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Lecture VIII

QUICK PROBABILITY

We review the basic concepts of probability theory, using the axiomatic approach first expounded by
A. Kolmogorov. His classic [6] is still an excellent introduction. The axiomatic approach is usually contrasted
to the empirical or “Bayesian” approach that seeks to predict real world phenomenon with probabilistic
models. Other source books for the axiomatic approach include Feller [3] or the approachable treatment of
Chung [2]. Students familiar with probability may simply use this lecture as a reference.

Probability in algorithmics arises in two main ways. In one situation, we have a deterministic algorithm
whose input space has some probability distribution. We seek to analyze, say, the expected running time
of the algorithm. The other situation is when we have an algorithm that makes random choices, and we
analyze its behaviour on any input. The first situation is less important because we typically do not know
the probability distribution on an input space (even if such a distribution exists). By the same token, the
second situation derives its usefulness from avoiding any probabilistic assumptions about the input space.
Algorithms that make random decisions are said to be randomized and comes in two varieties. In one
form, the algorithm may make a small error but its running time is worst-case bounded; in another, the
algorithm has no error but only its expected running time is bounded. These are known as Monte Carlo
and Las Vegas algorithms, respectively. There is an understandable psychological barrier to the acceptance
of unbounded worst-case running time or errors in randomized algorithms. But one should realize that in
daily life, we accept and act on information with a much greater uncertainty or likelihood of error.

More importantly, randomization is, in many situations, the only effective computational tool available
to attack intransigent problems. Until recently, the standard example of a problem not known to be in the
class P (of deterministic polynomial time solvabale problems), but which admits a randomized polynomial-
time algorithm is the Primality Problem. Since August 2002, Manindra Agrawal, Neeraj Kayal and Nitin
Saxeena, in a major breakthrough, has shown that this problem is in P . The current best algorithm for
Primality Testing is O(n7.5), so it is still not very practical. Thus randomized primality remains the useful
in practice. Note that the related problem of factorization of integers does not even have a randomized
polynomial time algorithm.

§1. Axiomatic Probability

All probabilistic phenomena occur in a probabilistic space, which we now formalize (axiomatize).

Sample space. Let Ω be any non-empty set, possibly infinite. We call Ω the sample space and elements
in Ω are called sample points. We use the following running examples:

(E1) Ω = {H, T } (coin toss with head or tail outcome)

(E2) Ω = {1, . . . , 6} (roll of a die)

(E3) Ω = N (the natural numbers)

(E4) Ω = R (the real numbers)

Event space. Let Σ ⊆ 2Ω be a subset of the power set of Ω. The pair (Ω, Σ) is called an event space
provided three axioms hold:
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(A0) Ω ∈ Σ.

(A1) A ∈ Σ implies Ω−A ∈ Σ.

(A2) If A1, A2, . . . is a countable sequence of sets in Σ then ∪i≥1Ai is in Σ.

We call A ∈ Σ an event and singleton sets in Σ are called elementary events. Thus the axioms imply
that ∅ and Ω are events (the “impossible event” and “inevitable event”), and the complement of an event is
an event1. In the presense of Axiom (A1), we could have used countable intersection instead of countable
union in Axiom (A2). An event space is also called a Borel field or sigma field, in which case events are
called measurable sets.

Let Ω be any set and G ⊆ 2Ω. Then (by the Axiom of Choice) there is a smallest event space G containing
G; we call this the event space generated by G. If (Ω, Σ) is an event space and A ∈ Σ, then we obtain a
new event space (A, Σ ∩ 2A), which is a subspace of (Ω, Σ).

Let A and B be events. There are two standard notations for events which we will use. First, we will
write “Ac” or “A” for the complementary event Ω \ A. Also, we write “AB” for the event A ∩ B (why
is this an event?). This is called the joint event of A and B. The two events are mutually exclusive if
AB = ∅.

Event Spaces in the Running Examples. One choice of Σ is

Σ = 2Ω. (1)

We call this the discrete sample space, which is the typical choice for finite sample spaces such as running
examples (E1) and (E2). In example (E2) the event {4, 5, 6} ∈ Σ may be read: “the event that roll is
greater than 3”. If Ω is infinite, as in (E3) and (E4), the choice (1) has problems: we will need to do assign
probabilities to events (see below), but it is not obvious how to assign probabilities in this case. Instead we
proceed as follows: we define Σ by describing a generating set G for it. For (E4), we define G to comprise
the half-lines

Hr :={x ∈ R : x ≤ r}
for all r ∈ R. The resulting event space G is extremely important. It is called the Euclidean Borel field
and denoted B1 or B1(R). An element of B1 is called an Euclidean Borel set. These sets are not easy
to describe explicitly, but open and closed intervals belong in B1. To show this, it suffices to show that
singletons {r}, r ∈ R, belong to B1:

{r} = Hr ∩
⋂
n≥1

Hc
r−(1/n).

This implies that any countable set belongs to B1.

Probability space. So far, we have described concepts that probability theory shares in common with
measure theory (which is the theory underlying integral calculus). Probability properly begins with the next
definition: a probability space is a triple

(Ω, Σ, Pr)

where (Ω, Σ) is an event space and Pr : Σ → [0, 1] (the unit interval) is a function satisfying the following
axioms:

(P0) Pr(Ω) = 1.
1The cynical interpretation of axiom (A1) is that “a non-event is an event”.

c© Chee-Keng Yap April 21, 2003



§1. Axiomatic Probability Lecture VIII Page 3

(P1) if A1, A2, . . . are a countable sequence of pairwise disjoint events then Pr(∪i≥1Ai) =
∑

i≥1 Pr(Ai).

We may simply call Σ the probability space when Pr is understood. We call Pr(A) the probability of A.
A null event is one with zero probability. We deduce that Pr(Ω−A) = 1−Pr(A) and if A ⊆ B are events
then Pr(A) ≤ Pr(B).

The student should learn to set up the probabilistic space underlying any probabilistic analysis. Whenever
there is discussion of probability, you should ask: what is S and what is Σ? This is especially important
since authors tend not to do this explicitly. For finite sample spaces in which each sample point is an event,
Pr is completely specified when we assign probabilities to these (elementary) events.

Probability in the Running Examples. Recall that we have specified Σ for each of our running examples
(E1)–(E4). Let us now assign probabilities to events. In example (E1), we choose Pr(H) = p for some
0 ≤ p ≤ 1. Hence Pr(T ) = 1 − p. If the coin being tossed in (E1) is fair, then p = 1/2. In example (E2),
choose the probability of an elementary event be 1/6 (so we are rolling a fair die).

It is interesting to note that Ω is a finite set, and Pr(A) = |A|/|Ω| for all A ∈ Σ, we see that the
probabilistic framework is simply a convenient language for counting the sets in Σ ⊆ 2Ω. For reference, the
space (Ω, 2Ω, Pr) where Pr(ω) = 1 for all ω ∈ Ω is called the the counting probability model for Ω.

For (E3), we may choose Pr(i) = pi ≥ 0 (i ∈ Ω = N) subject to

∞∑
i=0

pi = 1.

An explicit example is illustrated by pi = 2−(i+1).

For example (E4), it is more intricate to define a probability space. But if we first restrict2 the Euclidean
Borel sets to a closed interval [a, b] ⊆ R for some a < b, we get a sample space is denoted

B1[a, b]

which is generated by the sets [a, c] = Hc ∩ [a, b], for all a ≤ c ≤ b. We define the uniform probability
function on B1[a, b] using the assignment

Pr([a, c]) :=(c− a)/(b− a) (2)

for all generators [a, c] of B1[a, b]. It is not hard to see that Pr(A) = 0 for every countable A ∈ Σ.

Constructing Probability Spaces. A basic construction of probability spaces is the product construc-
tion. Suppose Σi ⊆ 2Ωi (i = 1, 2) are sample spaces. We define Σ ⊆ 2Ω where Ω = Ω1×Ω2 such that A ∈ Σ
iff πi(A) ∈ Σi (i = 1, 2). Here, πi(A) = {xi : (x1, x2) ∈ A}. We define Pr(A) = Pr(π1(A)) Pr(π2(A)). We
leave it as an exercise to show that Σ is a sample space and Pr is a probability function. Of course, this can
be iterated. Using this construction, the simple case Ω = {H, T } leads to the non-trivial space Ωn.

