
§1. Some Hard Problems Lecture XXX Page 1

Lecture XXX

NP-COMPLETENESS

We have studied many computational problems in the course of this book. Despite the common theme
of complexity in our studies, there is so far no coherent framework encompassing these problems. This final
chapter introduces some elements of complexity theory to unify a large portion of our investigations.

We have mostly looked at algorithms for computational problems – these provide upper bounds on
computational complexity. We have almost exclusively focused on problems that are solvable in polynomial-
time. In complexity theory, we are also interested in “inherent complexity”. Another way of saying this is we
also want to prove lower bounds. This is a much harder quest: for instance, to show that a problem cannot
be solved in n2 time, we must prove something about all conceivable algorithsm for solving the problem!
How can one do this? The first thing step is the characterize what are “all conceivable algorithms”. This
leads to the notion of computational model.

Once this is settled, we need to take another less obvious step: we want to classify problems into those
that are “tractable” and those that are not. This step has precedent in the computability theory, where
a fundamental dichotomy of problems are the computable ones versus the uncomputable ones. The meta-
principle here says that “solvable using a polynomial amount of resources” is equated with tractability.
This is a meta-principle because we still have to choose the computational resource, machine model, etc. For
simplicity, we will assume that the computational resource of interest is time.

As in computability theory, this step turns out to be extremely fruitful, both theoretically as well as in
practice. Intractable as well as suspected-intractable problems actually arise very frequently in applications.
This forces us to develop new techniques for attacking such problems. While these techniques may be still
fundamentally non-polynomial, they allow non-trivial instances to be solved. For instance, improving an
algorithm from 2n time to 2

√
n time can have significant practical impact. Often, in the worst case, we know

no better than using a “brute-force search” which typically means an exponential time search for solutions. To
circumvent this, we can introduce more powerful computational models (e.g., randomization, approximation)
or more refined complexity models (introduction of output-sensitivity in classifying algorithms).

The study of suspected-intractable problems has a discouraging side: all attempts to prove that they are
actually intractable has failed miserably. Indeed, we could not even prove that these problems require at
least cubic time, say. But the bright side is that researchers discovered a remarkable phenomenon. There
is a large class of suspected-intractable problems that are equivalent in the sense that any problem in this
equivalence class is tractable if and only if all of them are tractable. This is the theory of NP -completeness
which we will study in this chapter. Along the way, we introduce some basic elements of complexity theory.

§1. Some Hard Problems

Consider the following computational problems.

• Bin Packing. Recall the linear bin packing problem introduced to illustrate the greedy method: given
numbers (M ; w1, . . . , wn) we want to pack the weights wi into the minimum number of bins where each
bin has capacity M . The problem is “linear” because the order of packing the weights wi into bins
are specified. In the general bin packing problem, you can rearrange the weights in any way you want.
We showed that the general problem can be reduced to linear bin packing to achieve a complexity of
O(nn−(1/2)).

c© Chee-Keng Yap December 10, 2004

§1. Some Hard Problems Lecture XXX Page 2

• Longest Path Problem. Given a bigraph G = (V, E; s), we want to compute a “longest path” from
s, namely a path p = (s, v1, v2, . . . , vk) such that k is maximized. The notion of longest path here
need to be clarified, because if s can reach any cycle then we can have paths that are arbitrarily long,
but no single path is the longest. Since we do not want to exclude cycles from G, we will insist that
the “longest path” must by simple (i.e., no vertex is visited twice). This is deceptively similar to the
shortest path problem which we can solve using BFS. But we shall see that this is very far from the
truth.

• Travelling Salesman Problem (TSP). Given a n×n matrix M whose (i, j)-th entry (M)ij represents
the distance from city i to city j, Let π be a permutation of {1, . . . , n}, i.e., a bijection π : {1, . . . , n} →
{1, . . . , n}. We view π as a tour or itinerary of a salesman who begins in city π(1), and visits cities
π(2), π(3), . . . , π(n) and finally returning to city π(1) again. The cost C(π) of this tour is the sum of
all the intercity distances travelled. The problem is compute a tour π of minimum cost.

This problem has many important applications. For instance, in integrated circuit fabrication we may
have a very complex circuitry with thousands of points that need soldering by a robot arm. What we
want is a minimum cost tour for a robot arm to visit all these point (“cities”). If we can improve on
a tour by 10%, this might suggest that the soldering process can be sped up 10%, a real competitive
advantage in manufacturing!

• Knapsack Problem. Suppose you are packing for your vacation and you have the n items to pack:
shoes, clothes, books, toiletry, scuba diving gear, etc. Let the ith item have size si > 0 and an utility
ui > 0. But you have one knapsack with capacity C > 0. A subset I ⊆ {1, . . . , n} is called feasible if

∑
i∈I

si ≤ C.

You are to select a feasible set I such that the utility u(I) =
∑

i∈I ui is maximized.

