
§1. Some Hard Problems Lecture XXX Page 1

Lecture XXX

NP-COMPLETENESS AND COMPLEXITY THEORY

We have studied many computational problems. Despite the common theme of complexity in our studies,
there is so far no coherent framework encompassing these problems. This final chapter introduces some
elements of complexity theory to unify a large portion of our investigations.

We have mostly looked at algorithms for computational problems – these provide upper bounds on
computational complexity. We have almost exclusively focused on problems that are solvable in polynomial-
time. In complexity theory, we are also interested in “inherent complexity”. Another way of saying this is we
also want to prove lower bounds. This is a much harder quest: for instance, to show that a problem cannot
be solved in n2 time, we must prove something about all conceivable algorithsm for solving the problem!
How can one do this? The first thing step is the characterize what are “all conceivable algorithms”. This
leads to the notion of computational model.

Once this is settled, we need to take another less obvious step: we want to classify problems into those
that are “tractable” and those that are not. This step has precedent in the theory of computability where a
fundamental classification of problems is the computable versus the uncomputable ones. The meta-principle
here says that “solvable using a polynomial amount of resources” is equated with tractability. This is a
meta-principle because we still have to choose the computational resource, machine model, etc. For simplicity,
we will assume that the computational resource of interest is time.

As in computability theory, this step turns out to be extremely fruitful, both theoretically as well as in
practice. Intractable as well as suspected-intractable problems actually arise very frequently in applications.
This forces us to develop new techniques for attacking such problems. While these techniques may be still
fundamentally non-polynomial, they allow non-trivial instances to be solved. For instance, improving an
algorithm from 2n time to 2

√
n time can have significant practical impact. Often, in the worst case, we

know no better than using a “brute-force search” which typically means an exponential time search for
solutions. To circumvent this, we can introduce more powerful computational models (e.g., randomization,
approximation) or more refined complexity models (output sensitive analysis). for classifying algorithmic
solutions.

The study of suspected-intractable problems has a discouraging side: all attempts to prove that they are
actually intractable has failed miserably. Indeed, we could not even prove that these problems require at
least cubic time, say. But the bright side is that researchers discovered a remarkable phenomenon. There
is a large class of suspected-intractable problems that are equivalent in the sense that any problem in this
equivalence class is tractable if and only if all of them are tractable. This is the theory of NP -hardness which
we will study in this chapter.

§1. Some Hard Problems

We introduce some important computational problems.

• Longest Path Problem. Given a bigraph G = (V, E; s), we want to compute a “longest path” from
s, namely a path p = (s, v1, v2, . . . , vk) such that k is maximized. The notion of longest path here
need to be clarified, because if s can reach any cycle then we can have paths that are arbitrarily long,
but no single path is the longest. Since we do not want to exclude cycles from G, we will insist that
the “longest path” must by simple (i.e., no vertex is visited twice). This is deceptively similar to the
shortest path problem which we can solve using BFS. But we shall see that this is very far from the
truth.

c© Chee-Keng Yap April 28, 2003

§1. Some Hard Problems Lecture XXX Page 2

• Bin Packing. Recall the linear bin packing problem introduced in greedy algorithms: given numbers
(M ; w1, . . . , wn) we want to pack the weights wi into the minimum number of bins where each bin has
capacity M . The original problem is “linear” because the order of packing the weights wi into bins are
specified. In the general bin packing problem, you can rearrange the weights in any way you want.

Example.

• Travelling Salesman Problem (TSP). Given a n×n matrix M whose (i, j)-th entry (M)ij represents
the distance from city i to city j, Let π be a permutation of {1, . . . , n}, i.e., a bijection π : {1, . . . , n} →
{1, . . . , n}. We view π as a tour or itinerary of a salesman who begins in city π(1), and visits cities
π(2), π(3), . . . , π(n) and finally returning to city π(1) again. The cost C(π) of this tour is the sum of
all the intercity city distances travelled. The problem is compute a tour π of minimum total distance.

This problem has many important applications. For instance, in integrated circuit fabrication we may
have a very complex circuitry with thousands of points that need soldering by a robot arm. What
we want is a minimum cost tour for a robot arm to visit all these point (“cities”). If we can improve
on a tour by 10%, this might (in the absense of other constraints) suggest that we can speed up the
soldering process by 10%, a real competitive advantage in manufacturing!