An important type of sample space is based on “decision trees”. Assuming a finite tree, the sample points
are identified with identified with leaves of the tree and the sample space is 2Ω. with the set of leaves below
each node. How do we assign probabilities? Let assume that at a node of degree d, the probability of taking
any of its child is 1/d. Then the probability of any path is just the product of the probility of taking each
edge of the path.

2It is matter of technicality to pretend that Ω = R. We might as well take Ω = [a, b].
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Quicksort Example. We can generalize the sample space of decision trees above. Let us consider the
probability space of Quicksort. Fix any input to Quicksort with n distinct numbers. Consider the following
tree Tn that has two kinds of internal nodes: AND-node and OR-node. The root of Tn is an OR-node with
degree n. In general, an OR-node with degree d ≥ 2 is called an d-node. If d = 0 or d = 1, then the d-node
is simply a leaf (no children). For d ≥ 2, each of the children of the d-node is an AND-node of degree exactly
2. Moreover, the ith child (for i = 1, . . . , d) has two children which are an (i− 1)-node and a (n − i)-node.
This completes the description of Tn. Using Tn, we now define the sample space S(Tn).

A sample point ω ∈ S(Tn) is a subtree of Tn, containing the following nodes: the root (which is the
unique n-node of Tn) belongs to ω. In general, suppose u ∈ ω. If u is an AND-node, then every child of u is
in ω. If u is an OR-node, then exactly one child of u is in ω. This completes the description. What is the
probability Pr(ω)? If ω has only one node, then Pr(ω) = 1. Otherwise, let ω1, ω2 be subtrees of ω, where the
roots of ω1, ω2 are the grandchild of the root of ω. Then the probabilities Pr(ω1), Pr(ω2) have been defined,
and we have

Pr(ω) =
1
n

Pr(ω1) Pr(ω2).

This completely describes S(Tn). There is another way to describe S(Tn), as the set of all binary trees
with exactly n nodes (internal or leaves). This is just a more compact way to encode the tree ω above.

Exercises

Exercise 1.1: Show that the method of assigning (uniform) probability to events in B1[a, b] is well-defined.
♦

Exercise 1.2: Let Ω = R. In the text, the event space defined Ω was restricted to a finite interval [a, b].
Define a probability space on Ω in which the entire real line is used in an essential way. ♦

Exercise 1.3: Consider the following randomized process, which is a sequence of steps. At each step, we
roll a dice that has one of six possible outcomes: 1, 2, 3, 4, 5, 6. In the i-th step, if the outcome is less
than i, we stop. Otherwise, we go to the next step. The first step is i = 1. For instance, we never stop
after first step, and surely stop by the 7-th step. Let T be the random variable corresponding to the
number of steps.
(a) Set up the sample space, the event space, and the probability function for T .
(b) Compute the expected value of T . ♦

Exercise 1.4: J. Quick felt that the sample space Sn we constructed for Quicksort is unnecessarily com-
plicated: why don’t we define Sn to be the set of all permutations on the n input numbers. The
probability of each permutation in Sn is 1/n!. What is wrong with this suggestion? ♦

Exercise 1.5: Give simple upper and lower bounds on the size C(n) of the sample space in Quicksort on n
input numbers. Note that C(n) are the Catalan numbers in Chapter 6 (see also Exercise there). ♦

End Exercises

§2. Independence and Conditioning
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Intuitively, the outcomes of two tosses of a coin ought to be “independent” of each other. In rolling a pair
of dice, the probability of the event “the sum is at least 8” must surely be “conditioned by” the knowledge
about the outcome of one of the dice. For instance, knowing that one of the die is 1 or not critically affects
this probability. We formalize such ideas of independence and conditioning.

Let B ∈ Σ be any non-null event (i.e., Pr(B) > 0). Such an event B induces a probability space which
we denote by Σ|B. The sample space of Σ|B is B and event space is {A ∩ B : A ∈ Σ}. The probability
function PrB of the induced space is given by

PrB(A ∩B) =
Pr(A ∩B)

Pr(B)
.

It is conventional to write
Pr(A|B)

instead of PrB(A ∩ B), and to call it the conditional probability of A given B. Note that Pr(A|B) is
undefined if Pr(B) = 0.

Two events A, B ∈ Σ are independent if Pr(AB) = Pr(A) Pr(B).

Note that, for the first time, we have multiplied two probabilities! This is significant
– in general whenever you multiply probabilities, there must be some independence
requirement. Just as the product of two numbers x, y is usually written as xy with
the × operator implicit, the intersection A ∩ B of two events is usually written AB.
This analogy between intersection and multiplication is clarified through the concept
of independence.
Until now, we have only added probabilities, Pr(A)+Pr(B). The conditions for adding
probabilities are some disjointness requirement on events: A∩B = ∅. The combination
of adding and multiplying probabilities therefore brings a ring-like structure (involving
+,×) into play, and greatly enriches the subject.

It follows that if A, B are independent then Pr(A|B) = Pr(A). More generally, a set S ⊆ Σ of events is
k-wise independent if for every subset {B1, . . . , Bm} ⊆ S of m (2 ≤ m ≤ k) distinct events, Pr(∩m

i=1Bi) =∏m
i=1 Pr(Bi). If k = 2, we say S is pairwise independent. If k = |S|, we simply say S is independent.

Bayes’ Formula. Suppose A1, . . . , An are mutually exclusive events such that Ω = ∪n
i=1Ai. Then for any

event B, we have

Pr(B) = Pr(]n
i=1B ∩Ai) =

n∑
i=1

Pr(B|Ai) Pr(Ai). (3)

Consider Pr(Aj |B) = Pr(BAj)/ Pr(B). If we replace the numerator by Pr(B|Aj) Pr(Aj), and the denomi-
nator by (3), we obtain Bayes’ formula,

Pr(Aj |B) =
Pr(B|Aj) Pr(Aj)∑n
i=1 Pr(B|Ai) Pr(Ai)

. (4)

In other words, this is a formula for inversion of conditional probability: given that you know B has occurred,
you can determine the probability that any (mutually exclusive) Aj also occurred if you know Pr(B|Ai) for all
i. This formula is the starting point for Bayesian probability, the empirical or predictive approach mentioned
in the introduction. The goal of Bayesian probability is to use observations to predict the future.
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Formula for Joint Events. From the definition of conditional probability, we have Pr(A1A2) =
Pr(A1) Pr(A2|A1), or more generally,

Pr(A1A2|B) = Pr(A1|B) Pr(A2|A1B).

This formula is generalized to: suppose B, A1, A2, . . . , An are events. Then

Pr(
n⋂

i=1

Ai|B) =
n∏

i=1

Pr(Ai|A1A2 · · ·Ai−1B). (5)

In proof, simply expand the ith factor as Pr(A1A2, . . . , Ai−1B)/ Pr(A1A2, . . . , AiB), and cancel common
factors in the numerator and denominator. If B = Ω, this reduces to

Pr(
n⋂

i=1

Ai) =
n∏

i=1

Pr(Ai|A1A2 · · ·Ai−1).

E.g., Pr(ABCD) = Pr(A) Pr(B|A) Pr(C|AB) Pr(D|ABC). This formula is “extensible” in that the formula
for Pr(A1 · · ·An) is derived from formula for Pr(A1 · · ·An−1), by appending an extra factor.

