
§1. Longest Common Subsequence Lecture VII Page 1

Lecture VII

DYNAMIC PROGRAMMING

We introduce an algorithmic paradigm called dynamic programming. It was popularized by Richard
Bellman, circa 1954. The word “programming” here, as in the term “linear programming”, has the conno-
tation of a systematic method for solving problems. The term is even identified1 with the filling-in of entries
in a table. The semantic shift from this to our contemporary understanding of the word “programming” is
an indication of the progress in the field of computation.

Linear Bin Packing, again. Recall the linear bin packing problem from Chapter IV. The input is
(M, w) where w = (w1, . . . , wm) is a sequence of numbers satisfying wi ≤ M . We want to partition w into
the minimum number of subgroups of the from w(i, j) = (wi+1, . . . , wj), 0 ≤ i ≤ j ≤ n, of size

∑j
`=i+1 w` at

most M . We now allow the wi’s to be negative. The greedy algorithm breaks down in this case. However,
it is easy to give an O(n2) algorithm. But first, we must generalize the problem so that, when solving the
problem (M, w), we also solve the subproblems (M, w(0, i)) for all i = 1, . . . , n. For instance, after solving
(M, (w1, w2, w3)), we assume that the solutions to (M, (w1, w2)) and (M, (w1)) are also known.

Now it is easy to see that from a solution of (M, w(0, n − 1)), we can solve (M, w) in O(n) time. Thus
the overall complexity is T (n) = O(n) + T (n− 1) = O(n2).

This is a typical dynamic program solution. What features do we see here? First, from a standard
problem (M, w), we generated a polynomial number of subproblems (M, w(0, i)), i = 1, . . . , n. Second,
from the solutions to all the smaller subproblems, we can reconstruct the solution to the main problem in
polynomial time (in this case, O(n) time).

§1. Longest Common Subsequence Problem

We consider a simple problem on strings. Throughout this chapter, we fix some alphabet Σ and strings
are just elements of Σ∗. Let X = x1x2 · · ·xm be a string where the xi’s are letters (or symbols) from some
alphabet. The length of X is m, denoted |X |. The ith letter of X is denoted X [i] = xi (i = 1, . . . , m). A
subsequence Z = z1z2 · · · zk of X is a string such that for some

1 ≤ i1 < i2 < · · · < ik ≤ m

we have Z[`] = X [i`] for all ` = 1, . . . , k. For example, ln, lg and log are subsequences of the string long.
In the special case where ij = i1 + j − 1 (for all j = 1, . . . , k), the subsequence Z is called a substring.

A common subsequence of X, Y is a string Z = z1z2 · · · zk that is a subsequence of both X and Y .
We further call Z a longest common subsequence if its length |Z| = k is maximum among all common
subsequences of X and Y . Since the longest common subsequence may not be unique, let LCS(X, Y )
denote the set of longest common subsequences of X, Y . Remark that there is multiset form of LCS(X, Y ),
but that is treated in the exercises. Also, let λ(X, Y ) := |LCS(X, Y )| and L(X, Y ) be the length of any
Z ∈ LCS(X, Y ). Note that λ(X, Y ) ≥ 1 since “at worst”, LCS(X, Y ) is the singleton comprising the empty
string. There are several versions of the longest common subsequence (LCS) problem. Given two
strings

X = x1x2 · · ·xm, Y = y1y2 · · · yn,

the problem is to compute (respectively) one of the following:
1Such tables are sometimes filled out by deploying a row of human operators, each assigned to filling in some specific table

entries and to pass on the partially-filled table to the next person.

c© Chee-Keng Yap March 31, 2003



§1. Longest Common Subsequence Lecture VII Page 2

• (Length version) The function L(X, Y );

• (Instance version) Any string Z in the set LCS(X, Y );

• (Cardinality version) The function λ(X, Y ).

• (Set version) The set LCS(X, Y ).

We will mainly focus on the first two versions. The last version can be exponential if members of the set
LCS(X, Y ) is explicitly written out; we may be willing to accept some reasonably explicit2 representation
of LCS(X, Y ). We will say about representations of LCS(X, Y ) below.

For example, if
X = longest, Y = length (1)

then LCS(X, Y ) = {lngt}, λ(X, Y ) = 1 and L(X, Y ) = 4. A brute force solution to the length version of
the LCS problem would be to list all subsequences of length ` (for ` = m, m− 1, m− 2, . . . , 2, 1) of X , and
for each subsequence to check if it is also a subsequence of Y . This is an exponential algorithm since X has
2m subsequences.

The following is a simple but crucial observation. Let us write X ′ for the prefix of X obtained by dropping
the last symbol of X . This notation assumes |X | > 0 so that |X ′| = |X |−1. It is easy to verify the following
formula for L(X, Y ):

L(X, Y ) =




0 if m = 0 or n = 0
1 + L(X ′, Y ′) if xm = yn

max{L(X ′, Y ), L(X, Y ′)} if xm 6= yn

(2)

There is a subtlety in this formula when xm = yn. The “obvious” formula for this case is

L(X, Y ) = max{1 + L(X ′, Y ′), L(X ′, Y ), L(X, Y ′)}.
The right hand side is simplified to the form in (2) because

L(X ′, Y ) ≤ 1 + L(X ′, Y ′),

and a similar inequality involving L(X, Y ′). The formula (2) constitutes the “dynamic programming prin-
ciple” for the LCS problem – it expresses the solution for inputs of size N = |X | + |Y | in terms of the
solution for inputs of sizes ≤ N − 1. We will discuss the dynamic programming principle in §4. There is a
corresponding formula for LCS(X, Y ):

LCS(X, Y ) =




{∅} if m = 0 or n = 0
LCS(X ′, Y ′)xm if xm = yn

LCS(X ′, Y ) if xm 6= yn and L(X ′, Y ) > L(X, Y ′)
LCS(X, Y ′) if xm 6= yn and L(X, Y ′) > L(X ′, Y )
LCS(X, Y ′) ∪ LCS(X ′, Y ) if xm 6= yn and L(X, Y ′) = L(X ′, Y )

(3)

For any string X and natural number i ≥ 0, let Xi denote the prefix of X of length i (if i > |X |, let
Xi = X). The dynamic programming principle for LCS(X, Y ) suggests studying the following collection of
subproblems:

L(Xi, Yj), (i = 0, . . . , m; j = 0, . . . , n).

There are O(mn) such subproblems. Note that X0 is the empty string ε, so that

LCS(X0, Yj) = {ε}, L(X0, Yj) = 0. (4)
2Of course, the pair (X, Y ) itself is an implicit representation of LCS(X, Y ). Hence “reasonably explicit” means that we

can confirm membership in LCS(X, Y ), or enumerate the members of LCS(X, Y ), in a reasonably efficient manner.

c© Chee-Keng Yap March 31, 2003



§1. Longest Common Subsequence Lecture VII Page 3

Simplification: From the above recurrence equations, we see that the flow of control
of our algorithm for LCS(X, Y ) is driven by the function L(X, Y ). In fact, both equa-
tions (2) and (3) share a common flow of control. Therefore, if we have an algorithm
for L(X, Y ), it will be easy to insert some simple modifications to derive an algorithm
for LCS(X, Y ). Hence, we will first develop the algorithm for the simpler problem
of L(X, Y ). Such a simplifying step is typical of solutions that exploit the dynamic
programming approach.

Here now is the dynamic programming solution for L(X, Y ). The algorithm sets up an (1 + m)× (1 + n)
matrix L[0..m, 0..n] where L[i, j] is to store the value L(Xi, Yj). We fill in the entries of this matrix as
follows. First fill in the 0th column and 0th row with zeros, as noted in (4). Now fill in successive rows, from
left to right, using equation (2) above.

In illustration, we extend (no pun in-tended) the above example (1) to the strings X = lengthen and
Y = elongate:

e l o n g a t e

0 0 0 0 0 0 0 0 0
l 0
e 0
n 0 x
g 0 1 + x
t 0
h 0
e 0 u
n 0 v max(u, v)

We illustrate the formula (3) in action in two entries: the entry corresponding to the ‘g’-row and ‘g’-column is
filled with 1+x where x is the entry in the previous row and column. The entry corresponding to last row and
last column is max(u, v) where u and v are the two adjacent entries. [It turns out that x = 2, u = 5, v = 4.]
The reader may verify that L(X, Y ) = 5 and LCS(X, Y ) = {lngte, engte} in this example. We leave as an
exercise to program this algorithm in your favorite language.

Complexity Analysis. Each entry is filled in constant time. Thus the overall time complexity is Θ(mn).
The space is also Θ(mn). Actually, it is not hard to see that the space O(min{m, n}) suffices.

Extensions. We said that it should be easy to modify the code for computing L(X, Y ) so that you can
find members of LCS(X, Y ). Let us use this observation: each entry L[i, j] derives its values from one of
the values in L[i − 1, j], L[i, j − 1], L[i− 1, j − 1]. Keep track of this information by using another matrix
M [1..m, 1..n] with the following entries. If xi = yj then M [i, j] = 0, and if xi 6= yj then

M [i, j] =




1 if L[i, j] = L[i− 1, j] > L[i, j − 1],
2 if L[i, j] = L[i, j − 1] > L[i− 1, j],
3 if L[i, j] = L[i− 1, j] = L[i, j − 1].

The matrix can be filled in as we fill in the matrix L. Subsequently, we can easily use M find a member
or enumerate all members of LCS(X, Y ). Moreover, given any Z, we can check if Z ∈ LCS(X, Y ) (how?).
In this sense, we may say M (together with X, Y ) is a reasonably explicit representation of LCS(X, Y ).
Basically, what we construct is a compressed trie for LCS(X, Y ) However, this trie is really a dag (directed
acyclic graph) of size O(mn).

c© Chee-Keng Yap March 31, 2003



§1. Longest Common Subsequence Lecture VII Page 4

Improvements. There are various ways to improve the basic algorithm. One is to exploit knowledge
about the alphabet. For instance, Paterson and Masek gives an algorithm with Θ(mn/ log(min(m, n))) time
when the alphabet of the strings is bounded.