• Knapsack Problem. Suppose you are packing for your vacation and you have the n items to pack:
shoes, clothes, books, toiletry, scuba diving gear, etc. Let the ith item have a size si > 0 and an utility
ui > 0. But you have one knapsack with capacity C > 0. A subset I ⊆ {1, . . . , n} is called feasible if

∑
i∈I

si ≤ C.

You are to select a feasible set I such that the utility u(I) =
∑

i∈I ui is maximized.

• Chromatic Number of a Graph. Given a bigraph G = (V, E), we want to compute the chromatic
number χ(G) of G. This is defined to be the minimum k such that G has a k-coloring. A k-coloring
of G is an assignment of the “colors” 1, 2, . . . , k to the vertices of G such that no two adjacent vertices
have the same color.

The above problems can be said to be optimization problems because there are some minimality or
maximality criteria. Typically, any optimization problem can be simplified into decision problems, in
which the required output is binary-valued (YES/NO). Let us illustrate this remark:

• Travelling Salesman Decision Problem (TSD). Given the matrix M as before, and a real number
B, does there exist a tour π such that C(π) ≤ B?

• Knapsack Decision Problem Given C, s1, . . . , sn and u1, . . . , un as before, and a real number B,
does there exist a feasible set I such that

∑
i∈I ui ≥ B?

• Chromatic Number Decision Problem. Given a bigraph G and an integer k > 0, is χ(G) ≤ k?

When we discuss complexity of problems, we need a notion of input size. For simplicity, we say that the
“size” of each of the above problems is n. In the case of TSP and Knapsack, we need to bound the numbers
Mij , si, ui in terms of n. For simplicity, we assume that each number in the input is a binary number with
at most n bits.

We currently do know if any of these problems are tractable: that is, whether there exist algorithms with
running time O(nk) for any fixed k. This is true for the optimization problem as well as for their simpler
decision counterpart.

c© Chee-Keng Yap April 28, 2003

§2. Model of Computation Lecture XXX Page 3

It will turn out that as far as tractability is concerned, the original problem is tractable iff the cor-
responding decision problem is tractable. This may at first appear surprising because it is clear that the
decision problem is simpler than the corresponding optimization problem. This can be make rigorous using
the notion of reduction which we will introduce below. In view of this tractability-equivalence, the theory
we are about to develop will mostly deal with decision problems.

The above list is just a small sampling of a host of problems not known to be tractable. What is more
remarkable is that they all share this characteristic: if any one of these problems is shown to be tractable,
then all of them would be tractable. Such problems are “NP-Complete”, a concept we will shortly introduce.
The book [1] contains a list of over 300 problems from all areas of the computational literature with the
same property. Of course, the list has grown considerably since the writing of the book. The existence of
this NP -completeness phenomenon has important implications for the study of algorithms.

• First, it tells us that there is overwhelming evidence for the inherent difficulty of these problems. In
fact, most experts believe that these problems are intractable.

• Second, instead of attempting to show efficient algorithms for a problem, especially if we suspect that
it is not possible, we can also attempt to show it to be NP -complete. This would bring relative closure
to our investigation, as a kind of negative result.

• Third, it has led to the investigation of new computational techniques (especially randomized ones)
for attacking such problems.

In short, the overall impact of this theory on the computational literature is far-ranging.

Exercises

Exercise 1.1: Give some good algorithmic solution for the following problems: (a) TSP, (b) Chromatic
Number and (c) Knapsack. Note that while your solution will be non-polynomial, you should try to
make it as efficient as you can. ♦

Exercise 1.2: For each case of the previous question, estimate the largest size n of the problem that your
algorithm can solve in one day of computer time. Make explicit any assumptions you need (speed of
your computer, etc). ♦

End Exercises

§2. Model of Computation

In order to bring the various problems under one framework, we need to have a “universal computational
model”. Many models are possible. In terms of what is computable or not, they are all equivalent. But in
terms of complexity, the issue is considerably more subtle (this is related to the concept of “computational
modes” [2]). In any case, the canonical choice here is the Turing machine model. Again, there are many
variants of Turing machines. For our present purpose, we use the Simple Turing Machine (STM) model.