Exercises

Exercise 2.1: Construct a set of events that is pairwise independent but not independent. HINT: Let
Ω = {1, 2, 3, 4}. Use the counting probability model for Ω, and consider the events A = {1, 2},
B = {1, 3}, C = {1, 4}. ♦

Exercise 2.2: In a popular TV game-show3 called “Let’s Make a Deal”, there are three veiled stages. A
prize car is placed behind one of these veils. Each contestant hopes to pick the stage with the car. The
rules of the game are as follows: initially, the contestant picks one of the stages. Then the game-master
selects one of the other two stages to be unveiled – this unveiled stage is inevitably car-less. The
game-master now asks the contestent if he or she wishes to switch the original pick. There are two
strategies to be analyzed: always-switch or never-switch. The never-switch strategy is easy to analyze:
you have 1/3 chance of winning. Here are three conflicting claims about the always-switch strategy:
CLAIM I: your chance of winning is is 1/3, nothing has changed since the start.
CLAIM II: your chance of winning is 1/2, since the car is behind one of the two veiled stages.
CLAIM III: your chance of winning is 2/3, since it is the complement of the never-switch strategy.
(a) Find flaws in two of the claims.
(b) Set up a model to justify the unflawed claim. HINT: set up a sample space in which the sample
points are paths in a tree and levels of the tree corresponds to various choices and decisions in the
problem.
(c) Do we need the assumption that whenever the game-master has a choice of two stages to unveil,
he picks either one with equal probability? ♦

Exercise 2.3: The above 2 strategies are deterministic. Actually, there is another reasonable strategy to
examine. That is to flip a coin, and to switch only if it is heads. Analyze this randomized strategy.

♦

Exercise 2.4: Let us generalize the above game. The game begins with a car hidden behind one of m ≥ 4
possible stages. After you make your choice, the game-master unveils all but two stages. Of course,

3This problem has generated some public interest, including angry letters by professional mathematicians to the New York
Times claiming that there ought to be no difference in the two strategies described in the problem.
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the unveiled stages are all empty, and the two veiled stages always include one you picked.
(a) Analyze the always-switch strategy under the assumption that the game-master randomly picks
the other stage.
(b) Suppose you want to assume the game-master is really trying to work against you. How does your
analysis change? ♦

Exercise 2.5: The kind of probability space used in the above analysis is quite specialized in that it can be
organized into a finite decision tree. The nodes at a given level ` ≥ 0 correspond to a decision variable
x`. Each decision variable has a binary outcome (for simplicity). There are two players (0 and 1)
corresponding who must make decisions at alternate levels. Player 0 (resp. player 1) correspond to the
even (resp., odd) levels. There is a win/loss function w(σ) that decides for each sequence of decisions
whether player 1 wins. Suppose the game plan of player 0 is completely known (it can be probabilistic
or deterministic). Does there always exist an optimal strategy for player 1? ♦

End Exercises

§3. Random Functions and Variables

The concepts so far have not risen much above the level of “gambling and parlor games” (the pedigree
of our subject). Probability theory really takes off after we introduce the concept of random variables.
Example of a random variable: using running example (E1), it is simply a function of the form X : Ω→ R

where X(H) = 1 and X(T ) = 0. This random variable X has an expected (=average) value, namely,
E[X ] = Pr{X = H} ·X(H) + Pr{X = T } ·X(T ) = p · 1 + (1− p) · 0 = p.

But random variables are just a special kind “random function”. Let D be a set and (Ω, Σ, Pr) a
probability space. A random function over D is a function

f : Ω→ D

such that for each x ∈ D, the set f−1(x) is an event. So that we may speak of the probability of x,
viz., Pr(f−1(x)). We also call (Ω, Σ, Pr) the underlying probability space of f . We say f is uniformly
distributed on D if Pr(f−1(x)) = Pr(f−1(y)) for all x, y ∈ D. We sometimes use bold fonts (f instead of
f , etc) to denote random functions.

If the elements of D are objects of some category t of objects, we may also call f a random t object.
Examples: If D is some set of graphs we call f a random graph. For any set S, we call f a random
k-set of S if D =

(
S
k

)
. If D is the set of permutations of S, then f is a random permutation of S. More

generally, if D is some arbitrary set, we may call f a random D-element.

Discussion: The power of random objects is that they are composites of the individual objects of D.
For all many purposes, these objects are as good as the honest-to-goodness objects in D. Another view of
this phenomenon is to use the philosophical idea of alternative or possible worlds. Each ω ∈ Ω is a possible
world4 Then f(ω) is just the particular incarnation of f in the world ω.

Example: (Finite Field Space) Consider the uniform probability space on Ω = F 2 where F is any finite
field. For each x ∈ F , consider the random function

hx : Ω→ F,

hx(〈a, b〉) = ax + b, (〈a, b〉 ∈ Ω).
4Good thing too, ω can be confused with the letter w.
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We claim that hx is a random element of F , i.e., Pr{hx = i} = 1/|F | for each i ∈ F , This amounts to saying
that there are exactly |F | sample points 〈a, b〉 = ω such that hx(ω) = i. To see this, consider two cases: (1)
If x = 0 then clearly b = i and a can be arbitrarily chosen. (2) If x 6= 0, then for any choice of b, there is
unique choice of a, namely a = (i− b)x−1.

Example: (Random Graphs) Fix 0 ≤ p ≤ 1 and n ≥ 2. Consider the probability space where Ω =
{0, 1}m, m =

(
n
2

)
, Σ = 2Ω and for (b1, . . . , bm) ∈ Ω, Pr(b1, . . . , bm) = pk(1− p)m−k where k is the number of

1’s in (b1, . . . , bm). Once checks that Pr as defined is a probability function. Let Kn be the complete bigraph
on n vertices whose edges are labelled with the integers 1, . . . , m. Consider the random graph

Gn,p : Ω→ subgraphs of Kn (6)

where Gn,p(b1, . . . , bm) is the subgraph of Kn with precisely those edges that are labeled i where bi = 1.

The most important random functions arise as follows: a random variable (r.v.) of a probability space
(Ω, Σ, Pr) is an real function

X : Ω→ R

such that for all c ∈ R,
X−1(Hc) = {ω ∈ Ω : X(ω) ≤ c}

belongs to Σ, where Hc is a generator of the Euclidean Borel field B1. Sometimes the range of X is the
extended reals R ∪ {±∞}. It follows that for any Euclidean Borel set A ∈ B1, the set

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} (7)

is an event. This event is usually written
{X ∈ A}. (8)

In particular, X−1(c) is an event for all c ∈ R, and so a r.v. is, a fortiori, a random object. In fact, a r.v. is
just “a random real number”.

Convention. Writing (8) for (7) illustrates the habit of probabilists to avoid explicitly
mentioning sample points. More generally, probabilists will specify events by writing
{. . .X . . . Y . . .} where “. . .X . . . Y . . .” is some predicate on r.v.’s X, Y , etc. This really
denotes the event {ω ∈ Ω : . . . X(ω) . . . Y (ω) . . .}. For instance, {X ≤ 5, X + Y > 3}
refers to the event {ω ∈ Ω : X(ω) ≤ 5, X(ω)+Y (ω) > 3}. Moreover, instead of writing
Pr({. . .}), we simply write Pr{. . .}, where the pair of curly brackets reminds that {. . .}
is a set (which happens to be an event).

If X, Y are r.v.’s then so are

min(X, Y ), max(X, Y ), X + Y, XY, XY , X/Y

where Y 6= 0 in the last case.

All random variables in probability theory are either discrete or continuous, which we now define. A
r.v. X is discrete if the range of X is countable (this is automatic if Ω is countable). The special case5

where the range is {0, 1} is called a Bernoulli r.v.. We call X the indicator function of an event E
if X(ω) = 1 if ω ∈ E and X(ω) = 0 else. Thus Bernoulli functions and indicator functions are basically
synonymous.

5In another variant, the range is {+1,−1} and is used in discrepancy theory.
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A r.v. X is continuous if there exists a nonnegative function f(x) defined for all x ∈ R such that for
any Euclidean Borel set A ∈ B1,

Pr{X ∈ A} =
∫

A

f(x)dx

(cf. (8)). It follows that for any real a ≤ b, Pr{a ≤ X ≤ b} =
∫ b

a f(x)dx and hence Pr{X = a} = 0. We call
f(x) the density function of X .

As examples of random variables, suppose in running example (E1), if we define X(H) = 1, X(T ) = 0
then X is the indicator function of the “head event”. For (E2), let us define X(i) = i for all i = 1, . . . , 6.
If we have a game in which a player is paid i dollars whenever the player rolls an outcome of i, then X
represents “payoff function”.

Random Statistics. Random variables often arise as follows. A function C : D → R is called a statistic
of D where D is some set of objects. If g : Ω → D is a random object, we obtain the random variable
Cg : Ω→ R where

Cg(ω) = C(g(ω)).