Our algorithm fill in the entries of the matrix L in a bottom-up fashion. We can also fill them in a top-
down fashion. Namely, we begin by trying to fill the entry L[m, n]. There are 2 possibilities: (i) If xm = yn,
we must recursively fill in L[m− 1, n− 1] and then use this value to fill in L[m, n]. (ii) Otherwise, we must
recursively fill in L[m−1, n] and L[m, n−1] first. In general, while trying to fill in L[i, j] we must first check
if the entry is already filled in (why?). If so, we can return the value at once. Clearly, this approach may
lead to much fewer than mn entries being looked at. We leave the details to an exercise.

Applications. Computational problems on strings has been studied since the early days of computer
science. One primary motivation was their application in text editors. For instance, the problem of finding
a pattern pattern in a larger string is a basic task in text editors. The advent of computational genomics
in the 1990’s has brought new attention to problems on strings. To understand this application, we need to
recall that the fundamental unit of study here is the DNA, where a DNA can be regarded as a string over
an alphabet of four letters: A, C, G, T. These corresponds to the four bases: adenine, guanine, cytosine and
thymine. DNA’s can be used to identify species as well as individuals. More generally, the variations across
species can be used as a basis for measuring their genetic similarity. The LCS problem is one of many that
has been formulated to measure such similarities. We will see another formulation in the next section.

Exercises

Exercise 1.1: Find the set LCS(X, Y ) where

X = 00110011, Y = 10100101.

Show your working (the matrix) and justify your method of extracting the longest common subse-
quences. ♦

Exercise 1.2: Compute LCS(X, Y ) for X = AATTCCCCGACTGCAATTCACGCACC and Y =
GGCTTTTATTCTCCCTGTAAGT. Note: these are DNA sequences from a modern human and a Ne-
anderthal, respectively. ♦

Exercise 1.3:
(a) Give a direct recursive algorithm for computing L(X, Y ) based on equation (2) and show that it
takes exponential time. (In other words, equation (2) alone does not ensure efficiency of solution.)
(b) Let lcs(X, Y ) denote any member of LCS(X, Y ). Give the analogue of (3) for lcs(X, Y ). ♦

Exercise 1.4: Let S = {X1, . . . , Xk} be a set of strings. A string Z such that each Xi is a subsequence
of Z is called a superstring of S. We can consider the corresponding “shortest superstring problem”
for any given S. In some sense, this is the dual of the LCS problem. Is there a dynamic programming
solution for the shortest superstring problem? ♦

Exercise 1.5: Joe Quick observed that the recurrence (2) for computing L(X, Y ) would work just as well
if we look at suffixes of X, Y (i.e., by omitting prefixes). On further reflection, Joe concluded that
we could double the speed of our algorithm if we work from both ends of our strings! That is, for

c© Chee-Keng Yap March 31, 2003



§1. Longest Common Subsequence Lecture VII Page 5

0 ≤ i < j, let Xi,j denote the substring xixi+1 · · ·xj−1xj . Similarly for Yk,` where 0 ≤ k < `. Derive
an equation corresponding to (2) and describe the corresponding algorithm. Perform an analysis of
your new algorithm, to confirm and or reject the Quick Hypothesis. ♦

Exercise 1.6: What are the forbidden configurations in the matrix M? For instance, we have the following
constraints: 0 ≤M [i, j]−M [i−1, j]≤ 1 and 0 ≤M [i, j]−M [i, j−1] ≤ 1. Also, M [i, j] = M [i−1, j] =
M [i, j − 1] = M [i − 1, j − 1] is impossible. Note that these constraints are based only on adjacency
matrix entries. Is it possible to exactly characterize the set of all allowable configurations of M based
on such adjacency constraints? ♦

Exercise 1.7:
(a) Write the code in your favorite programming language to fill the above table for L(X, Y ).
(b) Modify the code so that the program retrieves some member of LCS(X, Y ).
(c) Modify (b) so that the program also reports whether |LCS(X, Y )| > 1. Remember that we do not
count duplicates in LCS(X, Y ). ♦

Exercise 1.8: Let X, Y be strings. Clearly, L(XX, Y Y ) ≥ 2L(X, Y ).
(a) Give an example where the inequality is strict.
(b) Prove that L(XX, Y ) ≤ 2L(X, Y ) and this is the best possible.
(c) Prove that L(XX, Y Y ) ≤ 3L(X, Y ). How tight is this upper bound? ♦

Exercise 1.9: Suppose we have a parallel computer with unlimited number of processors.
(a) How many parallel steps would you need to solve the L(X, Y ) problem using our recurrence (2)?
(b) Give a solution to Joe Quick’s idea (previous exercise) of having an algorithm that runs twice as
fast on our parallel computer. Hint: work the last two symbols of each input string X, Y in one step.

♦

Exercise 1.10: Let λ(X, Y ) denote size of the set LCS(X, Y ) and λ(m, n) be the maximum of λ(X, Y )
when |X | = m, |Y | = n. Finally let λ(n) = λ(n, n).
(a) Compute λ(n) for n = 1, 2, 3, 4.
(b) Give upper and lower bounds for λ(n). ♦

Exercise 1.11: Let LCS′(X, Y ) be the multiset of all the longest common subsequences of X and Y . Let
λ′(n, m) and λ′(n) be defined as in the previous exercise. Re-do the previous exercise for λ′(n). ♦

Exercise 1.12: Modify the algorithm for L(X, Y ) to compute the following functions:
(a) λ′(X, Y )
(b) λ(X, Y ) ♦

Exercise 1.13: Instead of the bottom-up filling of tables, let us do a recursive top-down approach. That
is, we begin by trying to fill in the entry L[m, n]. If xm = yn, we recursively try to fill in the entries
for L[m− 1, n− 1]; otherwise, recursively solve for L[m− 1, n] and L[m, n− 1]. Can you quantify the
improvements in this approach? ♦

Exercise 1.14: (a) Solve the problem of computing the length L(X, Y, Z) of the longest common subse-
quence of three strings X, Y, Z.
(b) What can you say about the complexity of the further generalization to computing L(X1, . . . , Xm)
(for m ≥ 3). ♦

c© Chee-Keng Yap March 31, 2003



§2. Edit Distance Problem Lecture VII Page 6

Exercise 1.15: A common subsequence of X, Y is said to be maximal if it is not the proper subsequence
of another common subsequence of X, Y . For example, let is a maximal subsequence of longest and
length. Let LCS∗(X, Y ) denotes the set of maximal common subsequences of X and Y . Design an
algorithm to compute LCS∗(X, Y ). ♦

Exercise 1.16: A Davenport-Schinzel sequence on n symbols (or, n-sequence for short) is a string
X = x1, . . . , x` ∈ {a1, . . . , an}∗ such that xi 6= xi+1. The order of X is the smallest integer k such
that there does not exist a subsequence of length k + 2 of the form

aiajaiaj · · ·aiajai or aiajaiaj · · ·ajaiaj

where ai and aj alternate and ai 6= aj . Define λk(n) to be the maximum length of a n-sequence of
order at most k.
(a) Show that λ1(n) = n and λ2(n) = 2n− 1. NOTE: for an order 2 string, a symbol may n times.
(b) Suppose X is an n-sequence of order 3 in which an appears at most λ3(n)/n times. After erasing
all occurrences of an, we may have to erase occurrences ai (i = 1, . . . , n − 1) in case two copies of ai

becomes adjacent. We erase as few of these ai’s as necessary so that the result X ′ is a (n−1)-sequence.
Show that |X | − |X ′| ≤ λ3(n)/n + 2.
(c) Show that λ3(n) = O(n log n) by solving a recurrence for λ3(n) implied by (b).
(d) Give an algorithm to determine the order of an n-sequence. Bound the complexity T (n, k) of your
algorithm where n is the length input sequence and k ≤ n the number of symbols. ♦

Exercise 1.17: Consider the generalization of LCS in which we want to compute the LCS for any input set
of strings.
(a) If the input set have bounded size, give a polynomial time solution.
(b) (Maier, 1978) If the input set is unbounded, show that the problem is NP -complete. ♦

End Exercises

§2. Edit Distance Problem

A closely related problem is the edit distance problem. For any index i ≥ 1 and letter a, we define
the following editing operations

Ins(i, a), Del(i), Rep(i, a).

These operations, when applied to a string X , will insert the letter a at position i, delete the ith letter,
and replace the ith letter by a (respectively). Let

Ins(i, a, X), Del(i, X), Rep(i, a, X) (5)

denote the respective results. For example, if Y = Ins(i, a, X), then |Y | = 1 + |X | and

Y [j] =




X [j] if j = 1, . . . , i− 1
a if j = i
X [j + 1] if j = i + 1, . . . , |X |

The other operations can be similarly characterized. Actually, the notations in (5) are unambiguouse only
when i is in the “proper range”. For insertion, this means 1 ≤ i ≤ |X |+1, but for deletion and replacement,
this means 1 ≤ i ≤ |X |. When i is not in the proper range, we may introduce some convention for interpreting

c© Chee-Keng Yap March 31, 2003



§2. Edit Distance Problem Lecture VII Page 7

(5); but for simplicity, we can just declare the results to be undefined. In the following, we will implicitly
assume that i is in the proper range whenever we apply these operations.

The operations Del(i) and Ins(i, a) are inverses of each other in the following sense:

Del(i, Ins(i, a, X)) = X, Ins(i, b, Del(i, X)), (6)

for some b. Whatever our conventions for handling improper indices, we would want equations such as (6)
to hold.

