variable initialized to 0

. Main Loop:
while S 6= ∅ do

2 u← S.pop().
3 for each v adjacent to u do
4 PREVISIT(v)
5 if v is unseen then
6 color v seen
7 firstTime[v]← clock++
8 VISIT(v, u)
9 S.push(v).
10 lastTime[u] = clock++
11 POSTVISIT(u)

In some applications, we may only need one of these two values. Let active(u) denote the time interval
[firstTime[u], lastTime[u]], and we say u is active within this interval. It is clear from the nature of the
recursion that two active are either disjoint or has a containment relationship. In case on non-containment,
we may write active(v) < active(u) if lastTime[v] < firstTime[u]. We have the following characterization
of edges using timestamps:

Lemma 6 Let u, v ∈ V . Then v is a descendent of u in the DFS tree if and only if

active(v) ⊆ active(u).

Proof. If there is a unseen path, then by induction on the length of this path, every vertex on this path will
be a descendent of u. Conversely, if v is descendent of u then by induction on the distance of v from u, there
will be a unseen path to u.

Now, if there is a unseen path from u to v when u was first discovered, we must have firstTime[u] <
firstTime[v]. Moreover, since the vertex u will remain active until v is discovered, we also have
lastTime[v] < lastTime[u]. Hence active(v) ⊆ active(u). Q.E.D.

The following is now easy to see:

Lemma 7 If u−v is an edge then

1. u−v is a back edge iff active(u) ⊆ active(v).

2. u−v is a cross edge iff active(v) < active(u).

3. u−v is a forward edge iff there exists some w ∈ V \ {u, v} such that active(v) ⊆ active(w) ⊆
active(u).

4. u−v is a tree edge iff active(v) ⊆ active(u) but it is not a forward edge.
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Application to detecting cycles. We claim that the graph is acyclic iff there are no back edges. One
direction is clear – if there a back edge, we have a cycle. Conversely, if there is a cycle Z = [u1− · · · −uk],
then there must be a vertex (say, u1) in Z that is first reached by the DFS algorithm. Thus there is an
unseen path from u1 to uk, and so activeuk ⊆ activeu1. Thus there is a back edge from uk to u1. Hence,
we can use the DFS algorithm to check if a graph is acyclic.

Exercises

Exercise 6.1: Suppose G = (V, E; λ) is a strongly connected digraph in which λ : E → R.
(a) A potential function of G is φ : V → R such that for all u−v ∈ E,

λ(u, v) = φ(u)− φ(v).

Assuming G has a potential function, give an an algorithm to find one.
(b) Let C be a subgraph of G. Describe an easy-to-check property P of C such that G does not have
a potential function iff C has property P . We may call any C with property P a “witness” for the
non-existence of a potential function.
(c) Modify your solution to (a) so that for any G, it either finds a potential function or produces a
“witness” C. ♦

Exercise 6.2: Suppose you are given a connected bigraph G on the vertices V = [1..n]. Give an efficient
algorithm to compute for each i ∈ V a value c[i] that is equal to the number of components in G when
the vertex i is deleted. ♦

End Exercises

§7. Applications of Graph Traversal

In the following, assume G = (V, E) is a digraph with V = {1, 2, . . . , n}. Let per[1..n] be an integer array
that represents a permutation of V in the sense that V = {per[1], per[2], . . . , per[n]}. This array can also be
interpreted in other ways (e.g., a ranking of the vertices).

Topological Sort. One motivation is the so-called6 PERT graphs: in their simplest form, these are DAG’s
where vertices represents activities. An edge u−v ∈ E means that activity u must be performed before
activity v. By transitivity, if there is a path from u to v, then u must be performed before v. A topological
sort of such a graph amounts to a feasible order of execution of all these activities.

Suppose G is a DAG. Let us call per[1..n] a topological ranking of G if the following is true:

If (per[i], per[j]) ∈ E then i < j. (6)

Property (6) says that if we perform activities in the order per[1], per[2], . . . , per[n], then we are assured that
there is no “direct” inversion of priority. Thus, we interpret per[i] to be the name of the ith activity to be
performed. In Figure 6, a possible topological ranking is

per[1] = wake up, per[2] = take breakfast, per[3] = read newspaper, per[4] = go to work.

