
§1. Elements of Hashing Lecture XI Page 1

Lecture XI

HASHING

Hashing is a practical technique to implement a dictionary. Its space usage is linear O(n) which is
optimal. Under some probabilistic assumptions, its search times can also be shown to be optimal, Θ(1). We
look at some extensions of the basic hashing framework: including universal hashing, perfect hashing and
extendible hashing. Another important special topic is the problem of optimal static hashing.

Hash is one of the oldest and most widely used data structures in computer science. The first paper1

on hashing was by Dumeyin in 1956. Peterson [9] is another early major paper. The survey of Robert
Morris (1968) mark the first time that the term “hashing” appeared in publication; this paper also introduce
methods beyond linear probing. Knuth [7] surveys the early history and the basic techniques in hashing.

Q: What is the most important data structure technique in your research in Yahoo?
A: Hashing, hashing, hashing

— Udi Manber, Chief Scientist at Yahoo.com
(responding to a question in SODA Conference 2001)

§1. Elements of Hashing

Recall that a dictionary (§III.2) is an abstract data type that stores a set of items under three basic
operations: lookUp, insert and delete. Each item is a pair (Key,Data). For simplicity, assume that
distinct items have identical keys.

• insert(Item): returns a pointer to the location of the inserted item. Return nil if insertion fails.

• lookUp(Key): returns a pointer to the location of an item with this key. If no such item exists, return
nil.

• delete(Pointer): removes item stored at the location. This Pointer may be obtained from a prior
lookUp.

There are two important special cases: if a dictionary supports insertions and lookups, but not deletions,
we call it a semi-dynamic dictionary. If it supports only lookups, but not insertions or deletions, it
is called a static dictionary. For instance, conventional books (such as lexicons, encyclopaedias, phone
directories) are static dictionaries for ordinary users. We might view a personal address book as a semi-
dynamic dictionary.

The following notations will be used in this lecture. Let U be the universe of keys. U is sometimes
called key space. At any moment t ≥ 0, the dictionary will contain some subset Kt ⊆ U of keys. Let
nt = |Kt|. Also, let u = |U |. We usually omit the subscript t and simply write K and n.

(H1) The first premise of hashing is
n = |K| � |U | = u. (1)

For example, let U = [0..9]9 represent the set of all possible social security numbers in the USA. If a personnel
database uses social security numbers as keys then the number n of actual keys is much less than u = 109.
Thus the first premise of hashing is satisfied.

1Arnold I. Dumeyin, Computers and Automation, 5(12), Dec 1956.

c© Chee-Keng Yap December 8, 2004

§1. Elements of Hashing Lecture XI Page 2

Hashing compared to other solutions to the Dictionary Problem. A good way to understand
hashing is to compare its performance to the three simple ways of implementing a dictionary: (a) as a linked
list, (b) as an array, and (c) as a binary search tree. Using linked lists, we use Θ(n) space to store to store
the keys in K, but the time to lookup a key is Θ(n) in the worst or expected case. The space is optimal but
the time is considered too slow for moderate n. Using an array, we can set up a table of size u; assuming
U = {0, 1, . . . , u − 1}, we simply store the data associated with key k in the kth entry of the table. The
space is Θ(u) and the time for each dictionary operation is O(1). This time is optimal but the space usage
is suboptimal. Under assumption (H1), it is usually not practical. Finally, if we use binary search trees, we
can achieve O(n) space with O(log n) time for all operations. In many applications, such a performacne is
considired good.

The hashing approach to dictionaries can be regarded as a modification of the simple array solution. The
goal is to implement dictionaries in which space and time are both optimal, although the time is optimal only
in an expected sense. Hashing is usually easy to implement, and it is efficient when correctly implemented.
Every practitioner ought have some hashing knowledge under his or her belt.

The basic hashing scheme is as follows: it uses an array called the hash table T [0..m − 1]. We note
that there is no obvious relationship between m and n: their relationship depends on the particular hashing
technique to be used. E.g., it is not always true that m ≥ n although in most situations, m = Θ(n). Each
entry in this table is called a slot (or bucket). The key of an item is used to compute an index into the hash
table. So another key element of hashing is the use of a hash function

h : U → Zm

from U to array indices. Recall that Zm = {0, 1, . . . , m− 1}. We say a key k is hashed to the hash value
h(k).

(H2) The second premise of hashing is that the hash value of any key can be evaluated quickly. In
complexity analysis, we usually assume this takes O(1) time.

Under the assumption (H1), the map h will be many-one in a very “strong” sense. Two keys x, y ∈ U
are in collision if x 6= y but h(x) = h(y). If no pairs in K are in collision, we could of course simply store
k ∈ K in slot T [h(k)]. But in general, some collision resolution scheme must be deployed. Different
collision resolution schemes give rise to different flavors of hashing.

Since we do not want to make any assumptions about the set K to be stored, the best we can hope for
is that h distributes the set K evenly among the slots. That is, for all i, j ∈ Zm, we want the size of the sets
h−1(i) ∩K and h−1(j) ∩K to be approximately equal. We say h is K-perfect if∣∣(|h−1(i) ∩K| − |h−1(j) ∩K|)∣∣ ≤ 1. (2)

In case K = U , we simply2 say h is perfect. Note that it is easy to have a perfect hash function: just hash
each x ∈ U to a unique slot of the hash table. But the space usage would be Θ(u), which is infeasible under
assumption (H1).

Let
[U → Zm]

denote the set of all functions from U to Zm. We say a set H ⊆ [U → Zm] of functions is n-perfect if for
every K ⊆ U of size n, there is an h ∈ H that is K-perfect.

Example: An everyday illustration of hashing is your (non-electronic) personal address book.
Each item is a pair of the form (name, address&data). The hash function applied to a name returns the

2This generalizes the definition sometimes used in the literature, where h is said to be “K-perfect” if |h−1(j) ∩K| ≤ 1, i.e.,
there are no collisions for keys in K.

c© Chee-Keng Yap December 8, 2004

§1. Elements of Hashing Lecture XI Page 3

first letter in name. E.g., if name=”yap” then h(”yap”)=”y”. The collision resolution technique amounts
to a linear search of the page allocated to that letter. Deletion is done by marking an item as deleted. If a
page allocated to a letter is filled up, additional entries may be placed in an overflow area.

Example: A standard application of hashing in Computer Science is to looking up a compiler
symbol table. Here, for each symbol in a program, the compiler needs to lookup the associated proce-
dure. These symbols are either keywords in the programming language or user defined names of variables,
procedures, etc.

To summarize: in hashing, the fundamental decision of the algorithm designer is to choose a hash
function h : U → Zm. Here, U is normally given in advance but m is a design decision that is based on other
parameters such as n, the maximum number of items that will be in the dictionary at any given moment.
The second major decision is the choice of a collision resolution strategy.

Practical Construction of Hash Functions. A common response to the construction of hash functions is
to “do something really complicated and mysterious”. E.g., h(x) = b√xc3−x2+17(mod m). Unfortunately,
such schemes inevitably fail to perform as well as3 two simple and effective methods. Following Knuth [7],
we call these the division and multiplication methods, respectively.

A) Division method: The simplest is to treat a key k as a non-negative integer, and to define

h(k) = k modm.

So choosing a hash function amounts to selecting m. Usually, choosing m to be a prime number is a good
idea. If we have some target value for m (say, m ∼ 216 = 65536), then we usually choose m to be a prime
close to this target (in this case, m = 65521 or m = 65537). There is an obvious pitfall to avoid when
choosing m: assuming k a d-ary integer, then it is a bad idea for m to be a power of k. This is because if
m = k` then h(k) is simply the low order ` digits of k. We usually like h to depend on all the digits of k.
For example, if k is a sequence of ASCII characters then k can be viewed as a d-ary integer where d = 128.
Since d is a power of 2 here, it is also a bad idea for m to be a power of 2.

B) Multiplication method. Let 0 < α be an irrational number. Then define

h(k) = bm((k · α)mod 1)c . (3)

Note that in this formula, substituting α− k for α (for any integer k) does not affect the hash function. An
empirically a good choice is α = φ, the golden ratio. Numerically,

φ = (1 +
√

5)/2 = 1.61803 39887 49894 84820

Remark that since φ > 1, we might as well use α = φ− 1 = 0.61803 . . . in our calculations. With this choice,
and for m = 41, we have

h(1) = b25.339c = 25, h(2) = b9.678c = 9, h(3) = b35.018c = 35.