Let D(X, Y ) be the minimum number of editing operations that will transform X to Y . Clearly,

D(X, Y ) ≤ max{|X |, |Y |}. (7)

The triangular inequality holds: for any strings X, Y, Z, it is clear that

D(X, Z) ≤ D(X, Y ) + D(Y, Z). (8)

In fact, D(X, Y ) is a metric since it satisfies the usual axioms for a metric: (i) D(X, Y ) ≥ 0 with equality iff
X = Y . (ii) D(X, Y ) = D(Y, X). (iii) D(X, Y ) satisfies the triangular inequality (8). It is interesting to view
the set Σ∗ of all strings over a fixed alphabet Σ as vertices of an infinite bigraph G(Σ) in which X, Y ∈ Σ∗

are connected by an edge iff there is some an operation (which need not be unique) that transforms X to
Y . Paths in G(Σ) are called edit paths. Thus D(X, Y ) is the length of the shortest path from X to Y in
G(Σ).

In analogy to (2), we have the

D(X, Y ) =




max{|X |, |Y |} if m = 0 or n = 0
D(X ′, Y ′) if xm = yn

1 + max{D(X ′, Y ), D(X, Y ′), D(X ′, Y ′)} if xm 6= yn

(9)

We leave it as an exercise to prove the correctness of this equation. It follows that D(X, Y ) can also be
computed in O(mn) time by the same technique of filling in entries in an m× n matrix M .

Suppose, we want to actually compute the sequence of D(X, Y ) edit operations that convert X to Y .
Again, we expect to annotate the matrix M with some additional information to help us do this. For this
purpose, let us decode equation (9) a little. There are four cases:
(a) In case xm = yn, the edit operation is a no-op.
(b) If D(X, Y ) = 1 + D(X ′, Y ), the edit operation is Del(m, X).
(c) If D(X, Y ) = 1 + D(X, Y ′), the edit operation is Ins(m + 1, yn, X).
(d) If D(X, Y ) = 1 + D(X ′, Y ′), the edit operation is Rep(m, yn, X).
Hence it is enough to store two additional bits per matrix entry to reconstruct one possible sequence of
D(X, Y ) edit operation.

What is the relation between L(X, Y ) and D(X, Y )? There is no universal relation, valid for all X and
Y . Instead we have:

Lemma 1 Let X and Y have lengths m and n. Then

D(X, Y ) ≤ m + n− 2L(X, Y ).

and
D(X, Y ) ≥ max{m, n} − L(X, Y ).

c© Chee-Keng Yap March 31, 2003



§2. Edit Distance Problem Lecture VII Page 8

Proof. The first inequality is easy. Suppose X̂ is the substring that is left after we delete a longest common
subsequence Z of X and Y . Let Ŷ be similarly defined for Y after Z, viewed as a subsequence of Y is
deleted. This implies that

D(X, Y ) ≤ |X̂ |+ |Ŷ | = m + n− 2L(X, Y ).

since we can transform X̂ to Ŷ using |X̂| + |Ŷ | edit operations, without disturbing Z (so to speak). This
proves our upper bound.

The lower bound on D(X, Y ) is based on the intuition that any transformation from X̂ to Ŷ requires
at least max{|X̂|, Ŷ |} operations. But we have to prove that the shortest edit path from X to Y must
essentially go along such a route. An alternative argument goes as follows: assume m ≥ n and we will
show L(X, Y ) ≥ m−D(X, Y ). Suppose we transform X to Y in a sequence of D(X, Y ) edit steps. But in
D(X, Y ) steps, there is a subsequence Z of X of length m−D(X, Y ) that is unaffected. Hence Z is also a
subsequence of Y . So L(X, Y ) ≥ |Z| = m−D(X, Y ). Q.E.D.

The above lemma is the best possible in the following sense: for each positive ` ≤ min{m, n}, there are
strings X, Y such that D(X, Y ) = m + n − 2` where L(X, Y ) = `. For this purpose, choose X = X ′Z
and Y = ZY ′ such that Z is the unique string in LCS(X, Y ) For the lower bound on D(X, Y ), we choose
X = X ′Z and Y = Y ′Z where Z is any string in LCS(X, Y ). Then D(X, Y ) = max{m, n}−`. See Exercises
for more details.

Generalizations. There are many possible generalization of the above string problems.

• We can introduce costs associated to each type of editing operations. The implicit cost model above
is the unit cost for every operation.

• The fundamental primitive in these problems is the comparison of two letters: is letter X [i] equal to
letter Y [j] (a “match”) or not (a “non-match”)? We can generalize this by allowing “approximate”
matching (allowing some amount of non-match) or allow generalized “patterns” (e.g., wild card letters
or regular expressions).

• We can also generalize the notion of strings. Thus “multidimensional strings” is just an arrays of
letters, where the array has some fixed dimension. Thus, strings are just 1-dimensional arrays. It is
natural to view 2-dimensional arrays as raster images.

• Another generalization of strings is based on trees. A string tree is a rooted tree T in which each
node v is labeled with a letter λ(v) (from some fixed alphabet). The tree may be ordered or unordered.
In a natural way, T represents a collection (order or unordered) of strings. Let P and T be two string
trees. We say that P is a (string) subtree of T if there is 1-1 map µ from the nodes of P to the
nodes of T such that

– µ is label-preserving: v ∈ P and µ(v) ∈ T has the same label.

– µ is “parent preserving”: if u is the parent of v in P then µ(u) is the parent of µ(v) in T . For
ordered trees, we further insist that µ be order preserving.

In particular, if v0 is the root of P then µ(P ) is a subtree (in the usual sense of rooted trees) of T
rooted a µ(v0). We say there is a “match” at µ(v0). Hence a basic problem is, given P and T , find
a match of P in T , if any. Consider the edit distance problem for string trees. The following edit
operations may be considered: (1) Relabeling a node. (2) Inserting a new child v to a node u, and
making some subset of the children of u to be children of v. In the case of ordered trees, this subset
must form a consecutive subsequence of the ordered children of u. (3) Deleting a child v of a node u.
This is the inverse of the insertion operation. We next assign some cost γ to each of these operations,
and define the edit distance D(T, T ′) between two string trees T and T ′ to be the miminum cost of a

c© Chee-Keng Yap March 31, 2003



§3. Polygon Triangulation Lecture VII Page 9

sequence of operations that transforms T to T ′. A natural requirement is hat D(T, T ′) is a metric: so,
D(T, T ′) ≥ 0 with equality iff T = T ′, D(T, T ′) = D(T ′, T ) and the triangular inequality be satisfied.

Remarks: Levenshtein (1966) introduce the editing metric for strings in the context of binary codes.
Sankoff and Kruskal (1983) considered the LCS problem in computational biology applications. Applications
of string tree matching problems arise in term-rewriting systems, logic programming and evolutionary biology.
We refer to the collection in [1] for a state-of-the-art overview, circa 1997.

Exercises

Exercise 2.1: Compute the edit distances D(X, Y ) where X, Y are given:
(a) X = 00110011 and Y = 10100101.
(b) X = agacgttcgttagca and Y = cgactgctgtatgga. ♦

Exercise 2.2: Prove (9). This is a very instructive exercise. ♦

Exercise 2.3: Let x, y, z be distinct letters.
(a) Prove that D(X, Y ) = m + n − 2`. where X = xm−`z` and Y = z`yn−`. Note that the upper
bound on D(X, Y ) follows from the lemma in the text.
(b) Let X = xm−`z` and Y = yn−`z`. Prove that D(X, Y ) = max{m, n} − `. ♦

Exercise 2.4: Suppose we consider the edit distance D(X, Y ) problem in which each insert, delete or
replacement operation has an individual cost, which may even depend on the actual characters involved.
Specifically, for letters a 6= b, let

D(λ, b), D(a, λ), D(a, b)

denote, respectively, the cost to insert a letter b, to delete a letter a and to replace a by b. To what
extent can dynamic programming be used to solve this problem? You may assume that the above costs
are positive, but what other properties do you need? ♦

Exercise 2.5: In computational biology applications, there is interest in another kind of edit operation:
namely, you are allowed to reverse a substring: if X, Y, Z are strings, then we can transform the XY Z
to XY RZ in one step where Y R is the reverse of R. Assume that substring reversal is added to our
insert, delete and replace operations. Give an efficent solution to this version of the edit distance
problem. ♦

End Exercises

§3. Triangulating an Abstract Polygon

We now address a different family of problems amenable to the dynamic programming approach. These
problems have an abstract structure that is best explained using the notion of convex polygons.

The standard notion of a polygon P is a geometric one, and may be represented by a sequence (v1, . . . , vn)
of vertices where vi ∈ R

2 is a point in the Euclidean plane. We say P is convex if no vi in contained in the

c© Chee-Keng Yap March 31, 2003



§3. Polygon Triangulation Lecture VII Page 10

interior of the triangle ∆(vj , vk, v`) formed by any other triple of points. Figure 1 shows a convex polygon
with n = 7 vertices. An edge of P is a line segment [vi, vi+1] between two consecutive vertices (the subscript
arithmetic, “i + 1”, is modulo n). Thus [v1, vn] is also an edge. A chord is an line segment [vi, vj ] that is
not an edge.

7

6

5
4

3

2

1

Figure 1: A triangulated 7-gon

Abstract Polygons. We now give an abstract, purely combinatorial version of these terms. Let P =
(v1, . . . , vn), n ≥ 1, be a sequence of n distinct symbols, called a combinatorial convex polygon, or an
(abstract) n-gon for short. We call each vi a vertex of P . Since the vertices are merely symbols (only the
underlying linear ordering matters), it is often convenient to identify vi with the integer i. In this case, we call
(v1, . . . , vn) = (1, . . . , n) the standard n-gon. Henceforth, we assume n ≥ 3 to avoid trivial considerations.