6PERT stands for “Program Evaluation and Review Technique”, a project management technique that was developed for
the U.S. Navy’s Polaris project (a submarine-launched ballistic missile program) in the 1950’s. The graphs here are also called
networks. PERT is closely related to the CriticalPath Method (CPM) developed around the same time.
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wake up

breakfast

newspaper

go to work

Figure 6: PERT graph

The only other topological ranking is where we take breakfast after reading newspaper.

We say “direct” in refering to priority because the precondition of (6) is information that is directly
represented by the edges of G. But we could have “indirect” priorities derived by transitivity (e.g., waking
up before going to work is indirectly represented in Figure 6. If we satisfy all the direct priorities, could
there be inversion of indirect priorities? The answer is no. In proof, suppose that i < j and per[i] depends
on per[j]. This means there is a path in the graph G from per[j] to per[i]. Let this path be

(per[j0]−per[j1]− · · · −per[jk])

where j0 = j and jk = i. By (6), we know that j = j0 < j1 < · · · < jk = i. This is a contradiction.

Here then is an algorithm to compute such a topological ranking of a DAG: the global initialization of G
will color all vertices as unseen, and set a counter variable count to n = |V |. The POSTVISIT(u) is simply

per[u] = count; count + +;

Let us prove the correctness of this algorithm:

Strong Components. Computing the components of digraphs is somewhat more subtle than the corre-
sponding problem for bigraphs. In fact, three versions of such an algorithm are known. Here, we will develop
a simple yet subtle algorithm based on what we might call “reverse graph search”.

Let G = (V, E) be a digraph where V = {1, . . . , n}. Let per[1..n] be an array that represents some
permutation of the vertices, so V = {per[1], per[2], . . . , per[n]}. Let DFS(i) denote the DFS algorithm
starting from vertex i. Consider the following method to visit every vertex in G:

Strong Component Subroutine(G, per)
Input: Digraph G and permutation per[1..n].
Output: A set of DFS Trees.

. Initialization

1. For i = 1, . . . , n, color[i] =unseen.
. Main Loop

2. For i = 1, . . . , n,
3. If (color[per[i]] =unseen,
4. DFS1(per[i]) / Outputs a DFS Tree

This loop is a standard driver program, except that we use per[i] to determine the choice of the next
vertex to visit. We assume that DFS1(i) will (1) change the color of every vertex that it visits from unseen
to seen, and (2) output the DFS tree rooted at i.
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First, let us see how the above subroutine will perform on the digraph G6 in Figure 3(a). Let us also
assume that the permutation is

per[1, 2, 3, 4, 5, 6] = (6, 3, 5, 2, 1, 4) (7)

The output of SC Subroutine will be the DFS trees for on the following sets of vertices (in this order):

{6}, {3, 2, 5}, {1}, {4}.

Since these are the four strong components of G6, the algorithm is correct. We now prove that, with a
suitable permutation, this is always the case:

Lemma 8 There exists a permutation per[1..n] such that the Strong Component Subroutine is correct,
that is, each each DFS Tree that is output in Step 4 corresponds to a strong component of G.

Proof. Consider the reduced graph Gc of G. Consider a permutation per[1..n] that is a reverse topological
sort of the vertices of G. More precisely, if per[i] = u, we think of i as the ranking of vertex u in our reverse
topological sort, and write rank[u] = i. So rank[1..n] is just the inverse of per[1..n]. Suppose C1, C2 are two
components of G and (C1, C2) is an edge in Gc, then for each vertex u1 ∈ C1 and u2 ∈ C2, we require the
property

rank[u1] > rank[u2]. (8)

With this property, we see that in our Main Loop (line 2) of the above subroutine, we will consider vertex
u2 before vertex u1.

We must show this actually works, that is, if the algorithm calls DFS1(u2) in line 4 within the Main
Loop, it will output precisely C2. We will use induction based on the partial order induced by the rank
function. In other words, for all u0 whose rank is less than rank[u2], a call to DFS1(u0) produces the
component of u0.

This is certainly true in the base case (i.e., when C2 is a sink in the DAG Gc). Inductively, assume that
all previous calls to DFS1 has correctly output only strong components. This implies that no vertices of C2

has been output when we first call DFS1(u2). Then, it is clear that DFS1(u2) will reach and output every
vertex in C2.