• Chromatic Number of a Graph. Given a bigraph G = (V, E), we want to compute the chromatic
number χ(G) of G. This is defined to be the minimum k such that G has a k-coloring. A k-coloring
of G is an assignment of the “colors” 1, 2, . . . , k to the vertices of G such that no two adjacent vertices
have the same color.

The above problems can be said to be optimization problems because there are some minimality or
maximality criteria. Typically, any optimization problem can be simplified into decision problems, in
which the required output is binary-valued (YES/NO). Let us illustrate this remark:

• Travelling Salesman Decision Problem (TSD). Given the matrix M as before, and a real number
B, does there exist a tour π such that C(π) ≤ B?

• Knapsack Decision Problem Given C, s1, . . . , sn and u1, . . . , un as before, and a real number B,
does there exist a feasible set I such that

∑
i∈I ui ≥ B?

• Chromatic Number Decision Problem. Given a bigraph G and an integer k > 0, is χ(G) ≤ k?

When we discuss complexity of problems, we need a notion of input size. For simplicity, we say that the
“size” of each of the above problems is n. In the case of TSP and Knapsack, we need to bound the numbers
Mij , si, ui in terms of n. For simplicity, we assume that each number in the input is a binary number with
at most n bits.

We currently do know if any of these problems are tractable: that is, whether there exist algorithms with
running time O(nk) for any fixed k. This is true for the optimization problem as well as for their simpler
decision counterpart.

c© Chee-Keng Yap December 10, 2004

§2. Model of Computation Lecture XXX Page 3

It will turn out that as far as tractability is concerned, the original problem is tractable iff the cor-
responding decision problem is tractable. This may at first appear surprising because it is clear that the
decision problem is simpler than the corresponding optimization problem. This can be make rigorous using
the notion of reduction which we will introduce below. In view of this tractability-equivalence, the theory
we are about to develop will mostly deal with decision problems.

The above list is just a small sampling of a host of problems not known to be tractable. What is more
remarkable is that they all share this characteristic: if any one of these problems is shown to be tractable,
then all of them would be tractable. Such problems are “NP-Complete”, a concept we will shortly introduce.
The book [1] contains a list of over 300 problems from all areas of the computational literature with the
same property. Of course, the list has grown considerably since the writing of the book. The existence of
this NP-completeness phenomenon has important implications for the study of algorithms.

• First, it tells us that there is overwhelming evidence for the inherent difficulty of these problems. In
fact, most experts believe that these problems are intractable.

• Second, instead of attempting to show efficient algorithms for a problem, especially if we suspect that
it is not possible, we can also attempt to show it to be NP -complete. This would bring relative closure
to our investigation, as a kind of negative result.

• Third, it has led to the investigation of new computational techniques (especially randomized ones)
for attacking such problems.

In short, the overall impact of this theory on the computational literature is far-ranging.

Exercises

Exercise 1.1: Give some good algorithmic solution for the following problems: (a) TSP, (b) Chromatic
Number and (c) Knapsack. Note that while your solution will be non-polynomial, you should try to
make it as efficient as you can. ♦

Exercise 1.2: For each case of the previous question, estimate the largest size n of the problem that your
algorithm can solve in one day of (current) computer time. Make explicit any assumptions you need
(speed of your computer, etc). ♦

End Exercises

§2. Model of Computation

In order to bring the various problems under one framework, we need to have a “universal computational
model”. Many general models of computation have been proposed. Relative to goal of classifying computable
and noncomputable problems, all these models turn out to be equivalent. But in terms of complexity, the
issue is considerably more subtle (this is related to the concept of “computational modes” [2]). In any
case, the canonical choice here is the Turing machine model. Again, there are many variants of Turing
machines. For our present purpose, we use the Simple Turing Machine (STM) model.

c© Chee-Keng Yap December 10, 2004

§2. Model of Computation Lecture XXX Page 4

REWRITE THE FOLLOWING INFORMATION (Use Theory Lecture Notes)

We start with the initial idea of a finite state machine. This machine M can be represented by a
directed graph whose vertex set Q is finite and where each edge is labeled by a symbol from a set Σ called
the alphabet of M . The vertices in Q are called states and edges called transitions. If a transition
(u, v) ∈ Q2 is labeled by a symbol a ∈ Σ, we may denote it by (u a→ v). There are distinguished states, a
start state q0 ∈ Q and an accept state qa ∈ Q.

1

1 1

0

00

1 0 0, 1

q0 q1 q2 q3 q4

Figure 1: Finite State Machine

EXAMPLE. In Figure 1, we show a finite state machine illustrating several conventions. The alphabet
here is Σ = {0, 1} and state set is Q = {q0, q1, . . . , q4}. The start state is q0 (this is indicated by the arrow
from nowhere, and its accept state qa is q4 (indicated by the concentric circles around q4). When two or
more transitions (edges) share the same start and end vertices, we will just draw one arrow, labeled by two
or more the symbols. Thus, the transitions (q4

0→ q4) and transitions (q4
1→ q4) in this figure is represented

by just one edge, labeled by the symbols 0 and 1.