Assume P is a standard n-gon. By a segment of P we mean an ordered pair of vertices, (i, j) where
1 ≤ i < j ≤ n. This is sometimes written “ij”. We classify a segment ij as an edge of P if j = i+1(modn);
otherwise the segment is called a chord. Thus, 1n is an edge. If n ≥ 3, there are exactly n edges and
n(n− 3)/2 chords (why?). We say two segments ij and k` intersect if

i < k < j < ` or k < i < ` < j;

otherwise they are disjoint. Note that an edge is disjoint from any other segment of P .

Triangulations. It is not hard to show by induction that a set T of pairwise disjoint chords of P has size
at most n− 3. If n ≥ 3, a set T with exactly n− 3 pairwise disjoint chords is called a triangulation of P .
The empty set T is, by definition, the unique triangulation of a 2-gon. E.g., figure 1 shows a triangulation

T = {14, 24, 47, 57}
of the standard 7-gon. A triangle of P is a triple (i, j, k) (or simply, ijk) where 1 ≤ i < j < k ≤ n; its three
edges are ij, jk and ik. E.g., the set of all triangles of the standard 5-gon are

123, 124, 125, 134, 135, 145, 234, 235, 245, 345.

We say ijk belongs to a triangulation T if each edge of the triangle is either a chord in T or an edge of P .
Thus the triangles of the T in figure 1 are

{124, 234, 147, 457, 567}.
Every triangulation T has exactly n− 2 triangles belonging to it, and each edge of P appears as the edge of
exactly one triangle and each chord of P appears as the edge of exactly two triangles [Check: n− 2 triangles
has a combined total of 2(n − 3) + n edges.] In particular, there is a unique triangle belonging to T which
contains the edge 1n. This triangle is (1, i, n) for some i = 2, . . . , n− 1. Then the set T can be partitioned
into three disjoint subsets

T = T1 ] T2 ] Si

c© Chee-Keng Yap March 31, 2003



§3. Polygon Triangulation Lecture VII Page 11

where Si comprises the chords of T incident on vertex i, and T1, T2 are (respectively) triangulations of the
i-gon P1 = (1, 2, . . . , i) and the (n − i + 1)-gon P2 = (i, i + 1, . . . , n). Note that Si ⊆ {(1, i), (i, n)} with
Si = {(1, i), (i, n)} iff 2 < i < n− 1. Thus triangulations can be viewed recursively. This is the key to our
ability to decompose problems based on triangulations.

E.g., the triangulation T in figure 1 has the partition

T = T1 ] T2 ] S4

where S4 = {14, 47}, T1 = {24} and T2 = {57}.

Weight functions and optimum triangulations. A (triangular) weight function on n vertices is a
non-negative real function W such that W (i, j, k) is defined for each triangle ijk of an abstract n-gon. The
W -cost of a triangulation T is the sum of the weights W (i, j, k) of the triangles ijk belonging to T . The
optimal triangulation problem asks for a minimum W -cost triangulation of P , given its weight function
W .

Example: In case P = (v1, . . . , vn) is a geometric polygon in the plane, a natural cost function is
W (i, j, k) is the perimeter ‖vi− vj‖+ ‖vi− vk‖+ ‖vj − vk‖ of the triangle (vi, vj , vk), where ‖ · ‖ denotes the
Euclidean length function. It is easy to check that T is optimal iff it minimizes the sum

∑
(vi,vj)∈T ‖vi− vj‖

of the lengths of the chords in T . This might be a reasonable “cost” if a carpenter has to saw a wooden P
into n− 2 triangles. It might also be regarded as the cost of “disposing of the sawdust”.

In specifying W , we generally expected the “specification size” to be Θ(n3). However, in many appli-
cations, the function W is implicitly defined by fewer parameters, typically Θ(n) or Θ(n2). Here are some
examples.

1. Metric Sawdust Problem: this is a generalization of the “sawdust example”. Suppose each vertex i
of P is associated with a point pi of some metric space. Then W (i, j, k) = d(pi, pj)+d(pj , pk)+d(pk, pi)
where d(p, q) is the metric between two points of the space.

2. Generalized Perimeter Problem: W is defined by a symmetric matrix (aij)n
i,j=1 such that

W (i, j, k) = aij + ajk + aik. We can view ai,j as the “distance” from node i to node j and W (i, j, k) is
thus the perimeter of the triangle ijk. This is a generalization of the above “metric sawdust problem”.
Here, W is specified by Θ(n2) parameters. More generally, we might have

W (i, j, k) = f(aij , ajk, aik)

where f(·, ·, ·) is some function.

3. Weight functions induced by vertex weights: W is defined by a sequence (a1, . . . , an) of numbers
where

W (i, j, k) = f(ai, aj , ak).

for some function f(·, ·, ·). We view ai as the weight of the ith vertex. Two examples are f(x, y, z) =
x+ y + z (sum) and f(x, y, z) = xyz (product). The product of weights case corresponds to the matrix
chain product problem (§4).

4. Weight functions from differences of vertex weights: W is defined by an increasing sequence
a1 ≤ a2 ≤ · · · ≤ an and W (i, j, k) = ak − ai. Note that the index j is not used in W (i, j, k). In §5, we
will see an example (optimum search trees) of this weight function.

c© Chee-Keng Yap March 31, 2003



§4. Dynamic Programming Lecture VII Page 12

A dynamic programming solution. The cost of the optimal triangulation can be determined using the
following recursive formula: let C(i, j) be the optimal cost of triangulating the subpolygon (i, i + 1, . . . , j)
for 1 ≤ i < j ≤ n. Then

C(i, j) =




0 if j = i + 1,

mini<k<j{W (i, k, j) + C(i, k) + C(k, j)} else.
(10)

The desired optimal triangulation has cost C(1, n). Assuming that the value W (i, j, k) can be obtained in
constant time, and the size of the input is n, it is not hard to implement this outline to give a cubic time
algorithm. We say more about this in the next section.

Exercises

Exercise 3.1: Find an optimal triangulation of the abstract pentagon whose weight function W is param-
eterized by (a1, . . . , a6) = (4, 1, 3, 2, 2, 3):
(a) The weight function is given by W (i, j, k) = aiajak.
(b) The weight function is given by W (i, j, k) = |ai − aj |+ |ai − ak|+ |aj − ak|. ♦

Exercise 3.2: Suppose P is a geometric simple polygon, not necessarily convex. We now define chords of
P to comprise those segments that do not intersect the exterior of P . A triangulation is as usual a
set of n − 3 chords. Let W be a weight function on the vertices of P . Give an efficient method for
computing the minimum weight triangulation of P . ♦

Exercise 3.3: (T. Shermer) Let P be a simple (geometric) polygon (so it need not be convex). Define
the “bushiness” b(P ) of P to be the minimum number of degree 3 vertices in the dual graph of a
triangulation of P . A triangulation is “thin” if it achieves b(P). Give an O(n3) algorithm for computing
a thin triangulation. ♦

Exercise 3.4: Suppose that we want to maximize the “triangulation cost” (we should really interpret
“cost” as “reward”) for a given weight function W (i, j, k). Does the same dynamic programming
method solve this problem? ♦

Exercise 3.5: (Multidimensional Dynamic Programming?)
(a) Give a dynamic programming algorithm to optimally partition an n-gon into a collection of 3- or
4-gons. Assume we are given a non-negative real function W (i, j, k, l), defined for all 1 ≤ i ≤ j ≤ k ≤
l ≤ n such that |{i, j, k, l}| ≥ 3. The value W (i, j, k, l) should depend only on the set {i, j, k, l}: if
{i, j, k, l} = {i′, j′, k′, l′}, then W (i, j, k, l) = W (i′, j′, k′, l′). For example, W (2, 2, 4, 7) = W (2, 4, 4, 7).
The weight of a partitioning is equal to the sum of the weights over all 3- or 4-gons in the partition.
Analyze the running time of your algorithm. NOTE: this problem has a 2-dimensional structure on
its subproblems, but it can be generalized to any dimensions.
(b) Solve a variant of part (a), namely, the partition should exclusively be composed of 4-gons when
n− 4 is even, and has exactly one 3-gon when n− 4 is odd. ♦

End Exercises

§4. The Dynamic Programming Method

c© Chee-Keng Yap March 31, 2003



§4. Dynamic Programming Lecture VII Page 13

Let us note three ingredients essential for our dynamic programming solution (10) for the triangulation
problem:

• There are a small number of subproblems. We usually interpret “small” to mean a polynomial
number. We began with a weight function W on the n-gon (1, . . . , n). Each contiguous subsequence

(i, i + 1, i + 2, . . . , j − 1, j), (1 ≤ i < j ≤ n)

induces a weight function Wi,j on the (j − i + 1)-gon (i, i + 1, . . . , j − 1, j). This gives rise to the
subproblem Pi,j of optimal triangulation of (i, i + 1, . . . , j). The original problem is just P1,n. There
are Θ(n2) subproblems. The “wrong” formulation can violate this smallness requirement (see Exercise).

• An optimal solution of a problem induces optimal solutions on certain subproblems. If T is
an optimal triangulation on (a1, . . . , an), then we have noted that T = T1]T2 ]Si where Si ⊆ {1i, in}
and T1, T2 are triangulations of subpolygons of P . In fact, T1, T2 are optimal solutions to subproblems
P1,i and Pi,n for some 1 < i < n. This property is called the dynamic programming principle,
namely, an optimal solution to a problem induces optimal solutions on certain subproblems.

• The optimal solution of a problem is easily constructed from the optimal solutions of
subproblems. If we have already found the cost of optimal triangulations for all smaller subproblems
of Pi,j then we can easily solve Pi,j using equation (10).

The reader may check that the same ingredients were present in the LCS and edit distance problems.