The choice α = φ has an interesting theoretical basis as well, related to a remarkable theorem of Vera Turán
Sós [7, p. 511] which we quote:

Theorem 1 (Three Distance Theorem) Let α be an irrational number. Consider the n+1 subsegments
formed by placing the n numbers

{α}, {2α}, . . . , {nα} (4)

3A famous quote attributed to von Neumann says that anyone who consider anything else is in a state of sin.

c© Chee-Keng Yap December 8, 2004

§1. Elements of Hashing Lecture XI Page 4

in the unit interval [0, 1]. Here, {x} = x − bxc denotes the fractional part of a real number x. Then there
are at most three different lengths among these n + 1 subsegments. Furthermore, the next point {(n + 1)α}
lies in one of the largest subsegment.

It is evident that if {α} is very close to 0 or 1, then the ratio of the lengths of the largest to the smallest
subsegments will be large. Hence it is a good idea to choose α so that {α} is closer to 1/2 than to 0 or 1. It
turns out that the choice α = φ = 1.61803 . . . leads to the most evenly distributed subsegment lengths. The
proof of this theorem uses continued fraction.

Let us discuss how to implement (3) in practice. Suppose we are using machine arithmetic of a computer.
Most modern machines uses computer words with w bits where w = 32, 64, 128, etc. If we are designing the
hash function, we have freedom to choose m, the size of the hash table. To exploit machine arithmetic, let
us choose m so that m = 2k for some 1 < m ≤ w. We may freely choose α which we may assume satisfies
0 < α < 1. This determines an integer 0 < A < 2w such A/2w is the binary fraction that is the closest w-bit
approximation to α. CLAIM: h(k) is equal to 2k−wAk. We leave the proof for an exercise.

Here are some values of A when φ is the Golden Ratio: when w = 32, A = 2, 654, 435, 769.

Other methods. A very common hashing situation is where U is a variable length string (we do not like
to place any á priori bound on the length of the string. Assuming each character is byte-size, we may take
U = Z

∗
256 (an infinite key space). The exercises give a practical way to generate hash keys for this situation.

In general, we can view each character as the coefficients of a polynomial P (X) and we can evaluate this
polynomial at some X = a to give a hash code.

Exercises

Exercise 1.1: (a) Compute the sequence {α}, {2α}, . . . , {nα} for n = 10 and α = φ (= the golden ratio
(1 +

√
5)/2 = 1.618 . . .). You may compute to just 4 decimal positions using any means you like.

(b) Let
`0 > `1 > `2 > · · ·

be the new lengths of subsegments, in order of their appearance as we insert the points {nφ} (for
n = 0, 1, 2 . . .) into the unit interval. For instance, `0 = 1, `1 = 0.61803, `2 = 0.38197. Compute `i for
i = 0, . . . , 10. HINT: You have to insert over 50 points to get 10 distinct lengths, so you may want to
consider writing a program to do this.
(c) Using the multiplication method with α = φ, please insert the following set of 16 keys into a table
of size m = 10. Treat the keys as integers by treating the letters A, B, ..., Z as 1, 2, . . . , 26, with the
rightmost position having a value of 1, the next position with value 26, the third with value 262 = 676,
etc. Thus AND represents the integer (1 × 262) + (14× 26) + (4× 1) = 1044. This is sometimes called
the 26-adic notation. To resolve collision, use separate chaining.

AND, ARE, AS, AT, BE, BOY, BUT, BY, FOR, HAD,
HER, HIS, HIM, IN, IS, IT

We just want you to display the results of your final hashing data structure.
(d) Use the division method on the same set of keys as (c), but with m = 17. ♦

Exercise 1.2: Let K be the following set of 40 keys

c© Chee-Keng Yap December 8, 2004

§2. Elements of Hashing Lecture XI Page 5

A, ABOUT, AN, AND, ARE, AS, AT, BE, BOY, BUT,
BY, FOR, FROM, HAD, HAVE, HE, HER, HIS, HIM, I,
IN, IS, IT, NOT, OF, ON, OR, SHE, THAT, THE,

THEY, THIS, TO, WAS, WHAT, WHERE, WHICH, WHY, WITH, YOU

Experimentally find some simple hash functions to hash K into T [0..m−1], where m is chosen between
50 and 60. Your goal is to minimize the maximum size of a bucket (a bucket is the set of keys that
are hashed into one slot). (You need not be exhaustive – but report on what you tried before picking
your best choice.)
(a) Use a division method.
(b) Use the multiplication method with α = φ.
(c) Invent some other hashing rule not covered by the multiplication or division methods. ♦

Exercise 1.3: (Pearson [8]) A common hashing situation is the following: given a fixed alphabet V = Z
n
2 ,

we want to hash from U = V ∗ to V . In practice, we may regard U = ∪s
i=0V

i for some large value of s.
Typically, n = 8 (so V is a byte-size alphabet). Let T : V → V be stored as an array. Then we have a
hash function hT computed by the following:

Hash(w):
Input: w = w1w2 · · ·wn ∈ Σ∗.
Output: hash value in h(w) ∈ Σ.
1. v ← 0.
2. for i← 1 to n do
3. v ← T [v ⊕ wi].
4. return(v).

In line 3, v ⊕ wi is viewed as a bitwise exclusive-or operation.
(a) Show that if d(w, w′) = 1 then h(w) 6= h(w′). Here, d(w, w′) is the Hamming distance (the number
of symbols in w, w′ that differ).
(b) Use fact (a) to give a probe sequence h(w, i) (where i = 1, 2, . . . , N) such that
(h(w, 1), h(w, 2), . . . , h(w, N)) will cycle through all values of Σ.
(c) Suppose T [i] = i for all i. What does this hash function compute?
(d) Suppose T is a random permutation of V . Show that hT is not not universal. HINT: consider the
case n = 1 and s = 3. There are two choices for T . Find x 6= y such that Pr{hT (x) = hT (y)} > 1/2.

♦

Exercise 1.4: Here is an alternative and common solution in the hash function for the previous question.

Hash(w):
Input: w = w1w2 · · ·wn ∈ Σ∗.
Output: hash value in h(w) ∈ Σ.

v ← 0.
for i← 1 to n do

v ← (v + wi)modN .
return(v).

Discuss the relative merits of the two methods (such as the efficiency of evaluating the hash function).
♦

End Exercises

c© Chee-Keng Yap December 8, 2004

§2. Collision Resolution Lecture XI Page 6

§2. Collision Resolution

The two basic methods of resolving collisions are called chaining and open addressing. 4

Chaining Schemes. In chaining, the hash table T [0..m− 1] is only the initial entry into auxilliary struc-
tures which are usually linked lists (“chains”). Thre are two variants of chaining.

The simplest variant is called separate chaining. Here each table slot T [i] is used as the header of a
linked list of items. The linked list is called a chain or bucket. An inserted item with key k will be put
at the head of the chain of T [h(k)]. Note that this scheme assumes some dynamic memory management
(perhaps provided by the operating system), so that nodes in the linked list can be allocated and freed. The
associated algorithms in this case are the obvious ones from list processing.

See Figure 1(a) for an example of separate chaining. The keys are inserted into the table of size 8 in the
following order: ABE, BEV, ART, EARL, CATE. The hashing function h(x) simply takes the first letter of
each name and maps A to 1, B to 2, etc.

ABE ART1

2

3

4

5

6

7

0
1

2

3

4

5

6

7

0

ABE

BEV

EARL

ART

CATE

BEV

CATE

EARL

Empty

Empty

Empty

(a) (b)

Figure 1: Chaining: (a) separate (b) coalesced

A more sophisticated variant is called coalesced chaining. Here each slot T [i] is potentially the node of
some chain, and all nodes are allocated from the hash table T . In this way, we avoid the dynamic memory
management found in separate chaining. More precisely, we assume that T [i] has three fields:

1. T [i].Key which stores a key (element of U).

2. T [i].next which stores either an element of Zm or −1 or −2 or −3. Let −1,−2,−3 denote EMPTY,
OCCUPIED and DELETED, respectively.

3. T [i].Data which stores associated data. This is clearly important in practice, but its use is application
dependent. As usual, we ignore this field in our discussions of the algorithms; for instance, we do not
display this field in Figure 1(b)).

We use the next field to form the chains: If T [i].next ∈ Zm, then it is a pointer to the next node in a chain;
otherwise, T [i].next indicate one of three possible states: EMPTY, OCCUPIED and DELETED. It takes a

4The terms closed hashing and open hashing are sometimes used instead of “open addressing” and “chaining”. We avoid
this terminology here, as the juxtaposition of “open” and “close” for the same concept is confusing.

c© Chee-Keng Yap December 8, 2004

§2. Collision Resolution Lecture XI Page 7

moment of reflection to see that all three states are needed. In Figure 1, the next field, when it is not used
as pointer, are coded appropriately.