REWRITE THE FOLLOWING INFORMATION (Use Theory Lecture Notes)

c© Chee-Keng Yap April 28, 2003

§2. Model of Computation Lecture XXX Page 4

q

a1

input tape

work tape 1

work tape 2 a2

a0

Figure 1: Turing machine in state q ∈ Q

A Turing machine must work over a finite alphabet Σ and a finite set of states Q. The TM has an input
tape and a finite number k ≥ 0 of worktapes. These tapes are usually numbered tapes 0, 1, . . . , k. Each
tape is a doubly-infinite sequence of cells, indexed by the integers. Each cell can store a single symbol from
Σ. One symbol t ∈ Σ is special and called the blank symbol. Initially, all cells (except those cells that
store the input) contain the blank symbol. The input is a word w in Σ. If w = a1a2 · · · an then cells j
(j = 1, . . . , n) of the input tape stores aj ∈ Σ. Corresponding to each tape is a head. At any moment, the
head i is scanning a cell of tape i (i = 0, 1, . . . , k). This head can change the symbol in the cell that it is
scanning, and it can move to scan an adjacent cell. Figure 1 illustrates a TM with 2 worktapes.

Let us capture this formally. A k-tape Turing machine M is specified by a finite subset of

δ ⊆ Q× Σ1+k ×Q× Σk × {0,±1}1+k

where each tuple
〈q, a0, . . . , ak, q′, b1, . . . , bk, d0, . . . , dk〉 (1)

represent an “instruction” of M . We call δ the transition table of M . This says that in state q, and
reading ai on tape i (for i = 0, . . . , k), M can next go into state q′ and change aj to bj (for j = 1, . . . , k) and
then move head i to an adjacent cell indicated by di. Notice that the input tape symbol a0 is not modified.

How does M compute? Part of the specification of M are two distinguished states in Q:

q0(the initial state) and qa(the accept state).

Define configuration C of M to include the non-blank contents on the tapes, the head positions and the
state of M . For any input w ∈ Σ, there is a unique initial configuration on w, denoted C(w) = CM (w).
In C(w), the non-blank tape contents are all empty except the input tape contains w and the state is q0. A
configuration is accepting if its state is qa.

Say the binary relation
C −→ C′ or C −→M C′

on configurations C, C′ hold if there is an instruction of M that transforms C to C′. We call C′ a successor
of C. Note that for any given C, there may be more than one successor, or even none. If C has no successors,
it is said to be terminal. For our purposes, we can assume that accepting configurations are terminal. The
reflexive, transitive closure of −→ is denoted −→∗ .

c© Chee-Keng Yap April 28, 2003

§3. Model of Computation Lecture XXX Page 5

A computation path on w ∈ Σ∗ is a sequence

π = (C0, C1, C2, . . .) (2)

of possibly infinitely many configurations where C0 = C(w) and Ci is the successor of Ci−1 for i ≥ 1.
Moreover, if the path is finite, then the last configuration is terminal. We say π is accepting if it is finite
and the last configuration is accepting. We say M accepts w if there is an accepting computation path on
w. The language accepted by M is the set of all words w that is accepted by M and is denoted L(M).

The set of all computation paths on input w defines the computation tree on w. This tree T (w) =
TM (w) has root C(w) and in general, its nodes are configurations of M such that the children of a node C
are precisely all the successors of C. Note that T (w) can be infinite.

Computational Modes. In the instruction (1), the first k + 2 elements 〈q, a0, a1, . . . , ak〉 is called the
left-hand side of the instruction. We say that a transition table δ is deterministic if no two instructions
have the same left-hand side. A Turing machine is deterministic if its transition table is deterministic,
otherwise it is non-deterministic. No configuration of a deterministic Turing machine has more than
one successor. Thus its computation tree is just a computation path. Determinism and non-determinism
are two possible computational modes. I shall call “deterministic mode” the fundamental mode of
computation.

Turing machine for computing functions. We can also use Turing machines to define function f : Σ∗ →
Σ∗. To define functions, we can introduce an output tape. Assume that this output tape is write-only
(whenever a new output symbol is written, the output head moves right).

Discussion: We are building a theory for decision problems (problems for which the answer is 0/1). This
is only the simplest kind of problem (§I.2). For many non-decision problems one can define some natural
decision problem that corresponds to it (see the TSP/TSD example below). It will turn out that proving
the intractability of this decision problem usually leads to intractability of the original problem. Hence, if
we view our theory is one of trying to understand intractability, the present approach is adequate. In any
case, this is the simplest form of problems and we should at least begin by understanding this case.