Call Cg a random statistic of g.

For example, let g = Gn,p be the random graph in equation (6). and let C count the number of
Hamiltonian cycles in a bigraph. Then the random variable

Cg : Ω→ R (9)

is defined so that Cg(ω) is the number of Hamiltonian cycles in g(ω).

k-Wise Independence. We extend some concepts of independence from events to random variables.

A collection {X1, X2, . . . , Xn} of n r.v.’s is k-wise independent (some k ≥ 2) if for all c1, . . . , cn ∈ R,
the events {X1 ≤ c1}, . . . , {Xn ≤ cn} are k-wise independent. If k = 2, we say K is pairwise independent.
The collection K is independent if if is k-wise independent for all k = 2, . . . , n. An infinite collection of
r.v.’s is (k-wise) independent if every finite subcollection is (k-wise) independent.

Let D be a set. A set K = {f1, . . . , fn} of random D-objects is called an ensemble if the fi’s have a
common underlying probability space. If D is finite, we say K is k-wise independent if for any a1, . . . , ak ∈
D, Pr{f1 = a1, . . . , fk = ak} =

∏n
i=1 Pr{fi = ai}.

Example: (Finite Field Space) Recall the finite field space Ω = F 2 above. Let

K = {hx : x ∈ F} (10)

where hx(〈a, b〉) = ax + b as before. We have shown that each hx is a random element of F . We now claim
that the elements in K are pairwise independent. Fix x, y, i, j ∈ F and let n = |F |. Suppose x 6= y and
hx = i and hy = j. This means (

x 1
y 1

) (
a
b

)
=

(
i
j

)
.

The 2× 2 matrix is invertible and hence (a, b) has a unique solution. Hence

Pr{hx = i,hy = j} = 1/n2 = Pr{hx = i}Pr{hy = j},

as desired.
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Algorithmically, constructions of k-wise independent variables over an underlying probability space that
is small (in this case, |Ω| = p2) is important because it allows us to make certain probabilistic constructions
effective.

Exercises

Exercise 3.1: Compute the probability of the event {Cg = 0} where Cg is given by (9). Do this for
n = 2, 3, 4. ♦

Exercise 3.2: Consider the following (silly) randomized process, which is a sequence of probabilistic steps.
At each step, we roll a dice that has one of six possible outcomes: 1, 2, 3, 4, 5, 6. In the i-th step, if
the outcome is less than i, we stop. Otherwise, we go to the next step. The first step is i = 1. For
instance, we never stop after first step, and surely stop by the 7-th step. Let T be the random variable
corresponding to the number of steps.
(a) Set up the sample space, the event space, and the probability function for T .
(b) Compute the expected value of T . ♦

Exercise 3.3: Let U be a finite set, |U | = n, and Π(U) the set of permutations of U . Let S : Ω→ 2U be a
random subset of U and

P : Ω→
⋃

V⊆U

Π(V ).

We say P is a permutation of S if P (ω) ∈ Π(S(ω)) for all ω ∈ Ω. If, for each subset V ⊆ U
and π ∈ Π(V ), Pr{P = π|S = V } = 1/(m!) where m = |V |, then we call P a uniform random
permutation of S. Explicitly construct a probability space Ω and random functions P, S such that
P is a uniform random permutation of S. ♦

Exercise 3.4: Let K be the set of random elements in the finite field F given by (10).
(a) Show that K is not 3-wise independent.
(b) Generalize the example to construct a collection of k-wise independent random functions. ♦

Exercise 3.5: Let W (n, x) (where n ∈ N and x ∈ Zn) be a “witness” predicate for compositeness: if n is
composite, then W (n, x) = 1 for at least n/2 choices of x; if n is prime, then W (n, x) = 0 for all x.
Let W (n) be the random variable whose value is determined by a random choice of x. Let Wt(n) be
the random variable whose value is obtained as follows: randomly choose n values x1, . . . , xn ∈ Zn and
compute each W (n, xi). If any W (n, xi) = 1 then Wt(n) = 1 but otherwise Wt(n) = 0.
(a) If n is composite, what is the probability that Wt(n) = 1?
(b) Now we compute Wt(n) using somewhat less randomness: first assume t is prime and larger than
n. only randomly choose two values a, b ∈ Zt. Then we define yi = a · i + b(mod t). We evaluate Wt(n)
as before, except that we use y0, . . . , yt−1(mod n) instead of the xi’s. Lower bound the probability that
Wt(n) = 1 in this new setting. ♦

Exercise 3.6:
(a) If a collection of r.v.’s is k-wise independent, then it is also (k − 1)-wise independent.
(b) Let f1, . . . , fn be real functions fi : R → R and {X1, . . . , Xn} is a set of independent r.v.’s. If
fi(Xi) are also r.v.’s then {f1(X1), . . . , fn(Xn)} is also a set of independent r.v.’s. ♦

§4. Random Number Generation and Applications

c© Chee-Keng Yap April 21, 2003



§4. Random Numbers and Applications Lecture VIII Page 11

Without question, the most important primitive in any computational model that supports randomized
algorithms is the random number generator. This is a function which, when called with no arguments,
returns a real number in the unit interval [0, 1]. This defines a random variable U[0,1] which is uniformly
distributed over the unit interval. This is a purely theoretical construct. In practice, some discrete approxi-
mation to U[0,1] is used.

In most programming languages, or at least in the standard libraries for the language, there is a function
called random() (or perhaps rand()) which returns a machine representable number in the half-open interval
[0, 1), and whose distribution is a good approximation to the uniform distribution. Although our main interest
in random number generators is mainly in the context of randomized algorithms, it has remarkably many
other applications: simulation of natural phenomena (computer graphics effects, weather, etc), testing of
systems for defects, sampling of populations, decision making and in recreation (dice, card games, etc).

We want to address another basic primitive: random permutations. Fix a natural number n ≥ 2. Let
Sn denote the set of permutations on [1..n]. A random permutation P of Sn is just a random function p
such that Pr{p = π} = 1/n! for all π ∈ Sn. We may choose (Ω, Σ) = (Sn, 2Ω) as the underlying event space.

Our problem is that of constructing P starting from a random number generator. Here is an extremely
simple algorithm from Moses and Oakford (see [5, p. 139]).

RandomPermutation

Input: an array A[1..n].
Output: A random permutation of Sn stored in A[1..n].
1. for i = 1 to n do // Initialize array A
2. A[i] = i.
3. for i = n downto 2 do // Main Loop
4. X ← 1 + bi · random()c.
5. Exchange contents of A[i] and A[X ].

This algorithm takes linear time; it makes n− 1 calls to the random number generator and makes n− 1
exchanges of a pair of contents in the array. Here is the correctness assertion for this algorithm:

Lemma 1 Every permutation of [1..n] is equally likely to be generated.

Proof. The proof is as simple as the algorithm. Pick any permutation σ of [1..n]. Let A′ be the value of
the array A at the end of running this algorithm. So it is enough to prove that

Pr(A′ = σ) =
1
n!

.

Let Ei be the event {A′[i] = σ(i)}, for i = 1, . . . , n. Thus

Pr(A′ = σ) = Pr(E1E2E3 · · ·En−1En).

First, note that Pr(En) = 1/n. Also, Pr(En−1|En) = 1/(n− 1). In general, we see that

Pr(Ei|EnEn−1 · · ·Ei+1) =
1
i
.

The lemma now follows from an application of (5) which shows Pr(E1E2E3 · · ·En−1En) = 1/n!. Q.E.D.
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Note that the conclusion of the lemma holds even if we initialize the array A with any permutation of
[1..n]. This fact is useful if we need to computer another random permutation in the same array A.

While the above analysis is simple, it is instructive to ask what is the underlying probabily space?
Basically, if A′ is the value of the array at the end of the algorithm, then A′ is a random permutation in the
sense of §3. That is,

A′ : Ω→ Sn

where Ω is a suitable probability space and Sn is the set of n-permutations. We can view Ω as the set∏n
i=2[0, 1) where a typical ω ∈ Ω = (x2, x3, . . . , xn) tells us the sequence of values returned by the n−1 calls

to the random() function.