We also maintain a global variable n which is the number of keys currently in the hash table. Initially,
n = 0 and T [i].next is EMPTY for all i.

See Figure 1(b) for a typical representation of such a data structure, and the result of inserting the
same sequence of 5 names into an empty coalesced structure. Note the “coalescing” of the A-chain with the
C-chain: the A-chain is (ABE, ART, CATE) while the C-chain is (ART, CATE).

To lookup a key k, we first check T [h(k)].Key = k. In general, suppose we have just checked T [i].Key = k
for some index i. If this check is positive, we have found k and return i with success. If not, and T [i].next =
−1, we return a failure value. Otherwise, we let i = T [i].next and continue the search.

To insert a key k, we first check to see if the n number of items in the table has reached the maximum
value m. If so, we return a failure. Otherwise, we perform a lookup on k as before. If k is found, we also
return a failure. If not, we must end with a slot T [i] where T [i].next = −1. In this case, we continue
searching from i for the first j that does not store any keys (i.e., T [j].next is either EMPTY or DELETED.
This is done sequentially: j = i + 1, i + 2, . . . (where the index arithmetic is modulo m). We are bound to
find such a j. Then we set T [i].next = j, T [j].next = −1, T [j].Key = k and increment n. We may return
with success.

What about deletion? We look for the slot i such that T [i].Key = k. If found, we set T [i].Key =
DELETED. Otherwise deletion failed. Note the importance of distinguishing DELETED entries from
EMPTY ones. When an empty slot is first used, it becomes “occupied”. It remains occupied until
DELETED. Deleted slots can become occupied again, but they never become EMPTY. Another remark
is that this method is called coalesced chaining for a good reason: chains in the separate chaining method
can be combined into one chain using this scheme.

Correctness and Coalesced List Graphs. To understand the coalesced hashing algorithms, it is useful
to look more closely at the underlying graph structures. They are just digraphs in which every node has
outdegree at most 1; we may call them coalesced list graphs. Nodes with outdegree 0 are called sinks.
We can also have cycles in such a graph. See Figure 2 for such a graph. The components of a coalesced
list are just the set of nodes in the connected components in the corresponding undirected graph. There are
two kinds of components: those with a unique sink and those with a unique cycle. Attached to each sink or
cycle is a collection of trees. Can coalesced hashing lead to cycles?

Open Addressing Schemes. Like coalesced chaining, open addressing schemes store all keys in the table
T itself. However, we no longer explicitly store pointers (the next field in coalesced chaining). Instead, for
key k, we need to generate an infinite sequence of hash table addresses:

h(k, 0), h(k, 1), h(k, 2), (5)

This is called the probe sequence for k, and it specifies that after the ith unsuccessful probe, we next
search in slot h(k, i). In practice, the sequence (5) is cyclic: for some 1 ≤ m′ ≤ m, h(k, i) = h(k, i + m′)
for all i. Ideally, we want m′ = m and the sequence (h(k, 0), h(k, 1), . . . , h(k, m− 1)) to be a permutation of
Zm. This ensures that we will find an empty slot if any exists. In open addressing, as in coalesced chaining,
we need to classify slots as EMPTY, OCCUPIED or DELETED.

c© Chee-Keng Yap December 8, 2004

§2. Collision Resolution Lecture XI Page 8

Figure 2: Coalesced List Graphs

There are three basic methods for producing a probe sequence:

Linear Probing This is the simplest:

h(k, i) = h1(k) + i (modm)

where h1 is the usual hash function. One advantage (besides simplicity) is that this probe sequence
will surely find an empty slot if there is one. The problem with this method is primary clustering,
not unlike the phenomenon (see Exercise) of a cluster of empty buses, arriving in succession. That
is, a maximally contiguous sequence of occupied slots is called a cluster. A long cluster will be bad
for insertions since it means we may have have to traverse its length before we can insert a new key.
Indeed, assuming a uniform probability of hashing to any slot, the probability of hitting a particular
cluster is proportional to its length. Worse, insertion grows the length of a cluster – it grows by at least
one but may grow by more when two adjacent clusters are joined. Thus, larger clusters has a higher
probability of growing. Similarly, a maximal sequence of deleted and occupied slots forms a cluster for
lookups.

Quadratic Probing Here, the ith probe involves the slot

h(k, i) = h1(k) + a · i + b · i2 (modm)

for some integer constants a, b ≥ 0. For instance, a = 0, b = 1. We avoid primary clustering but there
is a possibility of missing available slots in our probe sequence unless we take special care in our design
of the probe sequence.

Double Hashing Here, we use another auxilliary (ordinary) hash function h2(k).

h(k, i) = h1(k) + i · h2(k) (modm).

To ensure that the probe sequence will visit every slot, it is sufficient to ensure that h2(k) is relatively
prime to m. For example, this is true if m is prime and h2(k) is never a multiple of m. Other variants
of double hashing can be imagined.

Note that both quadratic and double hashing are generalizations of linear probing.

Exercises

c© Chee-Keng Yap December 8, 2004

§3. Simplified Analysis of Hashing Lecture XI Page 9

Exercise 2.1: In the separate chaining method, we have a choice about how to view the slot T [i]. Assume
that each node in the chain has the form (item, next) where next is a pointer to the next node.
(i) The slot T [i] can simply be the first node in the chain (and hence stores an item).
(ii) An alternative is for T [i] to only store a pointer to the first node in the chain. Discuss the pros
and cons of the two choices. Assume that an item requires k words of storage and a pointer requires `
word of storage. Your discussion may make use of the parameters k, ` and the load factor α. ♦

Exercise 2.2: T/F (Justify in either case)
(a) In coalesced chaining, deleted slots can only be reoccupied by values with with a fixed hash value.
(b) Searching a key in coalesced chaining is never slower than the corresponding search in linear hashing
(assume h(x, i) = h(x) + i for linear hashing probe sequence)
(c) In coalesced chaining, we may be unable to insert a new key even though the current number of
keys is less than m (= number of slots). ♦

Exercise 2.3: In quadratic hashing, we can avoid multiplications when computing successive addresses in
the probe sequence. Show how to do this, i.e., from h(k, i), show how to derive h(k, i+1) by additions
alone. ♦

Exercise 2.4: Show that in double hashing, if h2(k) is relative prime to m, then all slots will eventually be
probed. ♦

Exercise 2.5: Buses start out at the beginning of a day by being evenly spaced out, say distance L apart.
Let us assume that the bus route is a loop and the distance between bus i and bus i+1 is gi ≥ 0 (the ith
gap). So initially gi = L. Each time a bus picks up passengers, it is more likely that the immediately
following bus will have fewer or no passengers to pick up. The bus behind will therefore close up upon
the first bus, forming a cluster. Moreover, the larger a cluster, the more likely the cluster will grow.
In this way, the bus clustering phenomenon has similarities to the primary clustering phenomenon of
hashing.
(i) Do a simulation or analytical study of the evolution of the gaps gi over time, assuming that the
probability of passengers joining bus i is proportional to gi, and this contributes proportionally to the
slow down of bus i (so that gi−1 will decrease and gi+1 will increase). [You need not handle the case
of the gi’s going negative.]
(ii) Let us say that two consecutive buses belong to the same cluster if their distance is < L/2. The size
of a cluster is the distance between the leading bus and the last bus in its cluster, and the intercluster
gap is defined as before. Unlike part (i), we need not worry about a bus over taking another bus since
they belong to the same cluster. So we may interpret gi as the ith gap, but as the gap in front of the
ith bus. ♦

End Exercises

§3. Simplified Analysis of Hashing

Let us analyze the complexity of hashing operations. Notice that delete is Θ(1) in these methods and
so the interest is in lookUp and insert. However, it is easy to see that an insert is preceded by a lookUp,
and only if this lookUp is unsuccessful can we then insert the new item. The actual insertion takes Θ(1)
time. Hence it suffices to analyze lookUps. In our analysis, the load factor defined as

α :=n/m

c© Chee-Keng Yap December 8, 2004

§3. Simplified Analysis of Hashing Lecture XI Page 10

will be critical. Note that α will be ≤ 1 for open addressing and coalesced chaining but it is unrestricted for
separate chaining.