Mechanics of the algorithm. Here is a natural way to organize the computation embodied in equa-
tion (10). First we have an upper triangular n× n matrix A to store the values of C(i, j),

A[i, j] = C(i, j), (i ≤ j)

0

0

0

0

S1 S2 S3 S4

C(1, 2)

C(2, 3)

C(3, 4)

1

2

4

1 2 3 4 5

3

5

Figure 2: Filling in of a upper triangular matrix

We view the algorithm as a systematic filling in of the upper trianguluar A. Note that filling in the
entries A[i, j] can be viewed as solving a subproblem of size (j − i + 1). We proceed in n stages, where stage

c© Chee-Keng Yap March 31, 2003



§4. Dynamic Programming Lecture VII Page 14

St (t = 2, . . . , n− 1) corresponds to solving all subproblems of size t. There are exactly n− t + 1 problems
of size t. Note that to solve a problem of size t (t ≥ 2) we need to minimize over a set of t− 2 numbers (see
equation (10)), and this takes time O(t). Thus stage t takes O((t − 2)(n − t + 1)) = O(n2) time. Summed
over all stages, the time is O(n3). The space requirement is Θ(n2), because of the matrix A.

The algorithm is easy to implement in any conventional programming language: it has a triply-nested
“for-loop”, with the outermost loop-counter controlling the stage number, t.

for t← 1 to n− 1
A[t, t + 1]← 0.

for t← 2 to n− 1
for i← 1 to n− t

A[i, i + t]←∞
for k ← i + 1 to t− 1

A[i, i + t]← min{A[i, i + t], A[i, k] + A[k, j] + C(i, k) + C(k, j)}

This algorithm lends itself to hand simulation, which the user should become familiar with. For example

Splitters and the construction of Optimal Solutions. Suppose we want to find the actual optimal
triangulation, not just its cost. Let us call any index k that minimizes the second expression on the right-
hand side of equation (10) an (i, j)-splitter. If we can keep track of all the splitters, we can clearly construct
the optimal triangulation. For this purpose, we employ an upper trianguler n × n matrix K where K[i, j]
stores an (i, j)-splitter. It is easy to see that the entry K[i, j] can be filled in at the same time that A[i, j] is
filled in. Hence, finding optimal solutions is asymptotically the same as finding the cost of optimal solutions.

Top-down versus bottom-up dynamic programming. The above triply nested loop algorithm is a
bottom-up design. However, it is not hard to construct a top-down design recursive algorithm: simply
implement (10) by a recursion. However, it is important to maintain the matrices A (and K if desired) as
global shared space. This technique is called “memo-izing”. Without memo-izing, the top-down solution
can take exponential time, simply because there are exponentially many subproblems (see next section).
NOTE: in the LCS problem, the top-down approach is especially effective because of the special nature of
the problem.

REMARK: The abstract triangulation problem has a “linear structure” on the subproblems. This linear
structure can sometimes be artificially imposed on a problem in order to exploit the dynamic programming
framework (see Exercise on hypercube vertex selection).

Exercises

Exercise 4.1: Jane Sharp noted an alternative to equation (10).
(a) He says that for every triangulation T must contain a triangle of the form (i, i + 1, i + 2). Such a
triangle is called an “ear”. Prove this claim of Jane.
(b) Suppose we remove an ear from an n-gon. The result is an (n − 1)-gon. If we knew an ear which
appears in an optimum triangulation of an n-gon, we could recursively triangular the smaller (n− 1)-
gon. But since we do not know, we can try all possible (n − 1)-gons obtained by removing an ear.
What is wrong with this approach? (Try to write the analogue of equation (10), and think of the 3
ingredients needed for a dynamic programming approach.) ♦

c© Chee-Keng Yap March 31, 2003



§4. Dynamic Programming Lecture VII Page 15

Exercise 4.2: We are given three real coefficients a, b, c and a real function

h(x) =
{

1 if |x| < 1
0 else.

Define the function f(x, i) (where i ≥ 0 is integer) as follows:

f(x, i) =
{

h(x) if i = 0
a · f(2x− 1, i− 1) + b · f(2x, i− 1) + c · f(2x + 1, i− 1) else.

Suppose n, m are parameters and we want to compute the values f(x, n) for all

x ∈ {± i

m
: i = 0, 1, . . . , m− 1}

Assume that each arithmetic operation takes unit time.
(a) Determine the time to compute a single value f(x) if we simply implement f(x, n) by using straight-
forward recursion and every call to f(x, n) is independent.
(b) The function f(x, 0) has support in [−1, 1]. What can you say about the support of f(x, n) where
n is fixed?
(c) Use dynamic programming techniques to obtain an efficient solution.
NOTE: This problem is motivated by actual computations with wavelets. ♦

Exercise 4.3: Give a linear space O(n) solution to problem of optimal triangulation. Write the recurrence
for the space and time complexity of your algorithm. Solve for the running time. ♦

Exercise 4.4: Consider the problem of evaluating the determinant of an n×n matrix. The obvious co-factor
expansion takes Θ(n · n!) arithmetic operations. Gaussian elimination takes Θ(n3). But for small n
and under certain circumstances, the co-factor method may be better. In this question, we want you
to improve the co-factor expansion method by using dynamic programming. What is the number of
arithmetic operations if you use dynamic programming? Please illustrate your result for n = 3.

HINT: We suggest you just count the number of multiplications. Then argue separately that the
number of additions is of the same order. ♦

Exercise 4.5: Generalize the previous exercise. Let the set of real constants {ai : i = −N,−N +
1, . . . ,−1, 0, 1, . . . , N} be fixed. Suppose that

f(x, i) =
{

h(x) if i = 0∑N
i=−N ai · f(2x− 1, i− 1) else.

Re-do parts (a)–(c) in the last exercise. ♦

Exercise 4.6: (Hypercube vertex selection) A hypercube or n-cube is the set Hn = {0, 1}n. Each x =
(x1, . . . , xn) ∈ Hn is called a vertex of the hypercube. Let π = (π1, . . . , πn) and ρ = (ρ1, . . . , ρn) be
two positive integer vectors. The price and reliability of a vertex x is given by π(x) =

∑n
i=1 xiπi and

ρ(x) =
∏n

i=1;xi=1 ρi. The hypercube vertex selection problem is this: given π, ρ and a positive
bound B0, find x ∈ Hn which maximizes ρ(x) subject to π(x) ≤ B0. Solve this problem in time O(nB0)
(not O(n log B0)).
HINT: View Hn = Hk ⊗ Hn−k for any k = 1, . . . , n − 1 and y ⊗ z denotes concatenation of vectors
y ∈ Hk, z ∈ Hn−k. Solve subproblems on Hk and Hn−k with varying values of B (B = 1, 2, . . . , B0).
The choice of k is arbitrary, but what is the best choice of k? ♦

c© Chee-Keng Yap March 31, 2003



§4. Dynamic Programming Lecture VII Page 16

Exercise 4.7: Let S ⊆ R
2 be a set of n points. Partially order the points p = (p.x, p.y) ∈ R

2 as follows:
p ≤ q iff p.x ≤ q.x and p.y ≤ q.y. If p 6= q and p ≤ q, we write p < q. A point p is S-minimal if p ∈ S
and there does not exist q ∈ S such that q < p. Let min(S) denote the set of S-minimal points.
(a) For c ∈ R, let S(c) denote the set {p ∈ S : p.x ≥ c}. E.g., let S = {p(1, 3), q(2, 1), r(3, 4), s(4, 2)}
as shown in figure 3. Then min(S(c)) is equal to {p, q} if c ≤ 1; {q} if 1 < c ≤ 2; {r, s} if 2 < c ≤ 3;

1 2 3 4

1

2

3

4

p

r

q

s

Figure 3: Set of 4 points.

{s} if 3 < c. Design a data structure D(S) with two properties:

1. For any c ∈ R (“the query” is specified by c), you can use D(S) to output the set min(S(c)) in
time

O(log n + k)

where k is the size of min(S(c)).

2. The data structure D(S) uses O(n) space.

(b) For any q ∈ R
2, let S(q) denote the set {p ∈ S : p.x ≥ q.x, p.y ≥ q.y}. Design a data structure

D′(S) such that for any q ∈ R
2, you can use D′′(S) to output the set min(S(q)) in time O(log n + k)

where k is the size of min(S(q)), and D′′(S) uses O(n2) space. ♦

Exercise 4.8: (Knapsack) In this problem, you are given 2n + 1 positive integers,

W, wi, vi(i = 1, . . . , n).

Intuitively, W is the size of your knapsack and there are n items where the ith item has size wi and
value vi. You want to choose a subset of the items of maximum value, subject to the total size of
the selected items being at most W . Precisely, you are to compute a subset I ⊆ {1, . . . , n} which
maximizes the sum ∑

i∈I

vi

subject to the constraint
∑

i∈I wi ≤W .
(a) Give a dynamic programming solution that runs in time O(nW ).
(b) Improve the running time to O(n, min{W, 2n}). ♦

c© Chee-Keng Yap March 31, 2003



§5. Optimal Parenthesization Lecture VII Page 17

Exercise 4.9: (Optimal line breaking) A paragraph can be regarded as a sequence of words. Let the
lengths be a1, . . . , an. Suppose a line can contain only m words. The problem is to break the paragraph
into lines, no line taking more than m words. Between 2 words in a line we have one space. If a line
termines in k spaces, we say the penalty for that line is k. The penalty for a particular method of
breaking up a paragraph is the sum of the penalty over all lines. The last line, by definition, suffers
no penalty.
(a) Consider the obvious greedy method to solve this problem (basically fill in each line until the next
word will cause an overflow). Give an example to show that this does not always give the minimum
penalty solution.
(b) Give a dynamic programming solution to finding this the optimal (i.e., minimal penalty) solution.
(c) Illustrate your method with Lincoln’s Gettysburg address, assuming that m = 80. In the case of a
terminal word (which is followed by a full-stop), we consider the full stop as part of the word.
(d) Suppose we assume that there are 2 spaces separating a full-stop and the following word in the line
(if there is any). Modify your solution in (a) to handle this.
(e) Now introduce optional hyphenation into the words. For simplicity, assume that every word has
zero or one potential place for hyphenation. Can you modify the algorithm further? ♦

End Exercises

§5. Optimal Parenthesization

We can view a triangulation of an (n + 1)-gon to be a “parenthesized expression” on n symbols. Let us
clarify this connection.