Remarks: Random number generation is an extensively studied topic: Knuth [5] is a basic reference.
The concept of randomness is by no means easily pinned down. From the complexity viewpoint, there is a
very fruitful approach to randomness called Kolmogorov Complexity. A comprehensive treatment is found
in Li and Vitányi [7].

§5. Expectation and Variance

Two important numbers are associated with a random variable: its “average value” and its “variance”
(likelihood of deviating from the average value).

If X is a discrete r.v. whose range is
{a1, a2, a3 . . .} (11)

then its expectation (or, mean) E[X ] is defined to be

E[X ] :=
∑
i≥1

ai Pr{X = ai}.

This is well-defined provided the series converges absolutely, i.e.,
∑

i≥1 |a1|Pr{X = ai} converges. If X is a
continuous r.v. with probability density f(x) then

E[X ] :=
∫ ∞

−∞
uf(u)du.

Note that if X is the indicator variable for an event A then

E[X ] = Pr(A).

Two Remarkable Properties of Expectation. The following two elementary properties of expectation
can often yield surprising consequences.

The first property is the linearity of expectation. This means that for all r.v.’s X, Y and α, β ∈ R:

E[αX + βY ] = αE[X ] + βE[Y ].

The remarkable fact is that X and Y are completely arbitrary – for instance, we need no independence
assumptions. In applications, we can often decompose a r.v. X into any linear combination of r.v.s
X1, X2, . . . , Xm. If we can compute the expections of each Xi, then by linearity of expectation, we ob-
tain the expection of X itself. Typically, X may be the running time of a n-step algorithm and Xi is the
expected time for the ith step.

The second property is that, from expectations, we can assert the existence of objects with certain
properties.
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Lemma 2 Suppose X is a discrete r. v. with finite expectation µ. If Ω is finite, then:

(i) There exists ω0, ω1 ∈ Ω such that
X(ω0) ≤ µ ≤ X(ω1). (12)

(ii) If X is non-negative, then
Pr{X ≤ 2µ} ≥ 1/2. (13)

In particular, if Pr{·} is uniform and Ω finite, then at least half of the sample points ω ∈ Ω satisfy
X(ω) ≤ 2µ.

Proof. Since X is discrete, let

µ = E[X ] =
∞∑

i=1

ai Pr{X = ai}.

(i) If there are arbitrarily negative ai’s then clearly ω0 exists; otherwise choose ω0 so that X(ω0) = inf{X(ω) :
ω ∈ Ω}. Likewise if there are arbitrarily large ai’s then ω1 exists, and otherwise choose ω1 so that X(ω1) =
sup{X(ω) : ω ∈ Ω}. In every case, we have chosen ω0 and ω1 so that the following inequality confirms our
lemma:

X(ω0) = X(ω0)
∑
ω∈Ω

Pr(ω) ≤
∑
ω∈Ω

Pr(ω)X(ω) ≤ X(ω1)
∑
ω∈Ω

Pr(ω) = X(ω1).

(ii) This is just Markov’s inequality. Q.E.D.

Let us apply this lemma to assert the existence of certain objects. Suppose we set up a random D object,

g : Ω→ D

and are interested in a certain statistic C : D → R. Define the random statistic Cg : Ω→ R as in (9). Then
there exists ω0 such that

Cg(ω0) ≤ E[Cg]

This means that the object g(ω0) ∈ D has the property C(g(ω0)) ≤ E[Cg].

Linearity of expectation amounts to saying that summing r.v.’s is commutative with taking expectation.
What about products of r.v.’s? If X, Y are independent then

E[XY ] = E[X ]E[Y ]. (14)

The requirement that X, Y be independent is necessary. As noted earlier, all multiplicative properties of
probability depends from some form of independence.

The jth moment of X is E[Xj]. If E[X ] is finite, then we define the variance of X to be

Var(X) := E[(X − E[X ])2].

Note that X − E[X ] is the deviation of X from its mean. It is easy to see that

Var(X) = E[X2]− E[X ]2.

The positive square-root of Var(X) is called its standard deviation and denoted σ(X) (so Var(X) is also
written σ2(X)). If X, Y are independent, then summing r.v.’s also commutes with taking variances. More
generally:
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Lemma 3 Let Xi (i = 1, . . . , n) be pairwise independent random variables with finite variances. Then

Var(
n∑
i

Xi) =
n∑

i=1

Var(Xi).

This is a straightforward computation, using the fact that E[XiXj ] = E[Xi]E[Xj] for i 6= j since Xi and Xj

are independent.

Distribution and Density. For any r.v. X , we define its distribution function to be FX : R → [0, 1]
where

FX(c) :=Pr{X ≤ c}, c ∈ R.

The importance of distribution functions stems from the fact that the basic properties of random variables
can be studied from their distribution function alone.

Two r.v.’s X, Y can be related as follows: we say X stochastically dominates Y , written

X � Y

if FX(c) ≤ FY (c) for all c. It is not hard to see (Exercise) that this implies E[X ] ≥ E[Y ] if X stochastically
dominates Y . If X � Y and Y � X then we say they are identically distributed, denoted

X ∼ Y.

A common probabilistic setting is a collection K of r.v.’s that is independent and with all the r.v.’s in K
sharing the same distribution. We then say K is independent and identically distributed (abbrev. i.i.d).
For instance, when Xi is the outcome of the ith toss of some fixed coin, then K = {Xi} is an i.i.d. family.

In general, a distribution function6 F (x) is a monotone non-decreasing real function such that F (−∞) = 0
and F (+∞) = 1. Sometimes, a distribution function F (x) is defined via a density function f(u) ≥ 0,
where

F (x) =
∫ x

−∞
f(u)du.

In case X is discrete, the density function fX(u) (of its distribution function FX) is zero at all but countably
many values of u. As defined above, a continuous r.v. X is specified by its density function.

Conditional Expectation. This concept is useful for computing expectation. if A is an event, define the
conditional expectation E[X |A] of X to be

∑
i≥1 ai Pr{X = ai|A}. In the discrete event space, we get

E[X |A] =
∑

ω∈A X(ω) Pr(ω)
Pr(A)

.

If B is the complement of A, then

E[X ] = E[X |A] Pr(A) + E[X |B] Pr(B).

More generally, if Y is another r.v., we define a new r.v. Z = E[X |Y ] where Z(ω) = E[X |Y = Y (ω)] for any
ω ∈ Ω. Thus Z(ω) depends only on Y (ω). We can compute the expectation of X using the formula

E[X ] = E[E[X |Y ]] (15)

=
∑
a∈R

E[X |Y = a] Pr{Y = a}. (16)

6Some authors calls the function Pr : Σ → [0, 1] a “(probability) distribution” on the set Ω. We avoid this terminology.
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For example, let Xi’s be i.i.d., and N be a non-negative integer r.v. independent of the Xi’s. What is the
expected value of

∑N
i=1 Xi?

E[
N∑

i=1

Xi] = E[E[
N∑

i=1

Xi|N ]]

=
∑
n∈N

E[
N∑

i=1

Xi|N = n] Pr{N = n}

=
∑
n∈N

nE[X1] Pr{N = n}

= E[X1]E[N ].

We can also use conditioning in computing variance, since E[X2)] = E[E[X2|Y ]].