We make several simplifying assumptions:

• Random Key Assumption (RKA): it is assumed that every key in U is equally likely to be used in
a lookup or an insertion. We assume that for deletion, every key in the current dictionany is equally
likely to be deleted.

• Perfect Hashing Assumption (PHA): This says our hash function is perfect as defined in equa-
tion (2). Combined with (RKA), it means each lookup key k is equally likely to hash to any of the m
slots. Intuitively, this is the best possible behavior we can expect from our hash function and so it is
important to understand what we can expect under this condition.

• Uniform Hashing Asumption (UHA): this is assumption about the probe sequence (5) in open
addressing. We assume that the probe sequence (5) is cyclic and generates a permutation of Zm.
Moreover, a random key k in U is equally likely to generate any of the m! permutations of Zm.

Theorem 2 (RKA+PHA) Using separate chaining for collision resolution, the average time for a lookUp
is O(1 + α).

Proof. In the worst case, a lookUp of a key k needs to traverse the entire length L(k) of its chain. By (RKA),
the expected cost is O(1 +L) where L is the average of L(k) over all k ∈ U . The assumption (PHA) implies
that L is at most n/m = α. To see this:

L =
1
u

u∑
k=1

L(k)

=
1
u

m∑
j=1


 ∑

k∈U :h(k)=j

L(k)




≤ 1
u

m∑
j=1

(
1 +

u

m

)
Lj (by (PHA) and rewriting L(k) as Lh(k))

=
(

1
u

+
1
m

) m∑
j=1

Lj

=
(n

u
+

n

m

)
< 2α.

Q.E.D.

In order to ensure that this average time isO(1), we try to keep the load factor bounded in an application.

Let us analyze the average number of probes in a lookUp under open hashing. Recall that in this setting,
when we lookup a key k, we compute a sequence of probes into h(k, 1), h(k, 2), . . . until we find the key we
are looking for, or we find a slot that is unoccupied. These two cases corresponds to a successful and an
unsuccessful lookup, respectively. The average time for a lookup is just the number of probes made before
we determine either success or otherwise. It is also easy to see that the average number of probes in an
unsuccessful lookup will serve as an upper bound for the average number probes in a successful lookup.

c© Chee-Keng Yap December 8, 2004

§4. Universal Hash Sets Lecture XI Page 11

Theorem 3 (UHA) Using open addressing to resolve collisons, the average number of probes for an unsuc-
cessful lookUp is less than

1
1− α

.

Proof. Clearly the expected number of probes is

T = 1 +
∞∑

i=1

ipi

where pi is the probability of making exact i probes into occupied slots. (The term “1+” in this expression
accounts for the final probe into an unoccupied slot, at which point the lookUp procedure terminates.) But
if qi is the probability of making at least i probes into occupied slots, then we see that

T = 1 +
∞∑

i=1

i(qi − qi+1) = 1 +
∞∑

i=1

qi.

Note that q1 = n/m = α < 1. The assumption (UHA) implies that q2 = n(n−1)
m(m−1) < α2. In general,

qi =
n

m
· n− 1
m− 1

· · · n− i + 1
m− i + 1

< αi.

Hence T < 1 +
∑∞

i=1 αi = 1/(1− α). Q.E.D.

Note that T → ∞ as α → 1. In order that T = O(1), we need to ensure that α is bounded away from
1, say α < 1 − ε for some constant ε > 0. For instance ε = 1/2 ensures T < 2. Since all keys are stored in
the table T , we often say that open addressing schemes uses no auxilliary storage (in contrast to separate
chaining). Nevertheless, if α is bounded away from 1, some of the slots in T are really auxilliary storage.

Exercises

Exercise 3.1: Show that the average time to perform a successful lookup under the chaining scheme is
Θ(1 + α). ♦

End Exercises

§4. Universal Hash Sets

The above analysis depends on the random key assumption (RKA). To get around this, a fundamentally
new hashing idea was proposed by Carter and Wegman [1] in 1977. Let H be a set of (hash) functions from
some U to Zm. We call H a universal hash set if for all x, y ∈ U , x 6= y,

|{h ∈ H : h(x) = h(y)}| ≤ |H |
m

. (6)

We intend to use H by “randomly” picking an element from H and using it as our hashing function in
our usual sense. Of course, we still need to use some collision resolution method such as chaining or open
addressing methods.

c© Chee-Keng Yap December 8, 2004

§4. Universal Hash Sets Lecture XI Page 12

We will employ the useful “δ-notation” from [1]. For h ∈ [U → Zm] and x, y ∈ U , define

δh(x, y) :=
{

1 if x 6= y, h(x) = h(y)
0 else.

Thus δh(x, y) indicates the presence of a conflict. We can replace any of h, x, y in this notation by sets: if
H ⊆ [U → Zm] and X, Y ⊆ U then

δH(X, Y) =
∑
h∈H

∑
x∈X

∑
y∈Y

δh(x, y).

Variations such as δH(x, Y) or δh(X, Y) have the obvious meaning. So H is universal means δH(x, y) ≤ |H |/m
for all x, y ∈ U .

Motivation. In the following we will let h denote a random function in H . This means that for all h ∈ H ,
Pr{h = h} = 1/|H |. Let us first see why universality is a natural definition. It is easy to see that

Pr{h(x) = h(y)} =
|{h ∈ H : h(x) = h(y)}|

|H | .

This makes no assumptions about H . But if x 6= y then H is universal if and only if the last expression is
≤ 1/m. This shows:

Lemma 4 H being universal is equivalent to

Pr{h(x) = h(y)} ≤ 1
m

(7)

whenever x 6= y.

Below we will show that this definition is essentially optimal. Let us now contrast universality to our
assumptions in the simplified analysis of hashing (§3). The random key assumption (RKA) says that we are
interested in analyzing k, a random key in U , i.e., Pr{k = k} = 1/u for any k ∈ U . Combined with the
perfect hashing assumption (PHA),

Pr{h(k) = i} = 1/m (8)

for any i = 0, . . . , m − 1. So we have replaced the randomness assumption about keys in equation (8) by
a randomness about hashing functions in equation (7). The latter assumption is better because in hashing
applications, the algorithm designer is supposed to choose the hash function, and preferably, imposes no
condition on the set of keys to be inserted or searched. This is what universal hashing achieves.

The following theorem shows that universal hash sets gives us the “expected” behavior:

Theorem 5 Let H ⊆ [U → Zm] be a universal hash set and h be a random function in H. For any subset
K ⊆ U of n keys, and for any x ∈ K, the expected number of collisions of h involving x is < n/m = α.

Proof. Recall δh(x, y) is the 0/1 function that is 1 iff h(x) = h(y). Since h is a random function, δh(x, y)
is a random variable. We have E[δh(x, y)] = Pr{δh(x, y) = 1} ≤ 1/m. The expected number of collisions
involving x ∈ K is given by

E[δh(x, K)] = E[
∑

y∈K,y 6=x

δh(x, y)]

=
∑

y∈K,y 6=x

E[δh(x, y)]

=
n− 1

m
< α.

c© Chee-Keng Yap December 8, 2004

§4. Universal Hash Sets Lecture XI Page 13

Q.E.D.

Generalization of Universality. If h : U → V and x1, . . . , xt ∈ U then we write

h(x1, . . . , xt) = (y1, . . . , yt)

to mean h(xi) = yi for all i = 1, . . . , t. We say the set H ⊆ [U → V] is t-universal (t ∈ N) if for all
{x1, . . . , xt} ∈

(
U
t

)
, and all y1, . . . , yt ∈ V ,

|{h ∈ H : h(x1, . . . , xt) = (y1, . . . , yt)}| ≤ |H |
mt

.

For instance, H is 2-universal means for all x, x′ ∈ U where x 6= x′, and all y, y′ ∈ V ,

|{h ∈ H : h(x, x′) = (y, y′)}| ≤ |H |
m2

.

Note that we allow y = y′ in this definition. Alternatively, if h is a random function in H , then

Pr{h(x, x′) = (y, y′)} ≤ 1
m2

.

Theorem 6 If H ⊆ [U → Zm] is 2-universal, then it is universal.

Proof. Let x 6= y ∈ U and h be a random function of H .

Pr{h(x) = h(y)} =
m−1∑
i=0

Pr{h(x) = h(y) = i}

≤
m−1∑
i=0

1
m2

, (by 2-universality)

= 1/m.

By lemma 4, this is equivalent to the universality of H . Q.E.D.

The converse is not true: consider the set

SU ⊆ [U → U]

of permutations of U . Thus |SU | = u! and for all x 6= x′,

|{h ∈ SU : h(x) = h(x′)}| = 0.