The operation of a finite state machine M is as follows: its input is some string w ∈ Σ∗. It executes a
sequence of transitions in the following sense: at any moment, M has a current state and a current head
position h ∈ {1, 2, . . . , n, n + 1} where |w| = n. Initially, M is in state q0 and head position is h = 1. In
head position h, we say that M is scanning the hth symbol w[h] ∈ Σ in w. When in state q and scanning
symbol a ∈ Σ, our machine M can execute any transition of the form (q a→ q′), and thereby move into state
q′. Its head position is incremented, h← h + 1. Note two possibilities:

• If there is more than one transition from state q that are labeled by symbol a, then M can execute
any one of them. In this case, we say M made a nondeterministic move.

• M could be stuck in the sense that there are no executable transitions from state q.

EXAMPLE (contd). Suppose w = 000100. Then the machine in Figure 1 would enter the following
sequence of states as the head moves from position 1 to 6 is (q0, q1, q1, q1, q2, q3, q1). In this case, no non-
deterministic moves were made. Suppose w = 111. In this case, the very first move must make a non-
deterministic (M can go to state q2 or remain in state q0). One possible sequence of states might be (q0, q2, ∗)
where ∗ indicates that the machine is now stuck at head position 2. Alternatively, the state sequence can be
(q0, q0, q0, q2).

A configuration of M is a pair c = (q, h) where q is a state and h is a position. A computation of
M is a sequence of configurations C = (c1, . . . , cm) for some m ≤ n and such that ci → ci+1 is legal for
all i = 1, . . . , m − 1. We say C is an accepting computation if the state in cm is the accept state. We
say M accepts w if there is an accepting computation of M on input w. Note that M does not accept qa,
there for every computation path C are two possibilities: it could be stuck before reaching position n + 1,
or it could reach position n + 1 in a state different than qa. A machine M is said to be nondeterministic

it has at least one pair of transitions (u a→ v) (u′ a′→ v′) where u = u′ and a = a′. Otherwise we say M is
deterministic.

c© Chee-Keng Yap December 10, 2004

§2. Model of Computation Lecture XXX Page 5

1 2 3−1−2−3 0
b

q

infinite tape a

Figure 2: Turing machine in state q ∈ Q

A simple Turing machine is just an extension of a finite state machine in which each transition is now
labeled by a triple (a, a′, D) ∈ Σ × Σ × {0,±1}. The idea is that the machine can now change the symbol
at its current position from a to a′, and its head position is changed by the amount D, from h to h + D. If
D = 0, its head position is unchanged, and D = −1 means that its head position can move left. In the finite
state machine, D is always +1 implicitly. Also, the computation is not required to stop after |w| transitions
– it can even continue forever. The computation halts when it reaches the accept state qa or is stuck.

Another new feature is that we view the machine as computing on a doubly-infinite tape where the tape
is made up of individual cells (tape squares) which are indexed by the integers. Each cell can store a symbol
from Σ or a special blank symbol t (assumed not in Σ). The transition rules can refer to symbols in
Σ ∪ {t}. Initially, the input w is placed on cells 1, 2, . . . , |w|, and all the other cells are initially blank (i.e.,
contains t). The tape head is scanning cell 0 (thus sees a blank).

REMARK: we call the above model the “simple Turing machine” (STM) because there are many variants
of Turing machines, and these are invariably more elaborate than our version. But for our purposes, the
STM model suffices.

What does a Turing machine compute? Our main use of the simple Turing is to accept languages.
That is, we say M accepts w ∈ Σ∗ if there exists a computational path on input w that leads to the accept
state. Let

L(M) ⊆ Σ∗

denote the language accepted by M .

We sometimes need simple Turing machines to compute functions of the form f : Σ∗ → Σ∗. The function
f may be partial. For this purpose, we need some conventions. First of all, it is easiest to assume M is
deterministic. On input w, if M does not halt, then f(w) ↑. Otherwise, when it halts, let the tape head
be scanning cell i for some i ∈ Z. If cell i is blank, then f(w) = ε (the empty string). Otherwise, there is
a maximal contiguous block of cells that contains non-blank symbols and that includes cell i. The output
f(w) is the word contained in the block of cells.

Exercises

Exercise 2.1: Construct a Turing machine M to check if a bigraph is connected. Assume (be explicit) some
reasonable encoding of bigraphs. Please describe the actions of M in words, not by writing down its
set of instructions! ♦

c© Chee-Keng Yap December 10, 2004

§3. Computational Problems Lecture XXX Page 6

Exercise 2.2: Show that if TSD can be solved in polynomial time, then we can solve TSP in polynomial
time. ♦

End Exercises

§3. Computational Problems

The above computational model apparently computes on input strings. But computational problems
arise in mathematical domains such as integers, sets, graphs, matrices, etc. In order to solve these problems,
we must therefore assume some encoding of these objects as strings. The following will be assumed unless
otherwise indicated:

• Integers: these are represented in binary notation. We can generalize this to rational numbers, repre-
sented by a pair of integers.