Exercises

Exercise 5.1: Answer YES or NO to the following question. A correct answer is worth 5 points, but a
wrong answer gets you −3 points. Of course, if you do not answer, you get 0 points. “In a True/False
question, you get 5 points for correct answer, 0 points for not attempting the question and -3 points for
an incorrect guess. Suppose have NO idea what the answer might be. Should you attempt to answer
the question?”. ♦

Exercise 5.2: You face a multiple-choice question with 4 possible choices. If you answer the question, you
get 6 points if correct and -3 if wrong. If you do not attempt the question, you get -1 point. Should
you attempt to answer the question if you have no clue as to what the question is about? You must
justify your answer to receive any credit. NOTE: this is not a multiple choice question. ♦

Exercise 5.3: You (as someone who is designing an examination) wants to assign points to a multiple choice
question in which the student must pick one out of 5 possible choices. The student is not allowed to
ignore the question. How do you assign points so that (a) if a student has no clue, then the expected
score is −1 points and (b) if a student could eliminate one out of the 5 choices, the expected score is
0 points. ♦

Exercise 5.4: Compute the expected value of the r.v. Cg in equation (9) for small values of n (n = 2, 3, 4, 5).
♦

Exercise 5.5: You are charged c dollars for rolling a die, and if your roll has outcome i, you win i dollars.
What is the fair value of c? HINT: what is your expected win per roll? ♦

Exercise 5.6: (a) Professor Vegas introduces a game of dice in class (strictly for “object lesson” of course).
Anyone in class can play. To play the game, you pay $12 and roll a pair of dice. If the product of
the rolled values on the dice is n, then Professor Vegas pays you $ n. For instance, if you rolled the
numbers 5 and 6 then you make a profit of $18 = 30 − 12. Student Smart would not play, claiming:
the probability of losing money is more than the probability of winning money.
(a) What is right and wrong with Student Smart’s claim?
(b) Would you play this game? Justify. ♦
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Exercise 5.7: One day, Professor Vegas forgot to bring his pair of dice. He stills wants to play the game
in the previous exercise7 Professor Vegas decides to simulate the dice by tossing a fair coin 6 times.
Interpreting heads as 1 and tails as zero, this gives 6 bits which can be viewed as two binary numbers
x = x2x1x0 and y = y2y1y0. So x and y are between 0 and 7. If x or y is either 0 or 7 then the
Professor returns your $12 (the game is off). Otherwise, this is like the dice game in (a). What is the
expected profit of this game? ♦

Exercise 5.8: In the previous question, we “simulate” rolling a die by tossing three fair coins. Unfortunately,
if the value of the tosses is 0 or 7, we call off the game. Now, we want to continue tossing coins until
we get a value between 1 and 6.
(a) An obvious strategy is this: each time you get 0 or 7, you toss another three coins. This is repeated
as many times as needed. What is the expected number of coin tosses to “simulate” a die roll using
this method?
(b) Modify the above strategy to simulate a die roll with fewer coin tosses. You need to (i) justify that
your new strategy simulates a fair die and (ii) compute the expected number of coin tosses.
(c) Can you show what the the optimum strategy is? ♦

Exercise 5.9: In the dice game of the previous exercise, Student Smart decided to do another computation.
He sets up a sample space

S = {11, 12, . . . , 16, 22, 23, . . . , 26, 33, . . . , 36, 44, 45, 46, 55, 56, 66}.
So |S| = 21. Then he defines the r.v. X where X(ij) = i × j and computes the expectation of X
where using Pr(ij) = 1/21. What is wrong? Can you correct his mistake without changing his choice
of sample space? What is the alternative sample space? In what sense is Smart’s choice of S is better?

♦

Exercise 5.10: Prove if X � Y then E[X ] ≥ E[Y ]. Moreover, equality holds iff X ∼ Y . ♦

Exercise 5.11: (a) Show that in any graph with n vertices and e edges, there exists a bipartite subgraph
with e/2 edges. In addition, the bipartite subgraph have bnc vertices on one side and dne of the other.
Remark: depending on your approach, you may not be able to fulfil the additional requirement.
(b) Obtain the same result constructively (i.e., give a randomized algorithm). ♦

Exercise 5.12: (Cauchy-Schwartz Inequality) Show that E[XY ]2 ≤ E[X2]E[Y 2] assuming X, Y have finite
variances. ♦

Exercise 5.13: (Law of Unconscious Statistician) If X is a discrete r.v. with probability mass function
fX(u), and g is a real function then

E[g(X)] =
∑

u:fX (u)>0

g(u)fX(u).

♦

Exercise 5.14: If X1, X2, . . . are i.i.d. and N ≥ 0 is an independent r.v. that is integer-valued then
E[

∑N
i=1 Xi] = E[N ]E[X1] and Var(

∑N
i=1 Xi) = E[N ]Var(X1) + E[X ]2Var(N). ♦

7Surgeon-general’s warning: gambling is addicting. But Professors often take risks in the interest of advancing knowledge.
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Exercise 5.15: Suppose we have a fair game in which you can bet any dollar amount. If you bet $x, and
you win, you receive $x; and otherwise you lose $x.
(a) A well-known “gambling technique” is to begin by betting $1. Each time you lose, you double
the amount of the bet (to $2, $4, etc). You stop at the first time you win. What is wrong with this
scenario?
(b) Suppose you have a limited amount of dollars, and you want to devise a strategy in which the
probability of your winning is as big as possible. (We are not talking about your “expected win”.) How
would you achieve this? ♦

Exercise 5.16: [Amer. Math. Monthly] A set consisting of n men and n women are partitioned at random
into n disjoint pairs of people. Let X be the number of male-female couples that result. What is the
expected value and variance of X? HINT: let Xi be the indicator variable for the event that the ith
man is paired with a woman. To compute the variance, first compute E[X2

i ] and E[XiXj ] for i 6= j. ♦

Exercise 5.17: [Mean and Variance of a geometric distribution] Let X be the number of coin tosses needed
until the first head appears. Assume the probability of coming up heads is p. Use conditional probability
(15) to compute E[X ] and Var(X). HINT: let Y = 1 if the first toss is a head, and Y = 0 else. ♦

§6. Families of Random Variables

We now consider families of random variables over a common probability space. Two common situations
arise.

(i) Perhaps the most important situation is when a family K of r.v.’s is i.i.d.
(ii) Another situation is when we have a family {Xt : t ∈ T } of r.v.’s where T ⊆ R is the index set. We

think of T as time and Xt as describing the behavior of a stochastic phenomenon evolving over time. Such
a family is called a stochastic process. Usually T = R (continuous time) or T = N (discrete time).

We state two results that lay claim to being the fundamental theorems of probability theory. Both relate
to i.i.d. families. Let X1, X2, X3, . . . , be a countable i.i.d. family of Bernoulli r.v.’s. Let Sn :=

∑n
i=1 Xi and

pas Pr{X1 = 1}. It is intuitively clear that Sn approaches np as n→∞.

Theorem 4 ((Strong) Law of Large Numbers) For any ε > 0, with probability 1, there are only
finitely many sample points in the event

|Sn − np| > ε

Theorem 5 (Central Limit Theorem) See Ross

Some probability distributions. The above theorems do not make any assumptions about the underly-
ing distributions of the r.v.’s (therein lies their power). However, certain probability distributions are quite
common and it is important to recognize them. Below we list some of them. In each case, we only need to
describe the corresponding density functions f(u). In the discrete case, it suffices to specify f(u) at those
elementary events u where f(u) > 0.

• Binomial distribution B(n, p), with parameters n ≥ 1 and 0 < p < 1:

f(i) =
(

n

i

)
pi(1− p)n−i, (i = 0, 1, . . . , n).
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Sometimes f(i) is also written Bi(n, p) and corresponds to the probability of i successes out of n
Bernoulli trials. In case n = 1, this is also called the Bernoulli distribution. If X has such a distribution,
then

E[X ] = np, Var(X) = npq

where q = 1− p.

• Geometric distribution with parameter p, 0 < p < 1:

f(i) = p(1− p)i−1 = pqi−1, (i = 1, 2, . . .).

Thus f(i) may be interpreted as the probability of success after i Bernoulli trials. If X has such a
distribution, then E[X ] = 1/p and Var(X) = q/p2.

• Poisson distribution with parameter λ > 0:

f(i) = e−λ λi

i!
, (i = 0, 1, . . .).

We may view f(i) as the limiting case of Bi(n, p) where n → ∞ and np = λ. If X has such a
distribution, then E[X ] = Var(X) = λ.

• Uniform distribution over the real interval [a, b]:

f(u) =
{

1
b−a a < u < b

0 else.

• Exponential distribution with parameter λ > 0:

f(u) =
{

λe−λu u ≥ 0
0 else.

• Normal distribution with mean µ and variance σ2:

f(u) =
1√
2πσ

exp

[
−1

2

(
u− µ

σ

)2
]

.

In case µ = 0 and σ2 = 1, we call this the unit normal distribution.