Let (e1, e2, . . . , en), n ≥ 1, be a sequence of n symbols. A (fully) parenthesized expression on
(e1, . . . , en) is one whose atoms are ei (for i = 1, . . . , n), each ei occurring exactly once and in this order
left-to-right, and where each matched pair of parenthesis encloses exactly two non-empty subexpressions.
E.g., there are exactly two parenthesized expressions on (1, 2, 3):

((12)3), (1(23)).

The reader may verify that there are 5 parenthesized expressions on (1, 2, 3, 4).

A parenthesized expression on (e1, . . . , en) corresponds bijectively to a parenthesis tree on (e1, . . . , en).
Such a tree is a full3 binary tree T on n leaves, where the ith leaf in symmetric order is associated with
ei. If n = 1, then the tree has only one node. Otherwise, the left and right subtrees are (respectively)
parenthesized expressions on (e1, . . . , ei) and (ei+1, . . . , en) for some i = 1, . . . , n.

There is a slightly more involved bijective correspondence between parenthesis trees on (e1, . . . , en) and
triangulations of an abstract (n+1)-gon. See Figure 4 for an illustration. If the (n+1)-gon is (v0, v1, . . . , vn),
then the edges (vi−1, vi) is mapped to ei (i = 1, . . . , n) under this correspondence, but the “distinguished
edge” (v0, vn) is not mapped. We leave the details for an exercise.

If we associate a cost W (i, j, k) for forming a parenthesis of the form “(E1, E2)” where E1 (resp., E2)
is a parenthesized expression on (ei, . . . , ej) (resp., (ej+1, . . . , ek), then we may speak of the cost of a
parenthesized expression – it is the same as the cost of the corresponding triangulation of P . Finding such
an optimal parenthesized expression on (e1, . . . , en) is clearly equivalent to finding an optimal triangulation
of P .

3A node of a binary tree is full if it has two children. A binary tree is full if every internal node is full.

c© Chee-Keng Yap March 31, 2003



§5. Optimal Parenthesization Lecture VII Page 18

e1

e2
e3

e4

e1

e3e2

e4

v0

v1

v2

v3

v4

Figure 4: The parenthesis tree and triangulation corresponding to ((e1(e2e3))e4).

Catalan numbers. It is instructive to count the number P (n) of parenthesis trees on n ≥ 1 leaves. In
the literature, P (n) is also denoted C(n − 1), in which case it is called a Catalan number. The index
n− 1 of the Catalan numbers is the number of pairs of parenthesis needed to parenthesize n symbols. Here
C(n) = 1, 1, 2, 5 for n = 0, 1, 2, 3. Note that C(0) = 1, not 0. In general, for n ≥ 1, the following recurrence
is evident:

C(n) =
n∑

i=1

C(i− 1)C(n− 1− i). (11)

We can interprete C(n) as the number of binary trees with exactly n nodes (Exercise). In terms of P (n),
we get a similar recurrence:

P (n) =
n∑

i=1

P (i)P (n− i) (12)

where we define P (0) = 0.

This recurrence has an elegant solution using generating functions (see Lecture VII),

C(m) =
1

m + 1

(
2m

m

)
.

By Stirling’s approximation, (
2m

m

)
= Θ

(
4m

√
m

)
.

So C(m) grows exponentially and there is no hope to find the optimal parenthesis tree by enumerating all
parenthesis trees.

Matrix Chain Product. An instance of the parenthesis problem is the matrix chain product problem:
given a sequence

A1, . . . , An

of rectangular matrices where Ai is ai−1 × ai (i = 1, . . . , n), we want to compute the chain product

A1A2 · · ·An

in the cheapest way. The sequence (a0, a1, . . . , an) of numbers is called the dimension of this chain product
expression.

c© Chee-Keng Yap March 31, 2003



§5. Optimal Parenthesization Lecture VII Page 19

We need to clarify the cost model. Using associativity of matrix products, each method of computing
this product corresponds to a distinct parenthesis tree on (A1, . . . , An). For instance,

((A1A2)A3), (A1(A2A3))

are the two ways of multiplying 3 matrices. We assume that it costs pqr to multiply a p× q matrix by a q× r
matrix. Hence if the dimension of the chain product A1A2A3 is (a0, a1, a2, a3), the first method to multiply
these three matrices above costs

a0a1a2 + a0a2a3 = a0a2(a1 + a3)

while the second method costs
a0a1a3 + a1a2a3 = a1a3(a0 + a2).

Letting (a0, . . . , a3) = (1, d, 1, d), these two methods cost 2d and 2d2, respectively. Hence the second method
may be arbitrarily more expensive than the first.

Corresponding to the dimension (a0, . . . , an) of a chain product instance, we define an triangular weight
function W (i, j, k) for 0 ≤ i < j < k ≤ n to reflect our complexity model:

W (i, j, k) := aiajak.

This is what we called the “product weight function” in §2. The optimal method of computing a matrix
chain product is reduced to the optimal parenthesis tree problem. We have seen an O(n3) solution to this
problem.

The original problem of matrix chain product can be solved in two stages: first find the optimal parenthesis
tree, based on just the dimension of the chain. Then use the parenthesis tree to order the actual matrix
multiplications. The only creative part of this solution is the determination of the optimal parenthesization.

Remark: For the product weight function, W (ai, aj , ak) = aiajak, the optimal triangulation problem
can be solved in O(n log n) time, using a sophisticated algorithm due to Hu and Shing [4]. Ramanan [7] gave
an exposition of this algorithm, and presented an Ω(n log n) lower bound in an algebraic decision tree.

Exercises

Exercise 5.1: Show that C(n) is the number of binary trees on n nodes. HINT: Use the recurrence (11)
and structural induction on the definition of a binary tree. ♦

Exercise 5.2: Work out the bijective correspondence between triangulations and parenthesis trees stated
above. ♦

Exercise 5.3: Verify by induction that C(m) has the claimed solution. ♦

Exercise 5.4: Solve the recurrence (11) for C(n) by using the following observation: consider generating
function

G(x) =
∞∑

i=0

C(i)xi = 1 + x + 2x2 + 5x3 + · · · .

HINT: What can you say about the coefficient of xn in the squared generating function G(x)2? Write
this down as a recurrence equation involving G(x) Solve this quadratic equation.

♦

c© Chee-Keng Yap March 31, 2003



§6. Optimal Binary Trees Lecture VII Page 20

Exercise 5.5: i) Consider an abstract n-gon whose weight function is a product function, W (i, j, k) =
wiwjwk for some sequence w1, . . . , wn of non-negative numbers. Call wi the “weight” of vertex i. Let
(π1, π2, . . . , πn) be a permutation of {1, . . . , n} such that

wπ1 ≤ wπ2 ≤ · · · ≤ wπn .

Show that there exists an optimal triangulation T of P such that vertex π1 of least weight is connected
to π2 and also to π3 in T . [We say vertex i is connected to j in T if either ij or ji is in T or is an
edge of the n-gon.]
HINT: Use induction on n. Call a vertex i isolated if it is not connected to another vertex by a chord
in T . Consider two cases, depending on whether π1 is isolated in T or not.

ii) (Open) Can you exploit this result to obtain a o(n3) algorithm for the matrix chain product problem?
♦

End Exercises

§6. Optimal Search Trees

Suppose we store n keys
K1 < K2 < · · · < Kn

in a binary search tree. The probability that a key K to be searched is equal Ki is pi ≥ 0, and the probability
that K falls between Kj and Kj+1 is qj ≥ 0. Naturally,

n∑
i=1

pi +
n∑

j=0

qj = 1.

In our formulation, we do not restrict the sum of the p’s and q’s to be 1, since we can simply interpret these
numbers to be “relative weights”. But we do require the qj , pi’s to be non-negative.

We want to construct an full4 binary search tree T whose nodes are labeled by

q0, p1, q1, p2, . . . , qn−1, pn, qn (13)

in symmetric order. Note that the pi’s label the internal nodes and qj ’s label the leaves.

[FIGURE]

In a natural way, T corresponds to a binary search tree in which the internal nodes are labeled by
K1, . . . , Kn. But for our purposes, the actual keys Ki are irrelevant: only the probabilities pi, qj are of
interest. Each subtree Ti,j (1 ≤ i ≤ j ≤ n) of T corresponds to a binary search tree on the keys Ki, . . . , Kj.
We define the following weight function:

W (i− 1, j) := qi−1 + pi + qi + · · · pj + qj

= qi−1 +
j∑

k=i

(qk + pk)

for all 0 ≤ i ≤ j ≤ n. Thus W (i, i) = qi. The cost of T is given by

C(T ) = W (0, n) + C(TL) + C(TR)
4This amounts to an extended binary search tree, as described in Lecture 3.

c© Chee-Keng Yap March 31, 2003



§6. Optimal Binary Trees Lecture VII Page 21

where TL and TR are the left and right subtrees of T . If T has only one node, then C(T ) = 0, corresponding
to the case where the node is labeled by some qj . We say T is optimal if its cost is minimum. So the
problem of optimal search trees is that of computing an optimal T , given the data in (13). Why is this
definition of “cost” reasonable? Let us charge a unit cost to each node we visit when we lookup a key K. If
K has the frequency distribution given by the probabilities pi, qj , then the expected charge to the root of T
is precisely W (i − 1, j) if the leaves of T are Ki, . . . , Kj. So C(T ) is the expected cost of looking up K in
the search tree T .