• Matrices: assuming a representation of the matrix entries (say binary numbers) then the entire matrix
can be represented by a row-major order lising of entries. Of course, we must also explicitly encode
the size of the matrix.

• Sets: again, relative to some encoding of the elements of the set, we encode a set by an arbitrary listing
of its elements. The encoding of a set is not unique (there are n! possible ways to list its elements).

If g is an object, we may write #(g) for the encoded version of g. But often, we do not even make this
distinction, and identify g with #(g).

The above encoding of matrices includes vectors or tuples as special cases. In these encodings, it is
simplest if we introduce new symbols (e.g., commas and parenthesis symbols) to separate items in a list or
set.

EXAMPLE: encoding of digraphs. Three main methods are: (1) listing of the edge set, (2) adjacency
lists and (3) adjacency matrix. Assuming that the nodes have some given encoding already (say, as integers)
and edges are just pairs of nodes, then method (1) amounts to a representation of a set, and method (2)
amounts to a list of lists of nodes. Method (3) can be viewed as a boolean matrix.

Efficiency of Encoding. The choice of encoding is usually not important, but there are exceptions. The
most important example is the encoding of integers: we can use k-ary encoding of integers for any k > 2,
instead of the default binary encoding (k = 2). On the other hand, we must not use unary encoding (k = 1).
The reason is that this is exponentially less efficient than k-ary encoding for k > 1. This will have drastic
consequence on the complexity of the problem: an exponential time problem may become polynomial time
just by this encoding artifact. This shows that it is important to have “compact encodings”. On the other
hand, we should not insist on the most compact encoding, as this would involve difficult computational
problems to find the most compact one!

Satisfiability Problem. A Boolean formula is an expression over the infinite supply of Boolean variables

x0, x1, x2, . . .

c© Chee-Keng Yap December 10, 2004

§3. Computational Problems Lecture XXX Page 7

and defined recursively: any Boolean variable is a Boolean formula. If F1, F2 are Boolean formulas, then so
are

(¬F1), (F1 ∨ F2), (F1 ∧ F2).

As a stylistic variant, we can also write these formulas in the “arithmetical style”, namely,

(−F1), (F1 + F2), (F1 ∗ F2).

The reason for the arithmetical style is that we usually like to simplify our writing of formulas by dropping
parethesis and using implicit operators. In particular, we want to exploit (1) associativity of ∨ and ∧, (2)
introduce rules of precedence for operators, and (3) replace ∧ by juxtaposition of variables (i.e., write x0x1

instead of x0 ∧ x1. Most people are familiar with similar rules in arithmetical expressions, and can parse
such formulas easily. Hence the motivation the arithmetical style. For example: we intend to write x∨ y∨ z,
instead of the formally correct ((x∨ y)∨ z) (exploiting associativity). If we assume ∧ has higher precedence
than ∨, we can also write x ∨ y ∧ z instead of (x ∨ (y ∧ z)). But if we write this in arithmetic style, we get
the even more familiar and compact expressions, x + y ∗ z or x + yz. Instead of -x we also write x.

Satisfaction. We define satisfiability of a Boolean formula. An assignment for F is a function I : V →
{0, 1}. where V contains all the variables that occurs in the formula F (V may contain more than the
variables that occurs in F). We say I satisfies F as follows: (BASIS) If F is a variable x, then I satisfies
F iff I(x) = 1. (INDUCTION) If F = (−F1), then I satisfies F iff I does not satisfy F1. If F = (F1 + F2),
then I satisfies F iff I satisfies F1 or F2. If F = (F1 ∗ F2), then I satisfies F iff I satisfies F1 and F2.

We say F is satisfiable if there exist some I that satisfies F . Let SAT denote the set of all satisfiable
Boolean formulas.

EXAMPLE: the formula

F = (x + y + z)(x + y)(y + z)(z + x)(x + y + z) (1)

is not satisfiable, as the reader may verify.

Let us discuss the encoding of Boolean formulas. For any formula F , let #(F) denote its encoding.
We will use the the alphabet Σ = {x,0,1,+,*,(,)} and so #(F) ∈ Σ∗. A string w ∈ Σ∗ is said to be
well-formed if it is equal to #(F) for some F ; otherwise it is ill-formed.

For variable xi let #(xi) be the string that begins with x followed by the binary representation of i. E.g.,
#(x5) = x101.

Lemma 1 A simple Turing machine can decide if a string w ∈ Σ is a well-formed Boolean formula or not
in polynomial time.