Exercises

Exercise 6.1: Verify the values of E[X ] and Var(X) asserted for the various distributions of X .

♦

Exercise 6.2: Show that the density functions f(u) above truly define distribution functions: f(u) ≥ 0 and∫∞
−∞ f(u)du = 1. Determine the distribution function in each case. ♦

§7. Estimates and Inequalities

A fundamental skill in probabilistic analysis is estimating probabilities because they are often too intricate
to determine exactly. We list some useful inequalities and estimation techniques.
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Approximating the binomial coefficients. Recall Stirling’s approximation in Lecture II.2. Using such
bounds, we can show [8] that for 0 < p < 1 and q = 1− p,

G(p, n)e−
1

12pn− 1
12qn <

(
n

pn

)
< G(p, n) (17)

where
G(p, n) =

1√
2πpqn

p−pnq−qn.

Tail of the binomial distribution. The “tail” of the distribution B(n, p) is the following sum

n∑
i=λn

(
n

i

)
piqn−i.

It is easy to see the following inequality:

n∑
i=λn

(
n

i

)
piqn−i ≤

(
n

λn

)
pλn.

To see this, note that LHS is the probability of the event A ={There are at least λn successess in n coin
tosses}. For any choice x of λn out of n coin tosses, let Bx be the event that the chosen coin tosses are
successes. Then RHS is the sum of the probability of Bx, over all x. Clearly A = ∪xBx. But the RHS may
be an overcount because the events Bx need not be disjoint. We have the following upper bound [3]:

n∑
i=λn

(
n

i

)
piqn−i <

λq

λ− p

(
n

λn

)
pλnqµn

where λ > p and q = 1− p. This specializes to

n∑
i=λn

(
n

i

)
<

λ

2λ− 1

(
n

λn

)

where λ > p = q = 1/2.

Markov Inequality. Let X be a non-negative random variable. We have the trivial bound

Pr{X ≥ 1} ≤ E[X ]. (18)

For any real constant c > 0, Pr{X ≥ c} = Pr{X/c ≥ 1} ≤ E[X/c] = E[X ]/c. This proves8 the so-called
Markov inequality,

Pr{X ≥ c} ≤ E[X ]
c

. (19)

Observe that the Markov inequality is trivial unless E[X ] is finite and we choose c > E[X ].

Chebyshev Inequality. It is also called the Chebyshev-Bienaymé inequality since it originally appeared
in a paper of Bienaymé in 1853 [4, p. 73]. With any real c > 0,

Pr{|X | ≥ c} = Pr{X2 ≥ c2} ≤ E[X2]
c2

(20)

8Another proof uses the Heaviside function H(x) that is the 0-1 function given by H(x) = 1 if and only if x > 0. We have
the trivial inequality H(X−c) ≤ X

c
Taking expections on both sides yields the Markov inequality since E[H(X−c)] = Pr{X ≥ c}.
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by an application of Markov inequality. Another form of this inequality (derived in exactly the same way) is

Pr{|X − E[X ]| ≥ c} = Pr{(X − E[X ])2 ≥ c2} ≤ Var(X)
c2

. (21)

Sometimes Pr{|X−E[X ]| ≥ c} is called the tail probability of X . By a trivial transformation of parameters,
equation (21) can also written as

Pr{|X − E[X ]| ≥ c
√
Var(X)} ≤ 1

c2
. (22)

This form is useful in statistics because it bounds the probability of X deviating from its mean by some
fraction of the standard deviation,

√
Var(X).

Let us give an application of Chebyshev’s inequality:

Lemma 6 Let X be a r.v. with mean E[X ] = µ ≥ 0.
(a) Then

Pr{X = 0} ≤ Var(X)
µ2

.

(b) Suppose X =
∑n

i=1 Xi where the Xi’s are pairwise independent Bernoulli r.v.s with E[Xi] = p (and
q = 1− p) then

Pr{X = 0} ≤ q

np
.

Proof. (a) Since {X = 0} ⊆ {|X − µ| ≥ µ}, we have

Pr{X = 0} ≤ Pr{|X − µ| ≥ µ} ≤ VarX

µ2

by Chebyshev.
(b) It is easy to check that Var(Xi) = pq. Since the Xi’s are independent, we have Var(X) = npq. Also
E[X ] = µ = np. Plugging into the formula in (a) yields the claimed bound on Pr{X = 0}. Q.E.D.

Part (b) is useful in reducing the error probability in a certain class of randomized algorithms called
RP -algorithms. The outcome of an RP -algorithm A may be regarded as a Bernoulli r.v. Xi which has value
1 or 0. If Xi = 1, then the algorithm has no error. If Xi = 0, then the probability of error is at most p
(0 ≤ p < 1). We can reduce the error probability in RP -algorithms by repeating its computation n times
and output 0 iff each of the n repeated computations output 0. Then part (b) bounds the error probability
of the iterated computation. We will see several such algorithms later (e.g., primality testing in §XIX.2).

Jensen’s Inequality. Let f(x) be a real function. By definition, f is convex means that for all n,

f(
n∑

i=1

pixi) ≤
n∑

i=1

pf(xi)

where
∑n

i=1 pi = 1 and pi ≥ 0. If X and f(X) are random variables then

f(E[X ]) ≤ E[f(X)].

Let us prove this for the case when X has takes on finitely many values xi with probability pi. Then
E[X ] =

∑
i pixi and

f(E[X ]) = f(
∑

i

pixi) ≤
∑

i

pif(xi) = E[f(X)].
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For instance, if r ≥ 1 then E[|X |r] ≥ (E[|X |])r.

Exercises

Exercise 7.1: Verify the equation (17). ♦

Exercise 7.2: Describe the class of non-negative random variables for which Markov’s inequality is tight.
♦

Exercise 7.3: Chebyshev’s inequality is the best possible. In particular, show an X such that Pr{|X −
E[X ]| > e} = Var(X)/e2. ♦

§8. Chernoff Bounds

Suppose we wish an upper bound on the probability Pr{X ≥ c} where X is an arbitrary r.v.. To apply
Markov’s inequality, we need to convert X to a non-negative r.v. One way is to use the r.v. X2, as in the
proof of Chebyshev’s inequality. The technique of Chernoff converts X to the Markov situation by using

Pr{X ≥ c} = Pr{eX ≥ ec}.

Since eX is a non-negative r.v., we conclude from Markov’s inequality (19) that

Pr{X ≥ c} ≤ e−cE[eX ]. (23)

We can further exploit this trick: for any positive number t > 0, we have Pr{X ≥ c} = Pr{tX ≥ tc}, and
proceding as before, we obtain

Pr{X ≥ c} ≤ e−ctE[etX ]
= E[et(X−c)].

Finally, the so-called Chernoff bound [1] is given by choosing t to minimize the right-hand side of this
inequality. This proves:

Lemma 7 (Chernoff Bound) For any r.v. X and real c,

Pr{X ≥ c} ≤ m(c). (24)

where
m(c) = mX(c) := inf

t>0
E[et(X−c)]. (25)

More generally, any bound that are derived from (24) is also called a Chernoff bound. We now derive some
Chernoff bounds under various assumptions.

Let X1, . . . , Xn be independent and
S = X1 + · · ·+ Xn.
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It is easily verified that then etX1 , . . . , etXn (for any constant t) are also independent. Then equation (14)
implies

E[etS ] = E[
n∏

i=1

etXi ] =
n∏

i=1

E[etXi ].

(A) Suppose that, in addition, the X1, . . . , Xn are i.i.d., and m(c) is defined as in (25). This shows

Pr{S ≥ nc} ≤ e−nctE[etS ], (t > 0)
≤ [m(c)]n.

This is a generalization of (24).

(B) Assume S has the distribution B(n, p). It is not hard to compute that

m(c) =
(p

c

)c
(

1− p

1− c

)1−c

. (26)

Then for any 0 < ε < 1:

Pr{S ≥ (1− ε)np} ≤
(

1
1− ε

)(1−ε)np (
1− p

1− (1 − ε)p

)n−(1+ε)np

.