Thus SU is universal. But for all y, y′ ∈ U ,

|{h ∈ SU : h(x, x′) = (y, y′)}| =
{

0 if y 6= y′,
(u− 2)! else.

So SU is not 2-universal, since (u− 2)! > |SU |/u2. But SU is rather close to being 2-universal, and it might
be advantageous to modify the definition of t-universality so that SU is considered 2-universal (Exercise).

c© Chee-Keng Yap December 8, 2004

§4. Universal Hash Sets Lecture XI Page 14

On the Definition of Universality. Carter and Wegman show that their definition of universal hash
sets is essentially the best possible.

Lemma 7 For all H, there exists x, y ∈ U such that

δH(x, y) > |H |
(

1
m
− 1

u

)
.

Proof. First, fix f ∈ H and let U =]m−1
i=0 Ui where Ui = f−1(i) (i ∈ Zm). Let ui = |Ui|. Then

δf (Ui, Uj) =
{

ui(ui − 1) if i = j
0 else.

Hence

δf (U, U) =
∑

i

∑
j

δf (Ui, Uj) =
∑

i

δf (Ui, Ui) =
m−1∑
i=0

ui(ui − 1).

It is easily seen that the expression E(u0, . . . , um−1) =
∑m

i=0 ui(ui − 1) is minimized when ui = u/m for all
i (Exercise). Hence

δf (U, U) ≥
m−1∑
i=0

u

m

(u

m
− 1

)
= u2

(
1
m
− 1

u

)
.

Hence

δH(U, U) ≥ |H |u2

(
1
m
− 1

u

)
. (9)

But
δH(U, U) =

∑
x∈U

∑
y∈U

δH(x, y). (10)

There are u2 choices of x, y in (10). From (9), it follows that at least one of these choices will satisfy the
lemma. Q.E.D.

This shows that, in general, the right hand side of (7) cannot be replaced by 1
m − ε, for any constant

ε > 0. On the other hand, it might be advantageous to replace (7) by 1
m + ε (ε = Θ(1/m2), see Exercise).

Exercises

Exercise 4.1: Student Quick claims out the universal hash set approach still does not overcome the problem
of bad behavior for specialized sets K ∈ U . That is, for any h ∈ H , we can still find a K that causes
h to behave badly. Do you agree? ♦

Exercise 4.2: Quick Search Company has implemented a dictionary data structure using universal hashing.
You are a hacker who wants to make the boss of Quick Search Company look bad, by making its
dictionary operations slow. You can read all files (data, source code, etc) of the company, but you may
not modify any file directly. However, you are a legitimate user who is allow enter new items into the
dictionary. The dictionary is designed for 10, 000 records (and will not accept more). It is currently
half full. Discuss how you can accomplish your evil goals. Also what can the Quick Search Company
do to avoid such kind of attacks? ♦

c© Chee-Keng Yap December 8, 2004

§5. Construction of Universal Hash Sets Lecture XI Page 15

Exercise 4.3: In the practical usage of a universal hash set H , suppose that after the choice of an h1 ∈ H ,
the system administrator may find that the current set K of keys is causing suboptimal performance.
The idea is that he should now discard h1 and pick randomly another h2 ∈ H and re-insert all the
keys in K. Give some guidelines about how to do this. E.g., how and when do you decide that K is
causing suboptimal performance? ♦

Exercise 4.4: Suppose we modify the definition of “t-universality” of H to mean that for all {x1, . . . , xt} ∈(
U
t

)
, and all y1, . . . , yt ∈ V ,

|{h ∈ H : h(x1, . . . , xt) = (y1, . . . , yt)}| ≤ |H |
m(m− 1) · · · (m− t + 1)

.

(a) What are the advantages of this definition?
(b) Suppose we also modify the definition of universality of H to mean

|{h ∈ H : h(x) = (y)}| ≤ |H |
m− 1

.

Show that 2-universality (in this modified sense) implies modified universality. Are there any some
disadvantage in this definition? ♦

End Exercises

§5. Construction of Universal Hash Sets

It is actually trivial to show the existence of universal hash sets: we can just choose H to be the set
[U → Zm]. This H is universal (Exercise). It is unfortunately not very useful: to use H , we intend to pick a
random function h from H and use it as our hashing function. First of all, to represent an arbitrary element
of [U → Zm] would require lg |H | = u lg m bits. Since u = |U | is huge by assumption (H1), this is infeasible.
It would also defeat an original motivation to use hashing in order to avoid Ω(u) space. Second, to use h ∈ H
as a hash function, each h must be easy to compute by assumption (H2). But not all functions in [U → Zm]
have this property. Let us summarize our requirements on H :

• |H | be moderate in size (typically uO(1)).

• There is a simple method to name each member of H , and to randomly pick members of H .

• Each h ∈ H must be easy to compute.

The latter two properties are usually coupled together as follows: the set H = {hi : i ∈ I} is indexed by a
finite set I, and there is a fixed universal program M(·) such that, given an index i ∈ I, M(i) computes hi.
In that case, log |I| can essentially be regarded as the program size of H .

We now construct some universal hash sets that satisfy these requirements.

A Class of Universal Hash Sets. Fix a finite field F with q elements. Typically, F = Zq where q is
prime. We are interested in hash functions in [U → F] where

U = F r

c© Chee-Keng Yap December 8, 2004

§5. Construction of Universal Hash Sets Lecture XI Page 16

for any fixed r ≥ 1. If k = 〈k1, . . . , kr〉 ∈ U and a = 〈a0, a1, . . . , ar〉 ∈ F r+1, we define the hash function

ha : U → F

ha(x) = a0 +
r∑

i=1

aixi

where x = 〈x1, . . . , xr〉 ∈ U . Set
Hr

q :={ha : a ∈ F r+1} (11)

so that |H | = qr+1.

Theorem 8 The set Hr
q is 2-universal. More precisely, if h is a random function in Hr

q then

Pr{h(x) = i,h(y) = j} =
1
q2

for all x, y ∈ K, x 6= y, and i, j ∈ F .

Proof. First write x and y as x = 〈x1, . . . , xr〉 and y = 〈y1, . . . , yr〉. Since x 6= y, we may, without loss of
generality, assume x1 6= y1. CLAIM: for any choice of a2, . . . , ar and 0 ≤ i, j < m, there exists unique a0, a1

such that if a = 〈a0, a1, . . . , ar〉 then
ha(x) = i, ha(y) = j. (12)

To see this, note that (12) can be rewritten as[
x1 1
y1 1

]
·
[

a1

a0

]
=

[
i−∑r

`=2 a`x`

j −∑r
`=2 a`y`

]
.

The right-hand side is a constant since we have fixed i, j and a2, . . . , ar. The matrix M on the right-hand
side is non-singular because x1 6= y1. Hence we may multiply both sides by M−1, giving a unique solution
for a0, a1. This proves our CLAIM. There are qr−1 choices for a2, . . . , ar. It follows that there are exactly
qr−1 functions in H such that (12) is true. Therefore,

Pr{h(x) = i,h(y) = j} =
qr−1

|H | =
1
q2

.

Q.E.D.

Thus Hr
q in (11) is universal.

Example: . Consider a typical application. Again, let U = [0..9]9 be the set of social security
numbers. We wish to construct a dictionary (=database) in which n = 50, 000 (e.g., n is an upper bound for
the number enrolled students at Universal University). Our problem is to choose an m such that α = n/m
is some small constant, say

1 < α < 10. (13)

The motivation for α < 10 is to bound the expected size of a chain which, according to theorem 5, is bounded
by α. The motivation of α > 1 is to limit the pre-allocated amount of storage (which is the table T [0..m−1])
to less than n. Note that U and n are given á priori.

Solution: We reduce this problem to the construction of a universal hash set of the form (11). Let us
assume q is a prime. First of all, note that q should be somewhere between 5, 000 and 50, 000. We also need
to choose r so that each k ∈ U is viewed as an r-tuple 〈k1, . . . , kr〉. For this purpose, we divide the 9 digits in
k into r = 3 blocks of 4, 4, 1 digits (respectively). E.g., k = 123456789 is viewed as the triple 〈1234, 5678, 9〉.
Let q be the smallest prime larger than 104, i.e., q = 10007. Hence α = 50000/10007 ≈ 5. Note that even
though k3 in any key 〈k1, k2, k3〉 ∈ U is never more than 9, it did not affect our application of theorem 5:
the result does not depend on the choice of K! This method can be generalized (Exercise)

c© Chee-Keng Yap December 8, 2004

§5. Construction of Universal Hash Sets Lecture XI Page 17

Weighted Universal Hash Sets. Consider the following situation. Let U, V, W be three finite sets.
Suppose

H ⊆ [U → V]

is a universal hash set, and
g : V →W

of a perfect hash function. This means

|{x ∈ F : g(x) = i}| ≤ dq/me .
For instance, g may be the modulo m function, g(x) = xmodm. Let

Hg :={g ◦ h : h ∈ H}
where (g ◦ h)(x) = g(h(x)) denotes function composition. Under what condition is Hg universal?