Application. In constructing compilers for programming languages, we need a search structure for looking
up if a given identifier K is a key word. Suppose K1, . . . , Kn are the key words of our programming language
and we have statistics telling us that an identifier K in a typical program is equal to Ki with probability pi

and lies between Kj and Kj+1 with probability qj . One solution to this compiler problem is to construct an
optimal search tree for the key words with these probabilities.

Example. Assume that (p1, p2, p3) = (6, 1, 3) and the qi’s are zero. There are 5 possible search trees here
(see figure 5). The optimal search tree has root labeled p1, giving a cost of 6 + 2(3) + 3(1) = 15. Note that
the structurally “balanced tree” with p2 at the root has a bigger cost of 19. Intuitively, we understand why
it is better to have p1 at the root – it has a much larger frequency than the other nodes.

p1

p2

p3

Cost = 5 Cost = 9

p1

p2 p3

6

3

1

1

6 3

Figure 5: The 5 possible binary search trees on (p1, p2, p3).

Let us observe that the dynamic programming principle holds, i.e., every subtree of Ti,j (1 ≤ i ≤ n)
is optimal for its associated relative weights

qi−1, pi, qi, . . . , qj−1, pj, qj .

Hence an obvious dynamic programming algorithm can be devised to find optimal search trees in O(n3)
time. Exploiting additional properties of the cost function, Knuth shows this can be done in O(n2) time.
The key to the improvement is due to a general inequality satisfied by the cost function, first clarified by
F. Yao, which we treat next.

Exercises

Exercise 6.1: Describe the precise connection between the optimal search tree problem and the optimal
triangularization problem. ♦

Exercise 6.2: Suppose the input frequencies are (p1, . . . , pn) (the qi’s are all zero). If the pi’s are distinct,
Joe Quick has a suggestion: why not choose the largest pi to be the root? Is this true for n = 3? Find
the smallest n for which this is false, and provide a counter example for this n.

c© Chee-Keng Yap March 31, 2003



§7. Weight Matrices Lecture VII Page 22

♦

Exercise 6.3: (Project) Collect several programs in your programming language X.
(a) Make a sorted list of all the key words in language X. If there are n key words, construct a count
of the number of occurrences of these key words in your set of programs. Let p1, p2, . . . , pn be these
frequencies.
(b) Construct an optimum search tree for these key words (assuming qi’s are 0) these key words
(assuming qi’s are 0).
(c) Construct from your programs the frequencies that a non-key word falls between the keywords, and
thereby obtain q0, q1, . . . , qn. Construct an optimum search tree for these p’s and q’s. ♦

Exercise 6.4: The following class of recurrences was investigated by Fredman [2]:

M(n) = g(n) + min
0≤k≤n−1

{αM(k) + βM(n− k − 1)}

where α, β > 0 and g(n) are given. This is clearly related to optimal search trees. We focus on
g(n) = n.
(a) Suppose min{α, β} < 1. Show that M(n) ∼ n

1−min{α,β} .
(b) Suppose min{α, β} > 1, log α/ logβ is rational and α−1 + β−1 = 1. Then M(n) = Θ(n2). ♦

Exercise 6.5: If the pi’s are all zero in the Optimal Search Tree problem, then the optimization criteria
amounts to minimizing the external path length. Recall that the external path length of a tree whose
leaves are weighted is equal to

∑
u d(u)w(u) where u ranges over the leaves, with w(u), d(u) denoting the

weight and depth of u. Suppose we consider a modified path length of a leaf u to be w(u)
∑d(u)

i=0 2−i

(instead of d(u)w(u)). Solve the Optimal Search Tree under this criteria. REMARK: This problem
is motivated by the processing of cartographic maps of the counties in a state. We want to form a
hierarchical level-of-detail map of the state by merging the counties. After the merge of a pair of maps,
we always simplify the result by discarding some details. If the weight of a map is the number of edges
or vertices in its representation, then after a simplification step, we are left with half as many edges.

♦

Exercise 6.6: Consider the following generalization of Optimal Binary Trees. We are given a subdivision
of the plane into simply connected regions. Each region has a positive weight. We want to construct a
binary tree T with these regions as leaves subject to one condition: each internal node u of T determines
a subregion Ru of the plane, obtained as the union of all the regions below u. We require Ru to be
simply-connected. The cost of T is as usual the external path length (i.e., sum of the weights of each
leaf multiplied by its depth).
(a) Show that this problem is NP -complete.
(b) Give provably good heuristics for this problem. ♦

End Exercises

§7. Weight Matrices

We reformulate the optimal search tree problem in an abstract framework.

c© Chee-Keng Yap March 31, 2003



§7. Weight Matrices Lecture VII Page 23

Definition 1 Let n ≥ 2 be an integer. A triangular function W (of order n) is any partial function with
domain [0..n] × [0..n] such W (i, j) is defined iff i ≤ j. We call W a weight matrix if it is a triangular
function whose range is the set of non-negative real numbers. A quadruple (i, i′, j, j′) is admissible if

0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n.

We say W is monotone if
W (i′, j) ≤W (i, j′)

for all admissible (i, i′, j, j′). The quadrangle inequality for W for (i, i′, j, j′) is

W (i, j) + W (i′, j′) ≤W (i, j′) + W (i′, j).

We say W is quadrangular if it satisfies the quadrangular inequality for all admissible (i, i′, j, j′).

i

i′

i′′

j j′ j′′

+

quadrangular:

monotone:

+ ≤

≤

Figure 6: Monotone and quadrangular weight matrix.

It is sometimes convenient to write Wij or Wi,j instead of W (i, j). If we view Wij as the (i, j)-th entry
of an n-square matrix W , then W is upper triangular matrix. Note that (i, i′, j, j′) is admissible iff the four
points (i, j), (i′, j), (i, j′), (i′, j′) are all on or above the main diagonal of W (see Figure 6). Monotonicity
and quadrangularity is also best seen visually (cf. Figure 6):

• Monotonic means that along any north-eastern path in the upper triangular matrix, the matrix values
are non-decreasing.

• Quadrangularity means that for any 4 corner entries of a rectangle lying on or above the main diagonal,
the south-west plus the north-east entries are not less than the sum of the other two.

Example: In the optimal search tree problem, the weight function W is implicitly specified by O(n)
parameters, viz., q0, p1, q1, . . . , pn, qn, with

W (i, j) =
j∑

k=i−1

qk +
j∑

k=i

pk.

In this case, W (i, j) can be computed in linear time from the qk’s and pk’s. The point is that, depending on
the representation, W (i, j) may not be available in constant time. The following is left as an exercise:

Lemma 2 The weight matrix for the optimal search tree problem is both monotone and quadrangular. In
fact, the quadrangular inequality is an equality.

c© Chee-Keng Yap March 31, 2003



§8. Quadrangular Inequality Lecture VII Page 24

Definition 2 Given a weight matrix W , its derived weight matrix is the triangular function

W ∗ : [0..n]2 → R≥0

is defined as follows:
W ∗(i, i) :=W (i, i).

Assuming that W ∗(i, j) has been defined for all j − i < `, define

W ∗(i, i + `) := W (i, i + `) + min
i<k≤i+`

{W ∗(i, k − 1) + W ∗(k, i + `)}.

Defining
W ∗(i, j; k) :=W (i, j) + W ∗(i, k − 1) + W ∗(k, j), (14)

we call k an (i, j)-splitter if W ∗(i, j) = W ∗(i, j; k).

Note: the literature (especially in operations research) describes the Monge property of matrices. This
turns out to be the quadrangle inequality restricted to admissible quadruples (i, i′, j, j′) where i′ = i+1 and
j′ = j + 1.

Exercises

Exercise 7.1: (a) Computer the derived matrix of the following weight matrices:

W1 =

1 1 1 1
2 2 2

3 3
4

, W2 =

1 2 1 2 1
2 0 3 2

1 0 1
4 2

2

.

(b) Suppose W (i, j) = ai for i = j and W (i, j) = 0 for i 6= j. The ai’s are arbitrary constants.
Succinctly describe the matrix W ∗. ♦

Exercise 7.2: (Lemma 2) Verify that the weight matrix for the optimal search tree problem is indeed
monotone and satisfies the quadrangular equality. ♦

Exercise 7.3: Write a program to compute the derivative of a matrix. It should run in O(n3) time on an
n-square matrix. ♦

Exercise 7.4:
(a) Interpret the derived matrix for the optimal search tree problem.
(b) Does the derived matrix of a derived matrix have a realistic interpretation? ♦

Exercise 7.5: Generalize the concept of a triangular function W so that its domain is [0..n]k for any integer
k ≥ 2, and W (i1, . . . , ik) is defined iff i1 ≤ i2 ≤ · · · ≤ ik. Then W is a weight function (of order n
and dimension k) if it is triangular and has range over the non-negative real numbers. Formulate the
“optimal k-gonalization” problem for an abstract n-gon. (This seeks to partition an n-gon into `-gons
where 3 ≤ ` ≤ k. Give a dynamic programming solution. ♦

c© Chee-Keng Yap March 31, 2003



§8. Quadrangular Inequality Lecture VII Page 25

End Exercises

§8. Quadrangular Inequality

The quadrangular inequality is central in the O(n2) solution of the optimal search tree problem. We will
show two key lemmas.

Lemma 3 If W is monotone and quadrangular, then the derived weight matrix W ∗ is also quadrangular.

Proof. We must show the quadrangular inequality

W ∗(i, j) + W ∗(i′, j′) ≤W ∗(i, j′) + W ∗(i′, j), (0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n). (15)

First, we make the simple observation when i = i′ or j = j′, the inequality in equation (15) holds trivially.

The proof is by induction on ` = j′−i. The basis, when ` = 1, is immediate from the previous observation,
since we have i = i′ or j = j′ in this case.