An example is the traveling salesman problem (TSP), in which we are given a cost matrix C :
{1, . . . , n}2 → Z between all pairs of cities in the set {1, . . . , n}. The problem is to compute the minimum
length of a tour (a circuit that visits each city exactly once). This is one of the problems for which we do not
have polynomial time solutions, despite much effort being put into this. We define a correspond traveling
salesman decision problem (TSD) in which we are given C and some k ∈ Z, and we want to decide
whether the minimum cost of a tour is less than k. An exercise below shows that if TSP is intractable, then
so is TSD. Intuitively, it means that TSD, though simplified, contains the essential difficulties of the TSP
problem.

Exercises

Exercise 2.1: Construct a Turing machine M to check if a bigraph is connected. Assume (be explicit) some
reasonable encoding of bigraphs. Please describe the actions of M in words, not by writing down its
set of instructions! ♦

Exercise 2.2: Show that if TSD can be solved in polynomial time, then we can solve TSP in polynomial
time. ♦

c© Chee-Keng Yap April 28, 2003

§3. Computational Problems Lecture XXX Page 6

End Exercises

§3. Computational Problems

The above computational model apparently computes on input strings. But computational problems
arise in mathematical domains such as integers, sets, graphs, matrices, etc. In order to solve these problems,
we must therefore assume some encoding of these objects as strings. The following will be assumed unless
otherwise indicated:

• Integers: these are represented in binary notation. We can generalize this to rational numbers in the
obvious way.

• Matrices: assuming a representation of the matrix entries (say binary numbers) then the entire matrix
can be represented by a row-major order lising of entries. Of course, we need to explicitly state the
size of the matrix first.

• Sets: again, relative to some encoding of the elements of the set, we encode a set by an arbitrary listing
of its elements.

If g is an object, we may write code(g) for the encoded version of g. But often, we do not even make this
distinction, and identify g with code(g).

Matrices includes vectors or tuples, of course. Note that we introduce new symbols to separate items
in the set. Note that the encoding of a set is not unique (unlike encoding of integers, say). This in turn
requires some non-trivial computational effort to check equality of two encoded sets. On the other hand, for
encodings that are unique, checking equality is just a matter of comparing the two encoding strings.

EXAMPLE: encoding of digraphs. Three main methods are: (1) listing of the edge set, (2) adjacency
lists and (3) adjacency matrix. Assuming that the nodes have some given encoding already (say, as integers)
and edges are just pairs of nodes, then method (1) amounts to a representation of a set, and method (2)
amounts to a list of lists of nodes. Method (3) can be viewed as a boolean matrix.

Efficiency of Encoding. The choice of encoding is usually not important, but there are exceptions. The
most important example is the encoding of integers: we can use k-ary encoding of integers for any k > 2,
instead of the default binary encoding (k = 2). On the other hand, we must not use unary encoding (k = 1).
The reason is that this is exponentially less efficient than k-ary encoding for k > 1. This will have drastic
consequence on the complexity of the problem: an exponential time problem may become polynomial time
just by this encoding artifact. This shows that it is important to have “compact encodings”. On the other
hand, we should not insist on the most compact encoding, as this would involve difficult computational
problems to find the most compact one!

Satisfiability Problem. Given a Boolean formula F , is it satisfiable? Let SAT denote the set of (encod-
ings) satisfiable Boolean formulas.

EXAMPLE: the formula

F = (x + y + z)(x + y)(y + z)(z + x)(x + y + z) (3)

c© Chee-Keng Yap April 28, 2003

§4. Complexity Classes Lecture XXX Page 7

is not satisfiable, as the reader may verify. Note that we use ‘+’ for ∨ and ‘×’ for ∧, as these are slightly
easier to read visually.

MOVE THIS AFTER COMPLEXITY CLASSES

Lemma 1 SAT ∈ NP.

Variation: A 3-conjunctive normal Form (3CNF) formula is a Boolean formula that is a conjunction
of disjuncts, where each disjunct has at most 3 literals. Our above example is a 3CNF formula. The 3SAT
problem is the restriction of SAT to inputs that are in 3CNF .