Before proceeding, we need a clarification: notice that it may happen that h 6= h′ but g ◦h = g ◦h′. This
means |Hg| < |H | when this happens. In the following, we shall assume

|Hg| = |H |.
One way to allow this to hold without restriction is to interprete Hg as a multiset. Formally, a multiset
is a pair (S, µ) where µ : S → N assigns a multiplicity µ(x) to each x ∈ S. We usually simply refer to S
as the “multiset” with µ implicit. We shall generalize this further and allow µ(x) to be any non-negative
real number. In this case, we call S a weighted set. For any set X ⊆ S, write µ(X) for

∑
x∈X µ(x). It

is obvious that our concept of universality extends naturally to weighted set of functions: a weighted set
H ⊆ [U → V] is universal if for all x, y ∈ U , x 6= y,

µ({h ∈ H : h(x) = h(y)}) ≤ µ(H)
m

.

We use a weighted universal set H by picking a “random” function h in H : this means for any h ∈ H ,
Pr{h = h} = µ(h)/µ(H).

Another Construction Scheme. Rather than proving the most abstract result possible, we begin with
a concrete example. Suppose U = V is a finite field F where |F | = q, and W = Zm for m > 1. For any
a, b ∈ F , define the hash function

ha,b(x) = ax + b. (14)

Let H = {ha,b : a, b ∈ F, a 6= 0}. Now consider the multiset

Hg = {ga,b : a, b ∈ F, a 6= 0} (15)

where ga,b = g ◦ ha,b. We do not consider the case a = 0 in this definition since h0,b is a constant function.
Thus

|H | = |Hg| = (q − 1)q

(as weighted sets). Indeed, notice that ga,b = gc,d iff a ≡ c(mod m) and b ≡ d(mod m). Consider the
simultaneous equation in the unknowns a, b ∈ F :

ax + b = i, ay + b = j (16)

for x, y ∈ F and i, j ∈ F . This can be written[
x 1
y 1

]
·
[

a
b

]
=

[
i
j

]
. (17)

This has a non-trivial solution iff x 6= y. The solution (a, b) is unique. However, if i = j, this solution has
a = 0.

c© Chee-Keng Yap December 8, 2004

§5. Construction of Universal Hash Sets Lecture XI Page 18

Lemma 9 The multiset Hg is universal.

Proof. Fix x, y ∈ F , x 6= y. Our lemma is to show

δHg (x, y) ≤ |Hg|
m

=
(q − 1)q

m
.

Call g−1(i) the ith bin and let bi = |g−1(i)| be its size. Now bi ≤ dq/me so that

bi − 1 ≤ q + m− 1
m

− 1 =
q − 1
m

.

For each h ∈ Hg, we charge h to the ith bin if h(x) = h(y) = i. According to above remarks on the
simultaneous equation (16), the number of charges to the ith bin is exactly bi(bi − 1). Since the bins are
disjoint, the total number of charges is

∑m−1
i=0 bi(bi− 1). It is easy to see that δh(x, y) = 1 iff h charges some

bin. Hence

δHg (x, y) =
m−1∑
i=0

bi(bi − 1)

≤ q − 1
m

m−1∑
i=0

bi

=
(q − 1)q

m
.

Q.E.D.

We generalize this result as follows:

Theorem 10 Let H ⊆ [U → V] be universal, and g : V →W be a perfect hash function. Define the multiset

Hg :={g ◦ h : h ∈ H}.
Let |H | = h, |U | = u, |V | = v, |W | = w. Then Hg is universal under either one of the following conditions:
(i) H is 2-universal and v divides w.
(ii) v > w and h ≥ v2(v−1)

v−w . (For instance, if v > w and h ≥ v3.)

Proof. (i) We have

|{h ∈ H : g(h(x)) = g(h(y))}| =
∑
i∈W

|{h ∈ H : g(h(x)) = g(h(y)) = i}|

=
∑
i∈W

∑
x′,y′∈g−1(i)

|{h ∈ H : h(x, y) = (x′, y′)}|

≤
∑
i∈W

∑
x′,y′∈g−1(i)

|H |
v2

≤ |H |
v2

∑
i∈W

b2
i

≤ |H |
v2

∑
i∈W

(v

w

)2

(since dv/we = v/w)

=
|H |
w

.

c© Chee-Keng Yap December 8, 2004

§5. Construction of Universal Hash Sets Lecture XI Page 19

(ii) We have

|{h ∈ H : g(h(x)) = g(h(y))}| = |{h ∈ H : h(x) = h(y)}|+
∑
i∈W

|{h ∈ H : h(x) 6= h(y), g(h(x)) = g(h(y)) = i}|

≤ h

v
+

∑
i∈W

bi(bi − 1), where bi := |g−1(i)| ≤ dv/we

≤ h

v
+

(⌈ v

w

⌉
− 1

) ∑
i∈W

bi

≤ h

v
+

(
v − 1

w

)
v

Hence, universality of H follows if w < v and

h

w
≥ h

v
+

(
v − 1

w

)
v,

h

(
1
w
− 1

v

)
≥ v(v − 1)

w
,

h ≥ v(v − 1)
w

/(
1
w
− 1

v

)

=
v2(v − 1)

v − w
.

Q.E.D.

Exercises

Exercise 5.1: (a) Is the set H0 = [U → Zm] universal? 2-universal? Useful as a universal hash set?
(b) Is the set HU ⊆ [U → U] of permutations on U universal? 2-universal? Useful as a universal hash
set? ♦

Exercise 5.2: Consider the universal hash set Hg above. Suppose |F | = q and m1 = (q modm). Give an
exact expression for the cardinality of δH(x, y) for x, y ∈ F in terms of m, q, m1. HINT: let r = bq/mc.
Then there are m1 bins of g of size r + 1, and m −m1 bins of size r. Determine the contribution of
each bin to δH(x, y). ♦

Exercise 5.3: (Carter-Wegman) Suppose we modify the multiset Hg by omitting those functions in ha,b ∈
Hg where b 6= 0. Let Ĥg be this new class. In other words, Ĥg has all functions of the form ha(x) =
g(ax). Show that δ bHg

(x, y) ≤ 2|Ĥg|/m. That is, the class is “universal within a constant factor of 2”.
♦

Exercise 5.4: Suppose we define Ĥr
q similarly to Hr

q , except that we fix a0 = 0. Hence |Ĥr
q | = qr.

(a) Show that theorem 8 fails for Ĥr
q .

(b) Show that Ĥr
q is still universal. ♦

Exercise 5.5: Consider the example above in which we choose to interpret a social security number as a
triple 〈k1, k2, k3〉 where the 9 digits are distributed among k1, k2, k3 in the proportions 4 : 4 : 1. Can I
choose the proportion 3 : 3 : 3? What are the new freedoms I get with this choice? HINT: what other
m’s are now available to me? How close can α get to 10? ♦

c© Chee-Keng Yap December 8, 2004

§6. Optimal Static Hashing Lecture XI Page 20

Exercise 5.6: Generalize the above methods for construct t-universal hash sets for any t ∈ N. ♦

Exercise 5.7: Let U = [1..t]s for integers t, s ≥ 2 and let n be given. What is a good way to construct a
universal hash set H of functions from U to Zm, where m is chosen to satisfy 0.5 < α = n/m < t.
NOTE: t is typically small, e.g., t = 10, 26, 128, 256. You may use the fact (Bertrand’s postulate) that
for any n ≥ 1, there is a prime number p satisfying n < p ≤ 2n. ♦

End Exercises

§6. Optimal Static Hashing

Recall (§1) that a static dictionary is one that supports lookups, but no insertion or deletions. The
question arises: for any set K ⊆ U , can we find hashing scheme that has worst-case O(1) access time and
O(|K|) space? An elegant affirmative answer is provided by Fredman, Komlós and Szemerédi [5].