Discussion: In general, when we introduce encodings, we are faced with the problem of well-formedness.
Let D be some mathematical domain, and

: D → Σ∗ (2)

be any encoding (i.e., a 1− 1) map. The inverse of this encoding

ρ : Σ∗ → D (3)

is called a representation of D. Note that this inverse is a partial 1− 1 function: ρ(w) can be undefined.
This corresponds to the case where w is ill-defined. In general, a representation of D is any function (3) that
is a partial 1− 1 function.

c© Chee-Keng Yap December 10, 2004

§4. Complexity Classes Lecture XXX Page 8

We have two computational problems associated to any ρ: (1) The parsing problem is to determine
if a string w is well-formed. (2) The equality problem is to determine if two well-formed strings w, w′

represents the same object in D.

Example: let D = N. The usual representation of N is the binary representation with Σ = {0, 1}. Parsing
is trivial because every binary string is well-formed. The equality problem is also easy because two binary
strings represents the same number if, after omitting any leading 0’s, they are the same string.

Let f is any operation f : Dn → D. Relative to the representation (3), an algorithm F implements f
if, for every well-formed w1, . . . , wn, the algorithm computes F (w1, . . . , wn) such that ρ(F (w1, . . . , wn)) =
f(ρ(w1), . . . , ρ(wn)). Thus, the usual high school algorithm implements the multiplication operation on N

relative to the standard binary representation.

Usually both the parsing and equality problems are polynomial time. But they become an issue for
mathematical domains that are “abstract”, whose their objects might be defined by some non-trivial equiva-
lence relation over more concrete ones. For instance, in graph theory, we normally identify two graphs up to
isomorphism, meaning a renaming of their vertices so that the have the same set of edges. Let G be the set
of these abstract graphs. The equality problem for any encoding of G is the graph isomorphism problem.
It is not known if there exists a representation ρ : G → Σ∗ such that both the parsing and equality problems
are polynomial time.

Exercises

Exercise 3.1: Give a representation of the mathematical domain N such that the parsing problem is easy
and the operation of multiplication can be implemented in linear time. How efficiently can you imple-
ment the operation of addition in this representation? ♦

Exercise 3.2: (i) Give an representation of G for which the parsing problem can be decided in polynomial
time.
(ii) Give the best algorithm you can for deciding if two well-formed strings represent the same graph
of G. HINT: do not expect to find a polynomial time algorithm. ♦

End Exercises

§4. Complexity Classes

We now introduce concepts of complexity. By a complexity function we mean a partial function

f : R→ R ∪ {∞}
that is defined on the natural numbers. We are usually interested in families of complexity functions. The
following are the main families:

O(log n), O(n), nO(1), O(1)n, 2nO(1)
.

We introduce (computational) resources: time and space will be our most important examples of
resources. Define the time of the computation path π to be one less then the number of configurations in

c© Chee-Keng Yap December 10, 2004

§4. Complexity Classes Lecture XXX Page 9

the sequence (which could be infinite). The space of π is the total number of cells that are scanned by some
work tape in some configuration in π. Note that the cells in the input tape are not counted.

For any complexity function f and TM M , we define what it means for M to accept in time f : this
means that for all inputs w of length n, if M accepts w then there is an accepting computation path using
time at most f(n). Note that if M does not accept w then we impose no requirement. Also, f is just an
upper bound on the computation length. We similarly define what it means for M to accept in space f .

Finally, a complexity class K is characterized by a choice of mode µ, family F of complexity functions
and a computational resource ρ. We write

K = χ(µ, ρ, F)

to denote the class of languages L such that there exists f ∈ F and a µ-TM that accepts L in ρ f(n). A
more standard way to represent these classes is to associate symbols with each of these parameters: D for
deterministic, N for nondeterministic, TIME for time and SPACE for space. Then χ(deterministic, time, F)
is usually denoted DTIME (F). If F = {f} then we write DTIME (f) instead of DTIME ({f}). Similarly,
the notationa NTIME (F),DSPACE (F) and NSPACE (F) are self-explanatory.

The Classes P and NP. Using the above conventions, the class

DTIME (nO(1))

comprises the languages accepted by deterministic TM running in polynomial time. This class is usually
denoted P . Again, NTIME (nO(1)) is similar to P except the mode is non-deterministic and this class is
usually denoted NP . Another important class is PSPACE := DSPACE(nO(1)). The following inclusions are
straightforward to show:

P ⊆ NP ⊆ PSPACE .

These classes are usually called Deterministic Polynomial Time, Nondeterministic Polynomial Time
and Polynomial Space, respectively. These are extremely important classes for several reasons: most
problems that we can solve in practice falls under these classes. Of course, if we agree that “tractable”
means deterministic polynomial time, then P is just the class of tractable problems.

Satisfiablity. We now verify the membership of some important prblems in the class NP .

Lemma 2 SAT ∈ NP.

Variation: A 3-conjunctive normal Form (3CNF) formula is a Boolean formula that is a conjunction
of disjuncts, where each disjunct has at most 3 literals. Our above example is a 3CNF formula. The 3SAT
problem is the restriction of SAT to inputs that are in 3CNF .