Case i < i′ = j < j′: So we want to prove that W ∗(i, j) + W ∗(j, j′) ≤ W ∗(i, j′) + W ∗(j, j). Let
W ∗(i, j′) = W (i, j′; k) and initially assume i < k ≤ j. Then

W ∗
i,j + W ∗

j,j′ ≤ [Wi,j + W ∗
i,k−1 + W ∗

k,j ] + W ∗
j,j′ (expanding W ∗

i,j)
≤ Wi,j′ + W ∗

i,k−1 + [W ∗
k,j + W ∗

j,j′ ] (by monotonicity)
≤ [Wi,j′ + W ∗

i,k−1 + W ∗
k,j′ ] + W ∗

j,j (by induction)
= W ∗

i,j′ + W ∗
j,j (by choice of k).

In case j < k ≤ j′, we would initially expand W ∗
j,j′ above.

Case i < i′ < j < j′: Let W ∗(i, j′) = W (i, j′; k) and W ∗(i′, j) = W (i′, j; `) and initially assume k ≤ `.
Then

W ∗
i,j + W ∗

i′,j′ ≤ [Wi,j + W ∗
i,k−1 + W ∗

k,j ] + [Wi′,j′ + W ∗
i′,`−1 + W ∗

`,j′ ] (since i < k ≤ j, i′ < ` ≤ j′)
≤ [Wi,j′ + Wi′,j ] + W ∗

i,k−1 + W ∗
i′,`−1 + [W ∗

k,j + W ∗
`,j′ ] (W is quadrangular)

≤ [Wi,j′ + Wi′,j ] + W ∗
i,k−1 + W ∗

i′,`−1 + [W ∗
k,j′ + W ∗

`,j ] (induction on (k, `, j, j′))
≤ [Wi,j′ + W ∗

i,k−1 + W ∗
k,j′ ] + [Wi′,j + W ∗

i′,`−1 + W ∗
`,j ]

= W ∗
i,j′ + W ∗

i′,j (by choice of k, `).

In case ` < k, we can begin as above with the initial inequality W ∗(i, j) + W ∗(i′, j′) ≤ W ∗(i, j; `) +
W ∗(i′, j′; k). Q.E.D.

Splitting function KW . The (i, j)-splitter k is not unique but we make it unique in the next definition
by choosing the largest such k.

Definition 3 Let W be an weight matrix. Define the splitting function KW to be a triangular function

KW : [0..n]2 → [0..n]

defined as follows: KW (i, i) = i and for 0 ≤ i < j ≤ n,

KW (i, j) := max{k : W ∗(i, j) = W (i, j; k)}.

c© Chee-Keng Yap March 31, 2003



§8. Quadrangular Inequality Lecture VII Page 26

We simply write K(i, j) for KW (i, j) when W is understood. Once the function KW is determined, it is a
straightforward matter to compute the derived matrix of W The following is the key to a faster algorithm.

Lemma 4 If the derived weight matrix of W is quadrangular, then for all 0 ≤ i ≤ j < j,

KW (i, j) ≤ KW (i, j + 1) ≤ KW (i + 1, j + 1).

Proof. By symmetry, it suffices to prove that

K(i, j) ≤ K(i, j + 1). (16)

This is implied by the following claim: if i < k ≤ k′ ≤ j then

W ∗(i, j; k′) ≤W ∗(i, j; k) implies W ∗(i, j + 1; k′) ≤W ∗(i, j + 1; k). (17)

To see the implication, suppose equation (16) fails, say K(i, j) = k′ > k = K(i, j + 1). Then the claim
implies K(i, j + 1) ≥ k′, contradiction.

It remains to show the claim. Consider the quadrangular inequality for the admissible quadruple
(k, k′, j, j + 1),

W ∗(k, j) + W ∗(k′, j + 1) ≤W ∗(k, j + 1) + W ∗(k′, j).

Adding W (i, j) + W (i, j + 1) + W ∗(i, k − 1) + W ∗(i, k′ − 1) to both sides, we obtain

W ∗(i, j; k) + W ∗(i, j + 1; k′) ≤W ∗(i, j + 1; k) + W ∗(i, j; k′).

This implies equation (17). Q.E.D.

Main result. The previous lemma gives rise to a faster dynamic programming solution for monotone
quadrangular weight functions.

Theorem 5 Let W be weight matrix such that W (i, j) can be computed in constant time for all 1 ≤ i ≤ j ≤
n, and its derived matrix W ∗ is quadrangular. Then its derived matrix W ∗ and the splitting function KW

can be computed in O(n2) time and space.

Proof. We proceed in stages. In stage ` = 1, . . . , n− 1, we will compute K(i, i + `) and W ∗(i, i + `) (for all
i = 0, . . . , n− `). It suffices to show that each stage takes takes O(n) time. We compute W ∗(i, i + `) using
the minimization

W ∗(i, i + `) = min{W (i, i + `; k) : K(i, i + `− 1) ≤ k ≤ K(i + 1, i + `)}.

This equation is justified by the previous lemma, and it takes time O(K(i + 1, i + `)−K(i, i + `− 1) + 1).
Summing over all i = 1, . . . , n− `, we get the telescoping sum

n−∑̀
i=1

[K(i + 1, i + `)−K(i, i + `− 1) + 1] = n− ` + K(n− ` + 1, n)−K(1, `) = O(n).

Hence stage ` takes O(n) time. Q.E.D.

c© Chee-Keng Yap March 31, 2003



§8. Quadrangular Inequality Lecture VII Page 27

Remarks. We refer to [5] for a history of this problem and related work. The original formulation of the
optimal search tree problem assumes pi’s are zero. For this case, T.C. Hu has an non-obvious algorithm that
Hu and Tucker were able to show runs correctly in O(n log n) time. Mehlhorn [6] considers “approximate”
optimal trees and show that these can be constructed in O(n log n) time. He describes a solution to the
“approximate search tree” problem in which we dynamically change the frequencies; see “Dynamic binary
search”, (SIAM J.Comp.,8:2(1979)175–198). M. R. Garey gives an efficient algorithm when we want the
optimal tree subject to a depth bound; see “Optimal Binary Search Trees with Restricted Maximum Depth,
(SIAM J.Comp.,3:2(1974)101-110).

Exercises

Exercise 8.1: (a) Compute the optimal binary tree for the following sequence:

(q0, p1, q1, . . . , p10, q10) = (1, 2, 0, 1, 1, 3, 2, 0, 1, 2, 4, 1, 3, 3, 2, 1, 2, 5, 1, 0, 2).

(b) Compute the optimal binary tree for the case where the q’s are the same as in (a), namely,

(q0, q1, . . . , q10) = (1, 0, 1, 2, 1, 4, 3, 2, 2, 1, 2)

and the p’s are 0. ♦

Exercise 8.2: It is actually easy to give a “graphical” proof of lemma 4. In the figure 7, this amounts to
showing that if A + a ≥ B + b then A′ + a′ ≥ B′ + b′.

A B C

A′ B′ C′

a a′

b b′

Figure 7: Derived weight matrix.

♦

c© Chee-Keng Yap March 31, 2003



§9. Conclusion Lecture VII Page 28

Exercise 8.3: If W is monotone and quadrangular, is W ∗ monotone? ♦

Exercise 8.4: Consider a binary search tree that has this shape (essentially a linear list):

pn

pn−1

p1

q1q0

qn−1

qn

Figure 8: Linear list search tree.

Show that the following set of inequalities is necessary and sufficient for the above search tree to be
optimal:

p2 + q2 ≥ p1 + q0 (E2)
p3 + q3 ≥ p2 + q1 + p1 + q0 (E3)
. . .
pn + qn ≥ pn−1 + qn−2 + pn−2 + · · ·+ p1 + q0 (En)

HINT: use induction to prove sufficiency.
Remark: So search trees with such shapes can be verified to be optimal in linear time. In general,
can an search tree be verified to be optimal in o(n2) time? ♦

Exercise 8.5: (a) Generalize the above result so that all the internal nodes to the left of the root are left-
child of its parent, and all the internal nodes to the right of the root are right-child of its parent. (b)
Can you generalized this to the case where all the internal nodes lie on one path (ignoring directions
along the tree edges – the path first traverses up the tree to the root and then down the tree again).

♦

Exercise 8.6: Given a sequence a1, . . . , an of real numbers. Let Aij =
∑j

k=i ak, Bij = min{Akj : k =
i, . . . , j} and Bj = B1j . Compute the values B1, . . . , Bn in O(n) time. ♦

End Exercises

§9. Conclusion

This chapter shows the versatility of the on dynamic programming approach to a variety of problems. A
serious drawback of dynamic programming is its high polynomial cost, O(nk) for k ≥ 2, in both time and
space. Hence there is interest in exploiting “sparsity conditions” when they occur. Sometimes, the implicit
matrix to be searched has special properties (Monge conditions). See the survey of Giancarlo [3] for such
examples.

c© Chee-Keng Yap March 31, 2003



§9. Conclusion Lecture VII Page 29

References

[1] A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. Oxford University Press, 1997.

[2] M. L. Fredman. Growth Properties of a class of recursively defined functions. PhD thesis, Stanford
University, 1972. Technical Report No. STAN-CS-72-296.

[3] R. Giancarlo. Dynamic programming: Special cases. In A. Apostolico and Z. Galil, editors, Pattern
Matching Algorithms, pages 201–232. Oxford University Press, 1997.

[4] T. C. Hu and M.-T. Shing. An O(n) algorithm to find a near-optimum partition of a convex polygon. J.
Algorithms, 2:122–138, 1981.

[5] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley,
Boston, 1972.

[6] K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sorting. Springer-Verlag, Berlin, 1984.

[7] P. Ramanan. A new lower bound technique and its application: Tight lower bound for a polygon
triangulation problem. SIAM J. Computing, 23:834–851, 1994.

c© Chee-Keng Yap March 31, 2003