Hamiltonian Path Problem. Given G, does there exist a Hamiltonian circuit? Let HAM denote the
set of (encodings) of G that has Hamiltonian circuits.

MOVE THIS AFTER COMPLEXITY CLASSES

Lemma 2 HAM ∈ NP.

Exercises

Exercise 3.1: Show the above lemmas. As in all Turing machine exercises, we prefer that you say in words
any constructions you need rather than construct explicit Turing machines. ♦

End Exercises

§4. Complexity Classes

We now introduce concepts of complexity. By a complexity function we mean a partial function

f : R → R ∪ {∞}
that is defined on the natural numbers. We are usually interested in families of complexity functions. The
following are the main families:

{log n}, O(n), nO(1), O(1)n, 2nO(1)
.

We introduce (computational) resources: time and space will be our most important examples of
resources. Define the time of the computation path π in (2) to be one less then the number of configurations
in the sequence (which could be infinite). The space of π is the total number of cells that are ever scanned
by some work tape in any configuration in π. Note that the cells in the input tape are not counted.

For any complexity function f and TM M , we define what it means for M to accept in time f : this
means that for all inputs w of length n, if M accepts w then there is an accepting computation path using

c© Chee-Keng Yap April 28, 2003

§5. Basic Results Lecture XXX Page 8

time at most f(n). Note that if M does not accept w then we impose no requirement. Also, f is just an
upper bound on the computation length. We similarly define what it means for M to accept in space f .

Finally, a complexity class K is characterized by a choice of mode µ, family F of complexity functions
and a computational resource ρ. We write

K = χ(µ, ρ, F)

to denote the class of languages L such that there exists f ∈ F and a µ-TM that accepts L in ρ f(n). A
more standard way to represent these classes is to associate symbols with each of these parameters: D for
deterministic, N for nondeterministic, TIME for time and SPACE for space. Then χ(deterministic, time, F)
is usually denoted DTIME (F). If F = {f} then we write DTIME (f) instead of DTIME ({f}). Similarly,
the notationa NTIME (F),DSPACE (F) and NSPACE (F) are self-explanatory.

The Classes P and NP. Using the above conventions, the class

DTIME (nO(1))

comprises the languages accepted by deterministic TM running in polynomial time. This class is usually
denoted P . Again, NTIME (nO(1)) is similar to P except the mode is non-deterministic and this class is
usually denoted NP . Another important class is PSPACE := DSPACE(nO(1)). The following inclusions are
straightforward to show:

P ⊆ NP ⊆ PSPACE .

These classes are usually called Deterministic Polynomial Time, Nondeterministic Polynomial Time
and Polynomial Space, respectively. These are extremely important classes for several reasons: most
problems that we can solve practically falls under these classes. Of course, if we agree that “tractable”
means deterministic polynomial time, then P is just the class of tractable problems.

Exercises

Exercise 4.1: Show that everything computed by a deterministic TM can be computed by a non-
deterministic TM in the same time and space ♦

Exercise 4.2: Another approach to NP is as follows: A verification machine M is a deterministic Turing
machine with two input tapes. An input is a pair (w, v) with w on the first input tape and v on the
second input tape. We say M verifies a word w ∈ Σ∗ if there exists a word v ∈ Σ∗ such that on input
(w, v), M eventually enters the accept state qa and halts. Say M verifies in time t(n) if for all inputs
w, if M verifies w then there exists a v such that M on (w, v) will halt within t(|w|) steps. Let V (M)
be the set of words that is verified by M . Show that L is in NP iff L is verified by a polynomial-time
verification machine. ♦

Exercise 4.3: Show that NP ⊆ PSPACE . ♦

End Exercises

§5. Basic Results

Let X = D or N , and suppose s, t are complexity functions.

c© Chee-Keng Yap April 28, 2003

§6. Reductions Lecture XXX Page 9

Linear Reduction of Complexity. For all s,

XSPACE(s) = XSPACE (O(s)).

This is sometimes called the space compression theorem.

If t(n) > n,
XTIME (t) = XTIME (O(t)).

This is sometimes called the linear speedup theorem.