For brevity, we call this the “optimal hashing problem”, since the space O(|K|) is optimal and the worst-
case O(1) time is also optimal. The consideration of worst-case time stands in contrast to the usual average
time bounds in hashing analysis. Also, the combination of small space with O(1) worst case time is necessary
since we can otherwise obtain O(1) worst case time trivially, by using space O(|U |) and hashing each k into
its own slot.

The following basic setup will be used in our analysis: assume U = Zp for some prime p, and let K ∈ U ,
|K| = n be given. We want to define a hash function h : U → Zm with certain properties that are favorable
to K.

Our hash functions is a special case of (15): for any k ∈ Zp and x ∈ U ,

hk,m(x) = ((kxmod p)modm).

We write hk(x) instead of hk,m(x) when m is understood. We avoid k = 0 in the following, since h0(x) = 0
for all x. For any k ∈ Zp and i ∈ Zm, define the ith bin to be {x ∈ K : hk(x) = i}, and let its size be

bk(i) := |{x ∈ K : hk(x) = i}|.

Note that the number of pairs {x, y} that collide in the ith bin is
(
bk(i)

2

)
. We have the following bound:

Lemma 11
p−1∑
k=1

m−1∑
i=0

(
bk(i)

2

)
<

pn2

2m
.

Proof. The left-hand side counts the number of pairs

(k, {x, y}) ∈ Z
+
p ×

(
K

2

)

c© Chee-Keng Yap December 8, 2004

§6. Optimal Static Hashing Lecture XI Page 21

such that hk(x) = hk(y). Let us count this in another way: we say that k ∈ Zp “charges” the pair {x, y} ∈ (
K
2

)
if hk(x) = hk(y). The k’s that charge {x, y} satisfies

(xk mod p)− (yk mod p) ≡ 0(mod m),
(x− y)k mod p ≡ 0(mod m),

(x− y)k mod p ∈ S :={m, 2m, . . . ,

⌊
p− 1

m

⌋
m}.

But for each element jm in the set S above, there is a unique k such that (x− y)k modp = jm. Hence the
number of k’s that charge {x, y} is

|S| =
⌊

p− 1
m

⌋
.

Thus the total number of charges, summed over all {x, y} ∈ (
K
2

)
is(

n

2

) ⌊
p− 1

m

⌋
<

n(n− 1)(p− 1)
2m

and the lemma follows. Q.E.D.

Corollary 12 (i) There exists a k ∈ Z
+
p such that

m−1∑
i=0

(
bk(i)

2

)
<

n2

2m
.

(ii) There are at least p/2 choices of k ∈ Z
+
p such that

m−1∑
i=0

(
bk(i)

2

)
<

n2

m
.

We have an immediate application. Choosing m = n2, corollary 12(i) says that there is a k such that

m−1∑
i=0

(
bk(i)

2

)
< 1. (18)

This means for each i ∈ Zm,
(
bk(i)

2

)
= 0 and hence bk(i) = 0 or 1. This means hk is a perfect hash function

for K.

The FKS Scheme. We now describe the FKS scheme [5] to solve the optimal hashing problem. This
scheme is illustrated in figure 3.

There are two global variables k, n and these are used to define the primary hash function,

h̃(x) = ((xk mod p)modn). (19)

There is a main hash table T [0..n − 1]. The ith entry T [i] points to a secondary hash table that has two
parameters ki, bi and these define the secondary hash functions

h(i)(x) = ((xki modp)mod b2
i). (20)

c© Chee-Keng Yap December 8, 2004

§6. Optimal Static Hashing Lecture XI Page 22

bn−1

· · ·

T [0..n− 1]

0

1

2

i

kn−1n− 1

k n

b1 = 1

b0 = 2k0

k1

ki bi

b2
i

Figure 3: FKS Scheme

We shall choose bi to be the size of the ith bin,

bi = |{x ∈ K : h̃(x) = i}|.

Hence, according the remark above, we could choose ki in (20) so that (18) holds, and so h(i) is a perfect
hash function.

How much space does the FKS scheme take? The primary table takes n + 2 cells (the “+2” is for storing
the values n and k). The secondary tables use space

n−1∑
i=0

(2 + b2
i) = 2n +

n−1∑
i=0

b2
i . (21)

According to corollary 12(i), we can choose the key k in the primary hash function (19) such that

n−1∑
i=0

(
bi

2

)
<

n2

m
= n (22)

(m = n). Thus (22) implies
∑n−1

i=0 bi(bi − 1) < 2n and hence

n−1∑
i=0

b2
i < 2n +

n−1∑
i=0

bi = 3n.

This, combined with (21), implies the secondary tables use space 5n. The overall space usage is therefore
less than

n + 2 + 5n = 6n + 2.

Constructing a FKS Solution. Given p and K, how do we find the keys k and k0, . . . , kn−1 specified by
the FKS scheme? For simplicity, let us first assume that all arithmetic operations (including taking modulus)
is constant time.

c© Chee-Keng Yap December 8, 2004

§6. Optimal Static Hashing Lecture XI Page 23

A straightforward way is to search through Zp to find a primary hash key k. Checking each k to see if
corollary 12(i) is fulfilled takes O(n) time. Since there are p keys, this is O(pn) time. To find a suitable
secondary ki for each i takes another O(pbi) time; summing over all i, this is O(pn) time. So the overall
time is O(pn).

Since p can be very large relative to n, this solution is sometimes infeasible. If we use a bit more space
(but still linear), we can use corollary 12(ii) to give a randomized method of construction (Exercise). We
next present a deterministic time solution.

The solution uses a simple trick to reduce the size of the universe. For this, we use a useful fact from
number theory. If π(m) is the number of primes less than or equal to m, then

π(m) = Cm
m

ln m
, (

1
8

< Cm < 12) (23)

(see [6, p.79]).

Lemma 13 Let |K| ≥ 16. There exists a prime q ≤ n2 lg p lg lg p that for all x, y ∈ K,

x 6= y ⇒ (xmod q) 6= (y mod q). (24)

Proof. Let
N =

∏
x,y

|x− y|

where {x, y} range over
(
K
2

)
. There are at most lg N <

(
n
2

)
lg p primes that divide N . The result follows if

π(n2 lg p lg lg p) >

(
n

2

)
lg p.

From (23),

π(n2 lg p lg lg p) >
n2 lg p lg lg p

8(2 lnn + ln lg p + ln lg lg p)
.

Hence it is sufficient to show

n2 lg p lg lg p > 8(2 lnn + ln lg p + ln lg lg p)
(

n

2

)
lg p)

= 8n(n− 1) ln n lg p + 4 ln lg p + ln lg lg p)
(

n

2

)
lg p)32 lgn lg lg p + 16 lg p lg lg p.

But it is easily checked that ... INCOMPLETE Q.E.D.

An asymptotically stronger result than the preceding lemma can be obtained, albeit with somewhat less
accessible constant: let θ(x) =

∏
q≤x q, where the q’s range over primes not exceeding x. Then

Ax ≤ ln θ(x) ≤ Bx

for some B > A > 0. Thus for some C > 0, ln θ(Cn2 lg p) > lg N . So there is a prime q ≤ Cn2 lg p such that
q does not divide N .

Theorem 14 For any subset K ⊆ Zp, n = |K|, there is a hashing scheme to store K in O(n) space and
with O(1) worst case lookup time. This scheme can be constructed deterministically in time

O(n3 lg p lg lg p).

c© Chee-Keng Yap December 8, 2004

§7. Perfect Hashing Lecture XI Page 24

Proof. If p < n2 lg p lg lg p, then we can use the FKS scheme for this problem. The straightforward method
to construct the FKS scheme takes O(pn) time, which achieves our stated bound.

So assume p ≥ n2 lg p lg lg p. We can find a prime q that satisfies the preceding lemma in time
O(n3 lg p lg lg p). We now construct a FKS scheme for the set of keys

K ′ = {k mod q : k ∈ K}

viewed as a subset of the universe Zq. The only difference is that, in the secondary tables, in the slot for key
k′ ∈ K ′, we store the original value k ∈ K corresponding to k′.

The straightforward method of constructing this scheme is O(qn) which is within our stated bound. To
lookup a key k∗, we first compute k′ = k∗mod q, and then use the FKS scheme to lookup the key k′.
Searching for k′ will return the key k ∈ K such that k mod q = k′. Then k∗ is in K iff if k∗ = k. Q.E.D.