Hamiltonian Path Problem. A Hamiltonian circuit of a bigraph G is a simple closed path that visits
every vertex in G. Let HAM denote the set of (encodings) of G that has Hamiltonian circuits.

Lemma 3 HAM ∈ NP.

Exercises

c© Chee-Keng Yap December 10, 2004

§5. Reductions Lecture XXX Page 10

Exercise 4.1: Show that everything computed by a deterministic TM can be computed by a non-
deterministic TM in the same time and space ♦

Exercise 4.2: Another approach to NP is as follows: A verification machine M is a deterministic Turing
machine with two input tapes. An input is a pair (w, v) with w on the first input tape and v on the
second input tape. We say M verifies a word w ∈ Σ∗ if there exists a word v ∈ Σ∗ such that on input
(w, v), M eventually enters the accept state qa and halts. Say M verifies in time t(n) if for all inputs
w, if M verifies w then there exists a v such that M on (w, v) will halt within t(|w|) steps. Let V (M)
be the set of words that is verified by M . Show that L is in NP iff L is verified by a polynomial-time
verification machine. ♦

Exercise 4.3: Show that NP ⊆ PSPACE . ♦

End Exercises

§5. Reductions

Let T be a deterministic Turing machine acting as a transducer and computing the transformation
f : Σ∗ → Σ∗.

We say (L, Σ) is Karp-reducible (or, simply, reducible) to (L′, Σ′) if there exists a polynomial-time
computable transformation f such that for all x ∈ Σ∗,

x ∈ L iff f(x) ∈ L′.

We also write
L ≤P

m L′.

Lemma 4 (i) Transitivity If L ≤P
m L′ and L′ ≤P

m L′′ then L ≤P
m L′′.

(ii) Closure of P If L ≤P
m L′ and L′ ∈ P then L ∈ P .

Lemma 5
HAM ≤P

m SAT

Proof. Given G we construct a 3CNF formula f(G) that is satisfiable iff G ∈ HAM . Assume nodes of G
are {1, . . . , n}. A tour of G is a path T = (u1, . . . , un) such that (ui, ui+1) is an edge of G for i = 1, . . . , n
(where we assume un+1 = u1). Hence a tour represents a cycle of G. Introduce a variable xij where i range
over the nodes in G and j ranges from 1 to n. We want xij to stand for the proposition about some unknown
tour T of G:

Node i is the jth node in tour T .

c© Chee-Keng Yap December 10, 2004

§6. Reductions Lecture XXX Page 11

With the help of these elementary propositions xij , we write down the following propositions that must be
true of T :
(1) For each j, there is a unique i such that xij is true.
(2) For each i, there is a unique j such that xij is true.
(3) For each i 6= i′, if xij and xi′,j+1 are true then (i, i′) is an edge of G.

This is quite easy, so we just illustrate the proposition (1):
(n∨∨

i=1
xij

)
∧

(∧∧
1≤i<i′≤n

(xij ∨ xi′j)
)

.

It is clear that if G has a tour, then (1), (2) and (3) must be satisfiable. Conversely, if (1), (2) and (3) are
satisfiable, we can construct a tour of G. Q.E.D.

Exercises

Exercise 5.1: Prove the transitivity and closure properties of Karp-reducibility. ♦

Exercise 5.2: A bigraph G = (V, E) is said to be triangular if |V | = 3n for some n and V can be
partitioned into n disjoint subsets

V1] V2] · · ·] Vn

where each Vi has three vertices that form a triangle, i.e., if Vi = {u, v, w} then {(u, v), (v, w), (w, u)} ⊆
E. Let L be the set of encodings of triangular bigraphs. We want to show by a direct argument that
L is Karp-reducible to SAT . We will guide you through a sequence of subproblems to solve this: To
show that L is Karp-reducible to SAT , you need to construct a Boolean formula φ(G) such that G is
triangular iff φ(G) ∈ SAT . Moreover, this construction must be polynomial-time.
(i) If G = (V, E) and |V | is not divisible by 3 then there is no solution. What would you output as
φ(G) in this case?
(ii) Suppose |V | = 3m. So our goal is to form m disjoint triangles from the vertices of G. Introduce the
Boolean variable xij which corresponds to the proposition “Node i is in the jth Triangle”. Here, i ∈ V
and j = 1, . . . , m. Using these variables, you construct a Boolean formula F1(i) that is satisfiable iff i
is in at least one of the m triangles?
(iii) Similarly, construct F2(i) that is satisfiable iff i is in at most one triangle.
(iii) Construct a formula F3(j) that is satisfiable iff the jth triangle has at least three nodes.
(iv) Construct a formula F4(j) that is satisfiable iff the jth triangle has at most three nodes.
(v) Construct a formula F5(j) that is satisfiable iff each pair of vertices in the jth triangle has an edge
in the graph G. [NOTE: this is the first time you are actually using specific information about the
edges of G. You know G since it is in the input.]
(vi) Using the above formulas, describe the formula φ(G) that is satisfiable iff G is triangular. You
must prove this claimed property about φ(G).
(vii) Conclude that L is Karp-reducible to SAT . ♦

Exercise 5.3: We continue to consider the problem L of recognizing triangular graphs from the previous
exercise.
(i) Show by a direct argument that L is in NP .
(ii) Conclude that L is K-reducible to SAT .