We still need to make this bound more convenient for application:

Pr{S ≥ (1 + ε)np} ≤ exp(−ε2np/3) (27)
Pr{S ≤ (1− ε)np} ≤ exp(−ε2np/2) (28)

(29)

Need the ≤ and ≥ version of Chernoff bound... INCOMPLET

(C) Now suppose the Xi’s are independent Bernoulli variables where Pr{Xi = 1} = pi (0 ≤ pi ≤ 1) and
Pr{Xi = 0} = 1− pi for each i. Then

E[Xi] = pi, µ := E[S] =
n∑

i=1

pi.

Fix any δ > 0. Then

Pr{S ≥ (1 + δ)µ} ≤ m((1 + δ)µ)
= inf

t>0
E[et(X−(1+δ)µ)]

= inf
t>0

E[etX ]
e(1+δ)µ

.

Estimating a Probability and Hoeffding Bound. Consider the natural problem of estimating p (0 <
p < 1) where p is the probability that a given coin will show up heads in a toss. The obvious solution is
to choose some reasonably large n, toss this coin n times, and estimate p by the ratio h/n where h is the
number of times we see heads in the n coin tosses.

This problem is still not well-defined since we have no constraints on n. So assume our goal is to satisfy
the bound

Pr{|p− (h/n)| > δ} ≤ ε (30)
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where δ is the precision parameter and ε is a bound on the error probability. Given δ and ε, (0 <
δ, ε < 1), we now have a well-defined problem. This problem seems to be solved by the Chernoff bound (B)
in (27) where S = X1 + · · ·Xn is now interpreted to be h. Then

{|p− (h/n)| > δ} = {|np− h| > nδ} = {|np− S| > nδ}
If we substitute δ with pε, then we obtain

Pr{|p− (h/n)| > δ} = Pr{|np− S| > nδ}
= Pr{|S − np| > npε}
≤ 2 exp(−

The problem is that the p that we are estimating appears on the right hand side. Instead, we need the
following Hoeffding bound:

Pr{S > np + δ} ≤ exp−nδ2/2 (31)
Pr{S < np− δ} ≤ exp−nδ2/2 (32)

Pr{|S < np| > δ} ≤ 2 exp−nδ2/2 (33)

Comparing the usual Chernoff bounds with the Hoeffding bound, we see that the former bound the relative
error in the estimate while the latter concerns absolute error.

For a survey of Chernoff Bounds, see T. Hagerub and C. Rüb, “A guided tour of Chernoff Bounds”,
Information Processing Letters 33(1990)305–308.

Exercises

Exercise 8.1: Verify the equation (26). ♦

Exercise 8.2: Obtain an upper bound on Pr{X ≤ c} by using Chernoff’s technique. HINT: Pr{X ≤ c} =
Pr{tX ≥ tc} where t < 0. ♦

Exercise 8.3: Show the following:
i) Bonferroni’s inequality,

Pr(AB) ≥ Pr(A) + Pr(B)− 1.

ii) Boole’s inequality,

Pr(∪n
i=1Ai) ≤

n∑
i=1

Pr(Ai).

(This is trivial, and usually used without acknowledgement.) iii) For all real x, e−x ≥ 1 − x with
equality only if x = 0.
iv) 1 + x < ex < 1 + x + x2 which is valid for |x| < 1.

♦

Exercise 8.4: Kolmogorov’s inequality: let X1, . . . , Xn be mutually independent with expectation E[Xi] =
mi and variance Var(Xi) = vi. Let Si = X1 + · · ·+Xi, Mi = E[Si] = m1 + · · ·+mi and Vi = Var(Si) =
v1 + · · ·+ vi. Then for any t > 0, the probability that the n inequalities

|Si −Mi| < tVn, i = 1, . . . , n,

holds simultaneously is at least 1− t−2. ♦
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Exercise 8.5: We want to process a sequence of requests on a single (initially empty) list. Each request
is either an insertion of a key or the lookup on a key. The probability that any request is an insertion
is p, 0 < p < 1. The cost of an insertion is 1 and the cost of a lookup is m if the current list has m
keys. After an insertion, the current list contains one more key.
(a) Compute the expected cost to process a sequence of n requests.
(b) What is the approximate expected cost to process the n requests if we use a binary search tree
instead? Assume that the cost of insertion, as well as of lookup, is log2(1 + m) where m is the number
of keys in the current tree. NOTE: If L is a random variable (say, representing the length of the current
list), assume that E[log2 L] ≈ log2 E[L], (i.e., the expected value of the log is approximately the log of
the expected value).
(c) Let p be fixed, n varying. Describe a rule for choosing between the two datastructures. Assuming
n� 1� p, give some rough estimates (assume ln(n!) is approximately n ln n for instance).
(d) Justify the approximation E[log2 L] ≈ log2 E[L] as reasonable. ♦

§9. Generating Functions

In this section, we assume that our r.v.’s are discrete with range N = {0, 1, 2, . . .}.

This powerful tool of probabilistic analysis was introduced by Euler (1707-1783). If a0, a1, . . . , is a
denumerable sequence of numbers, then its (ordinary) generating function is the power series

G(t) := a0 + a1t + a2t
2 + · · · =

∞∑
i=0

ait
i.

If ai = Pr{X = i} for i ≥ 0, we also call G(t) = GX(t) the generating function of X . We will treat G(t)
purely formally, although under certain circumstances, we can view it as defining a real (or complex) function
of t. For instance, if G(t) is a generating function of a r.v. X then

∑
i≥0 ai = 1 and the power series converges

for all |t| ≤ 1. The power of generating functions comes from the fact that we have a compact packaging of
a potentially infinite series, facilitating otherwise messy manipulations. Differentiating (formally),

G′(t) =
∞∑

i=1

iait
i−1,

G′′(t) =
∞∑

i=2

i(i− 1)ait
i−2.

If G(t) is the generating function of X , then

G′(1) = E[X ], G′′(1) = E[X2]− E[X ].

It is easy to see that if G1(t) =
∑

i≥0 ait
i and G2(t) =

∑
i≥0 bit

i are the generating functions of indepen-
dent r.v.’s X and Y then

G1(t)G2(t) =
∑
i≥0

ti
i∑

j=0

ajbi−j =
∑
i≥0

tici

where ci = Pr{X + Y = i}. Thus we have: the product of the generating functions of two independent
random variables X and Y is equal to the generating function of their sum X + Y . This can be generalized
to any finite number of independent random variables. In particular, if X1, . . . , Xn are n independent coin
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tosses (running example (E1)), then the generating function of Xi is Gi(t) = q + pt where q := 1− p. So the
generating function of the r.v. Sn :=X1 + X2 + · · ·+ Xn is

(q + pt)n =
n∑

i=0

(
n

i

)
piqn−iti.

Thus, Pr{Sn = i} =
(
n
i

)
piqn−i and Sn has the binomial distribution B(n, p).

Moment generating function. The moment generating function of X is defined to be

φX(t) := E[etX ] =
∑
i≥0

aie
it.

This is sometimes more convenient then the ordinary generating function. Differentiating n times, we see
φ

(n)
X (t) = E[XnetX ] so φ(n)(0) is the nth moment of X . For instance, if X is B(n, p) distributed then

φX(t) = (pet + q)n.

Exercises

Exercise 9.1:
(a) What is the generating function of the r.v. X where {X = i} is the event that a pair of independent
dice roll yields a sum of i (i = 2, . . . , 12)?
(b) What is the generating function of c0, c1, . . . where ci = 1 for all i? Where ci = i for all i? ♦

Exercise 9.2: Determine the generating functions of the following probability distributions: binomial, ge-
ometric, poisson. ♦

Exercise 9.3: Let c0 = 0 and c1 be some constant. For n ≥ 2, consider the recurrence

cn =
n∑

i=1

cicn−i.

(a) If G(X) =
∑

i≥0 ciX
i is the generating function of the cn’s, show that

G(X) =
1±√1− 4c1X

2
.

HINT: what is the connection between G(X)2 and G(X)?
(b) Using the binomial theorem for (1− x)1/2 determine the formula for cn (as a function of c1.
(c) What is the connection between ci and the Catalan numbers (Lecture VI). ♦

Exercise 9.4: Compute the mean and variance of the binomial distributed, exponential distributed and
Poisson distributed r.v.’s using generating functions. ♦
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