Bit Complexity Model. We can convert the above results into the bit complexity model. First, we have
assumed O(1) space for storing each number in U = Zp. In the big complexity model, we just need to
multiply each space bound by lg p. As for time, each arithmetic operation that we have assumed is constant
time really involves lg p bit numbers, and each uses

O(lg p lg lg p lg lg lg p)

bit operations. Again, multiplying all our time bounds by this quantity will do the trick.

Exercises

Exercise 6.1: Construct a FKS scheme for the following input: p = 31, K = {2, 4, 5, 15, 18, 30}. ♦

Exercise 6.2: Construct a FKS scheme for the 40 common English words in §1 (Exercise 1.2). ♦

Exercise 6.3: In many applications, the key space U comes with some specific structure. Suppose U =
Zn1×Zn2×· · ·×Znr where n1, . . . , nr are pre-specified. In a certain transaction processing application,
we have (n1, . . . , nr) = (2, 9, 4, 9, 5). Construct a FKS scheme for this application. ♦

Exercise 6.4: Show that the expected time to construct the above hashing scheme for any given K is O(n2).
That is, find the values k, k0, . . . , kn−1, b0, . . . , bn−1 in expected O(n) time. ♦

Exercise 6.5: The above O(pn) deterministic time algorithm for constructing the FKS scheme was only
sketched. Please fill this in the details. Program this in a programming language of your choice. ♦

End Exercises

§7. Perfect Hashing

c© Chee-Keng Yap December 8, 2004

§8. Perfect Hashing Lecture XI Page 25

Let h : U → V and K ⊆ U . We said (§1) h is perfect for K if for all i, j ∈ V , we have |bi − bj| ≤ 1 where
bi = |h−1(i) ∩K|. In the literature, this definition is further restricted to the case |K| ≤ |V |. In this case,
we have bi = 0 or bi = 1. In this section, we assume this restriction. If h is perfect for K and |K| = |V |,
then we say h is minimal perfect. A comprehensive survey of perfect hashing may be found in [2].

Following Mehlhorn, we say a set H ⊆ [U → V] is (u, v, n)-perfect if |U | = u, |V | = v and for all
K ∈ (

U
n

)
, there is a h ∈ H that is perfect for K. Extending this notation slightly, we say H is (u, v, n; k)-

perfect if, in addition, |H | = k. Such a set H can be represented as k × u matrix M whose entries are
elements of V . Each row of M represents a function in H . Moreover, if M ′ is the restriction of M to any n
columns, there is a row of M ′ whose entries are all distinct.

Let us give a construction for such a matrix based on the theory of finite combinatorial planes. Let Fq

be any finite field on q elements. Let M be a (q + 1) × q2 matrix with entries in Fq. The rows of M are
indexed by elements of F ∪ {∞} and the columns of M are index by elements of F 2. Let r ∈ F ∪ {∞} and
(x, y) ∈ F 2. The (r, (x, y))-th entry is given by

M(r, (x, y)) =
{

xr + y if r 6=∞
x else.

It is easy to see that for any two columns of M , there is exactly one row at which these two columns have
identical entries. It easily follows:

Theorem 15 If q + 1 >
(
n
2

)
then M represents a (q2, q, n; q + 1)-perfect set of hash function.

finiteplanes

We consider lower bounds on |H | for perfect families.

Theorem 16 (Mehlhorn) f H is (u, v, n)-perfect then
(a) |H | ≥ (

u
n

) (
u
v

)2 (
v
n

)
.

(b) |H | ≥ log u
log v .

Exercises

Exercise 7.1: Let m ≥ n ≥ 1. What is the probability that a random function in [Zn → Zm] is perfect?
Compute this probability if m = 13, n = 10. Or if m = n = 10? ♦

Exercise 7.2: Compare the relative merits of the FKS scheme and the scheme in theorem 15 for constructing
perfect hash functions. What are the respective program sizes in these two schemes? ♦

Exercise 7.3: Let x = (x1, . . . , xn) be a vector of real numbers. Let f(x) =
∏n

i=1 xi and g(x) =
∑n

i=1 xi.
We want to maximize f(x) subject to g(x) = c (for some constanct c > 0) and also xi ≥ 0 for all i.
HINT: a necessary condition according the the theory of Lagrange multipliers is that ∇f = λ∇g for
some real number λ. Why is this also sufficient? ♦

End Exercises

c© Chee-Keng Yap December 8, 2004

§8. Extendible Hashing Lecture XI Page 26

§8. Extendible Hashing

So far, all our hashing methods are predicated upon some implicit upper bound for our dictionary. The
only method that can accomodate unbounded dictionary size is hashing with separate chaining, but as the
average chain length increases, the effectiveness of this method also breaks down. Extendible hashing [3]
is a technique to overcome this handicap of conventional hashing. It can also be an alternative to B-trees,
which are extensively used in database management.

But before we consider extendible hashing, we should mention a simple method to overcome the fixed
upper limit of a hashing data structure. Each time the upper limit L of a hashing structure is reached, we
can simply reorganize the data structure into one with twice the limit, 2L. This reorganization takes O(L)
time, and hence the amortized cost of this reorganization is O(1) per original insertion. By the same token,
if the number of keys is sufficiently small, we can reorganize the hash data structure into one whose limit
is L/2. To avoid the phenomenon of trashing at the boundaries of these limits, it is not hard to introduce
hysteresis behaviour (Exercise).

Extendible hashing has a two-level structure comprising a directory and a variable set of pages. The
directory is usually small enough to be in main memory while the pages store items and are kept in secondary
memory. See figure 4 for an illustration.

0

100

101

11

Directory

001
010
011
100

000

110
111

Page 1

Page 2

101

Page 4

010101

111101

101011
Page 3101001

001100
001010

Figure 4: Extendible Hashing data structure: some hash values in the pages represents items stored under
that hash value

.

We postulate a hash function of the form

h : U → {0, 1}L

for some L > 1. All pages have the same size, say, accomodating B items. Each page has its own prefix
which is a binary string of length at most L. An item with key k will be stored in the page whose prefix p is
a prefix of h(k). For instance, in page 1 of figure 4, we store three items (as represented by the hash values
of their keys: 010101, 001100 and 001010). The depth of the page is the length of its prefix. The depth of
the directory, denoted by d, is the maximum depth of the pages. We require that the collection of page
prefixes forms a prefix-free code. Recall (§IV.1, Huffman code) that a set of strings is a prefix-free code if
no string in the set is a prefix of another. For instance, in figure 4, the prefix of each page is shown in the
top left corner of the page; these prefixes form the prefix-free code

0, 100, 101, 11.

c© Chee-Keng Yap December 8, 2004

§8. Extendible Hashing Lecture XI Page 27

A directory of depth d is an array of size 2d, where the entry T [i] is a pointer to the page whose prefix is
a prefix of the binary representation of i. So if a page has prefix of depth d′ ≤ d then there will be 2d−d′

pointers pointing to it.

The actual storage method within a page is somewhat independent of extendible hashing method. For
instance, any hashing scheme that uses a fixed size table but no extra storage will do (e.g., coalesced chaining
or open addressing schemes). Search times for extendible hashing thus depends on the chosen method for
organizing pages. It can be shown that the expected number of pages to store n items is about n(B ln 2)−1.
This means that the expected load factor is ln 2 ≈ 0.693.

Knuth [7] is the basic reference on the classical topics in hashing. The article [4] considers minimal perfect
hash functions for large databases.

Exercises

Exercise 8.1: (a) Show that in the worst case, the rules we have given above for increasing or decreasing
the maximum size of a hashing data structure does not have O(1) amortized cost for insertion and
deletion.
(b) Modify the rules to ensure amortized O(1) time complexity for all dictionary operations. ♦

End Exercises

References

[1] J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. of Computer and System Sciences,
18:143–154, 1979.

[2] Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing. Theor. Computer Science, 182:1–143, 1997.

[3] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing – a fast access method for
dynamic files. ACM Trans. on Database Systems, 4:315–344, 1979.

[4] E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud. Practical minimal perfect hash functions for large
databases. J. of the ACM, 35(1):105–121, 1992.

[5] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time.
J. of the ACM, 31:538–544, 1984.

[6] L. K. Hua. Introduction to Number Theory. Springer-Verlag, Berlin, 1982.

[7] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley,
Boston, 1972.

[8] P. K. Pearson. Fast hashing of variable-length text strings. Comm. of the ACM, 33(6):677–680, 1990.

[9] W. W. Peterson. Addressing for random access storage. IBM Journal of Research and Development,
1(2):130–146, 1957. Early major paper on hashing –perhaps the second paper on hashing? See Knuth
v.3.

c© Chee-Keng Yap December 8, 2004