Remark: In other words, we could short cut the explicit “reduction” of the previous exercise to come
to the same conclusion!. ♦

c© Chee-Keng Yap December 10, 2004

§6. Fundamental Questions and Completeness Lecture XXX Page 12

Exercise 5.4: Suppose instead of polynomial time, we restrict the transducer to run in logarithmic space
and linear time. Prove the transitivity and closure properties of such reducibility. ♦

End Exercises

§6. Fundamental Questions and Completeness

The most important open questions of complexity theory are all of the form: is K ⊆ K ′ where K, K ′

are complexity classes. The most famous of such questions is the NP ⊆ P question. A fundamental tool to
study such inclusion questions is the theory of completeness.

Let K be a class of languages. A language L is K-hard if for all L′ ∈ K, L′ ≤P
m L. We say L is

K-complete if L is K-hard and L ∈ K. Here we prove some simple lemmas for the case K = NP .

Lemma 6 Let L0 be NP-complete. If L ∈ P then P = NP.

Thus, we transform inclusion questions about a class into questions about a single language in the class!
But are there any NP-complete languages?

Theorem 7 (Cook’s Theorem) SAT is NP-complete.

Once we get one complete language, we can show more by the following technique:

Lemma 8 If L ∈ NP and L′ ≤P
m L then L′ is NP-complete implies L is NP-complete.

Lemma 9 3SAT in NP-complete.

Proof. By the previous lemma, we only have to reduce SAT to 3SAT . Q.E.D.

Lemma 10 HAM is NP-complete.

Proof. We will reduce 3SAT to HAM . Let F be a 3CNF formula. We will construct a graph G = GF such
that F is satisfiable iff GF has a Hamiltonian circuit. We need two types of “gadgets”:

Figure 3(a) shows the choice gadget and figure 3(b) shows the XOR (exclusive-or) gadget. These gadgets
have entry nodes (indicated by large black circles and labeled “in” or “out”, respectively). We will put
several of these gadgets together to form GF . There will be additional edges added in GF but these edges
will only connect to each gadgets via the entry nodes. Let us note some properties of these gadgets.

c© Chee-Keng Yap December 10, 2004

§6. Fundamental Questions and Completeness Lecture XXX Page 13

choice gadget exclusive−or gadget traversing the exclusive−or gadget schematic

(a) (b) (c) (d)

in1

out2

in2 in1 in2

out1 out2

in1 in2

out1 out2

b

a

out1

Figure 3: Gadgets for reducing SAT to HAM

• The choice gadget is strictly speaking not a graph — it is a multigraph because it has two parallel
edges (i.e., edges sharing the same pair of endpoints). But this will not be a problem because in the
course of putting together these gadgets, we will be inserting vertices into one of the parallel edge. Let
us call the two parallel edges the choice paths (in a Hamiltonian cycle of the constructed graph, we
will have to choose one of these two paths). Also, the two non-entry vertices (a, b in figure 3(a)) of the
choice gadget are called choice vertices.

• The XOR gadget has 4 vertices of degree 2 each. These vertices can only be visited in a Hamiltonian
cycle that enters through one of these entry nodes. But it is not hard to see that if the Hamiltonian cycle
enters the gadget through the entry node labeled in1 then it must exit via the node out1, as illustrated
in figure 3(c). Otherwise, the some vertex of degree 2 will not be visited. We call this a traversal of
the XOR gadget. Of course, the symmetrical traversal holds with respect to the entry nodes in2, out2.
These two traversals are the only ways to visit all the 4 vertices of degree 2 in a Hamiltonian circuit. In
figure 3(d), we have a schematic representation of the XOR gadget: intuitively, this schematic suggests
that in1 and out1 are connected by an “edge”, and so are in2 and out2. Moreover, only one of these
two “edges” can be traversed (hence they are linked by an exclusive-or ⊕ symbol).

It is best to show how we form GF by an example. Let F be the formula

(x + y + z)(x + y + z)(x + y + z). (4)

To form G, we use one choice gadget to “simulate” each variable in F and three XOR gadgets to “simulate”
each clause of F . For the choice gadget that simulates a variable xi (i = 1, 2, 3), its two choice paths are
labeled xi and xi, respectively. The choice gadgets are linked together sequentially in an arbitrary linear
order as shown in figure 4(a). Call this the “choice chain”. Let s0, t0 be the first and last node in the choice
chain.