We must next show that it is impossible to output vertices that are NOT in C2. Suppose DFS1(u2)
reaches some unseen vertex u0 that belongs to another component C0. We may assume that u0 is the first
such vertex, and hence (C2, C0) is an edge of Gc. By assumption (8), rank[u0] < rank[u2]. This is a
contradiction because in our main loop, we would have considered the vertex u0 before u2. This means that
color[u0] = seen by the time we consider u2. Q.E.D.

How do we computer per[1..n] satisfying (8) in the preceding proof? We can compute a topological sort of
the reverse of graph G. Then per[i] can be the inverse of the topological ranking of the vertices produced by
this sort. But rather than compute reverse of G first, we can directly perform a DFS Search of G. For each
DFS Tree we find, we rank the vertices according to a pre-order traversal of the DFS Tree. Let us denote
this DFS variant by DFS0(i). Vertices in subsequent DFS trees will receive higher ranks. Moreover, it is
simple to modify the code to actually maintain the inverse of the ranking (i.e., directly maintain per[1..n]).
Here then is the code:
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Strong Component Algorithm(G)

Input: Digraph G = (V, E), V = {1, 2, . . . , n}.
Output: A permutation per[1..n] of V

Initialization

1. For i = 1, . . . , n, color[i] = unseen.
2. Declare array per[1..n].
3. Rank = 0 (global counter)

Main Loop

4. For i = 1, . . . , n,
5. If (color[i] = unseen),
6. DFS0(i) // updates per with postorder ranking

Calls Main Subroutine

6. Strong Component Subroutine(G, per)

The code for DFS0 is as follows:

DFS0(i)
Input: vertex i in G = (V, E)
Output: Update of array per[1..n]

Main Loop

3. For each vertex v adjacent to i,
4. If (color[v] = unseen),
5. DFS0(v) // recursion
6. per[+ + Rank] = i // give vertex i its rank

We may verify that the permutation per[1..6] computed by our algorithm on G6 is precisely that shown
in (7).

Remarks. Tarjan [3] was the first to give a linear time algorithm for strong components. R. Kosaraju
and M. Sharir independently discovered the reverse graph search method described here. The reverse graph
search is conceptually elegant. But since it requires two passes over the graph input, it is slower in practice
than the direct method of Tarjan. Yet a third method was discovered by Gabow in 1999. For further
discussion of this problem, including history, we refer to Sedgewick [2].

§8. Planarity Testing

A planar graph is one that can be embeded in the plane with non-crossing edges. The (graph) planarity
problem is this: given a bigraph G = (V, E), is it planar? We will give a linear time algorithm for testing
this assume G is represented as an adjacency list.

Planar graphs have the nice property that it is sparse: it follows from Euler’s relation for embedded
planar graphs m ≤ 3n − 6 where m = |E| and n = |V |. Such graphs arise frequently in applications. For
instance, in computational geometry, the Voronoi diagram of a set of points is a planar graph. Suppose the
algorithm using machine arithmetic that may produce erroneous outputs: we might want to verify that the
computed Voronoi diagram is at least planar.

Figure 7 shows the two smallest nonplanar graphs, K5 and K3,3. The graph K3,3 is sometimes called the
“utility graph” because we can think of it representing three houses A, B, C that need connections to three
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(b)(a)

Figure 7: Nonplanar graphs: K5 and K3,3

utilities E, F, G where E is electricity, F is water and G is gas. A theorem of Kuratowski says that G is
nonplanar if and only if it contains a subgraph that is homeomorphic to K5 or to K3,3. Note: In general,
Kn denotes the complete graph on n vertices and Kn,m denotes the complete bipartite graph on two sets of
vertices of sizes n and m, respectively.

Exercises

Exercise 8.1: Euler’s formula says that if a bigraph with n vertices and m edges is embedded so that no
two edges cross, then n−m + f = 2 where f is the number regions (including the infinite region). We
may assume that each vertex has degree at least 3.
(a) Deduce from this that m ≤ 3n− 6.
(b) Can you give a simple, direct proof that m = O(n) for the family of planar graphs? Or m = o(n2)?

♦

End Exercises
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