Consider the clause x + y + z. The three XOR gadgets for simulating this clause corresponds to the
literals x, y, z. The six in1 or out1 entry nodes in these gadgets are identified in pairs so that they form
a “triangle” of nodes – see figure 4(b). The in2, out2 entry nodes of XOR gadget are “spliced into” the
choice paths that is labeled by the corresponding literal in the choice chain, as in figure 4(c). More precisely,
each XOR gadget has a path of length 5 connecting in2 and out2: this path is now made a subpath of the
corresponding choice path. We do this for each clause. In our example, the literal y occurs in two clauses.
Hence two paths of length 5 will be spliced into the choice path labeled y so that this choice path has length
13 in the final graph G. See figure 4(d).

c© Chee-Keng Yap December 10, 2004

§6. Fundamental Questions and Completeness Lecture XXX Page 14

(c)(b)(a)

x x

y y

z

x x

y y

z z
z

triangle for (x + y + z)choice chain

s0

t0

z

Splicing the triangle into the chain

y

details of splicing

(d)

x

Figure 4: Graph corresponding to F

Finally, we add the edges of the complete graph K defined on the following set of vertices: (i) entry nodes
in triangles (there are three such nodes per triangle), and (ii) the first and last entry node in each choice
path (there are four such nodes per choice gadget). This completes our description of the graph GF .

F is satisfiable implies GF ∈ HAM : Suppose F is satisfiable by an assignment I to the variables. We
show how to construct a Hamiltonian cycle: starting from s0, we traverse each choice gadget such that for
each variable xi, if I(xi) = 1 then we take the choice path labeled xi, and otherwise we take the choice path
labeled xi. Now, as we traverse a choice path, we are obliged to traverse each XOR gadget that is spliced
into that path, in the canonical way illustrated in figure 3(c). Since I satisfies F , this means that in every
triangle, at least one of the three XOR gadgets is traversed. This proceeds until we reach node t0. At this
point, two kinds of entry nodes are still not yet visited:

(I) Entry nodes in choice paths that are not taken,

c© Chee-Keng Yap December 10, 2004

§7. Postscript Lecture XXX Page 15

(II) Entry nodes that forms the corners of triangles (such entry nodes have subscript 1).

We now use the edges of the complete graph K: from t0, we start to visit entry nodes of type (I). When
this is done, we start to visit the entry nodes of type (II). But now, we also take the opportunity to traverse
any XOR gadget that is not yet traversed. Note that since I is a satisfying assignment, there are at most
two XOR gadgets in a triangle that is not yet traversed. It is easy to see how to traverse the 0, 1 or 2 XOR
gadgets in each triangle, in addition to visiting the 3 entry nodes per triangle. At the end of this process, we
use an edge of K to take us back to the starting vertex s0. This completes our description of a Hamiltonion
circuit.

GF ∈ HAM implies F is satisfiable: Suppose H is a Hamiltonion cycle. First, we claim that H must
traverse exactly one of choice paths for each choice gadget: if it traverse neither of the choice paths, then
there is no way the two choice vertices of the gadget could be visited by H . If it traverse both choice paths,
then some entry node common to two choice gadgets will not be visited. From this claim, we conclude that
H defines an assignment I = IH corresponding to the choice paths that it traverses. We next claim that
IH must be a satisfying assignment. This means that each triangle must have at least one XOR gadget
traversed from the choice paths. If not, we could not traverse the three XOR gadgets using the entry nodes
in each triangle. This concludes our proof.

Q.E.D.

Exercises

Exercise 6.1: Complete the reduction of SAT to HAM . Show in particular: if F is satisfiable, then the
graph f(F) has a Hamiltonion circuit, and conversely. ♦

End Exercises

§7. Postcript

The significance of P ,NP is that P can be identified with the “tractable problems” and NP contains
many important problems of interest for which we do not know how to solve in polynomial time. Almost all
of these problems have been shown to be NP-complete. Hence if any of these is in P then all of them are.

The list has grown to hundreds of problems in all areas of computational literature. Thus it serves to
unify diverse areas.

It also serves as a guide to what problems can be put into P . If your problem of interest looks similar
to an NP-complete problem, you should be careful.

This forces us to consider other “computational modes” such as randomization, parallelization, or even
quantum modes. Another approach is to relax the optimization problem to epsilon-approximation problems.
Another direction is distinguish among the input complexity parameters of problem, and to improve on the
critical exponential parameter. For instance, in many problems, there are two input parameters say k and n
and the exponential behavior is in k alone. An example is the problem of deciding if a graph has chromatic

c© Chee-Keng Yap December 10, 2004

§7. Postscript Lecture XXX Page 16

number at most k. If the graph has n vertices, then the algorithm is exponential in k but polynomial in k,
e.g., O(2kn2). If we can improve the algorithm to O(2αknO(1)) for some α < 1, then asymptotically, we have
a faster algorithm.

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San Francisco, 1979.

[2] C. K. Yap. Introduction to the theory of complexity classes, 1987. Book Manuscript. Preliminary version
(on ftp since 1990),
URL ftp://cs.nyu.edu/pub/local/yap/complexity-bk.

c© Chee-Keng Yap December 10, 2004