Hierarchy Theorems or Separation Results. If s′ = ω(s) then

DSPACE(s′)−DSPACE(s) 6= ∅.
If t log t = o(t′), t′ is time-constructible and t(n) > n then

DTIME (t′)−DTIME (t) 6= ∅.
These are sometimes called the time and space hierarchy theorems.

Corollary:
P is properly contained in DTIME (O(1)n).
DSPACE (log) is properly contained in PSPACE . For instance, for all ε > 0,

DTIME (t) ⊂ DTIME (t1+ε)

Exercises

Exercise 5.1: Prove the space compression theorem. ♦

Exercise 5.2: Prove directly that DTIME (t3)−DTIME (t) 6= ∅. ♦

End Exercises

§6. Reductions

Let T be a deterministic Turing machine acting as a transducer and computing the transformation
f : Σ∗ → Σ∗.

We say (L, Σ) is Karp-reducible (or, simply, reducible) to (L′, Σ′) if there exists a polynomial-time
computable transformation f such that for all x ∈ Σ∗,

x ∈ L iff f(x) ∈ L′.

We also write
L ≤P

m L′.

c© Chee-Keng Yap April 28, 2003

§7. Fundamental Questions and Completeness Lecture XXX Page 10

Lemma 3 (i) Transitivity If L ≤P
m L′ and L′ ≤P

m L′′ then L ≤P
m L′′.

(ii) Closure of P If L ≤P
m L′ and L′ ∈ P then L ∈ P .

Lemma 4
HAM ≤P

m SAT

Proof. Given G we construct a 3CNF formula f(G) that is satisfiable iff G ∈ HAM . Assume nodes of G
are {1, . . . , n}. A tour of G is a path T = (u1, . . . , un) such that (ui, ui+1) is an edge of G for i = 1, . . . , n
(where we assume un+1 = u1). Hence a tour represents a cycle of G. Introduce a variable xij where i range
over the nodes in G and j ranges from 1 to n. We want xij to stand for the proposition about some unknown
tour T of G:

Node i is the jth node in tour T .

With the help of these elementary propositions xij , we write down the following propositions that must be
true of T :
(1) For each j, there is a unique i such that xij is true.
(2) For each i, there is a unique j such that xij is true.
(3) For each i 6= i′, if xij and xi′,j+1 are true then (i, i′) is an edge of G.

This is quite easy, so we just illustrate the proposition (1):
(n∨∨

i=1
xij

)
∧

(∧∧
1≤i<i′≤n

(xij ∨ xi′j)
)

.

It is clear that if G has a tour, then (1), (2) and (3) must be satisfiable. Conversely, if (1), (2) and (3) are
satisfiable, we can construct a tour of G. Q.E.D.

Exercises

Exercise 6.1: Prove the transitivity and closure properties of Karp-reducibility. ♦

Exercise 6.2: A bigraph G = (V, E) is said to be triangular if |V | = 3n for some n and V can be
partitioned into n disjoint subsets

V1] V2] · · ·] Vn

where each Vi has three vertices that form a triangle, i.e., if Vi = {u, v, w} then {(u, v), (v, w), (w, u)} ⊆
E. Let L be the set of encodings of triangular bigraphs. Show by a direct reduction that L is Karp-
reducible to SAT . NOTE: since SAT is NP-complete, this problem is trivially solved by proving that
L ∈ NP . But you are explicitly forbidden to use this argument. ♦

Exercise 6.3: Suppose instead of polynomial time, we restrict the transducer to run in logarithmic space
and linear time. Prove the transitivity and closure properties of such reducibility. ♦

End Exercises

c© Chee-Keng Yap April 28, 2003

§7. Fundamental Questions and Completeness Lecture XXX Page 11

§7. Fundamental Questions and Completeness

The most important open questions of complexity theory are all of the form: is K ⊆ K ′ where K, K ′

are complexity classes. The most famous of such questions is the NP ⊆ P question. A fundamental tool to
study such inclusion questions is the theory of completeness.

Let K be a class of languages. A language L is K-hard if for all L′ ∈ K, L′ ≤P
m L. We say L is

K-complete if L is K-hard and L ∈ K. Here we prove some simple lemmas for the case K = NP .

Lemma 5 Let L0 be NP-complete. If L ∈ P then P = NP.

Thus, we transform inclusion questions about a class into questions about a single language in the class!
But are there any NP-complete languages?

Theorem 6 (Cook’s Theorem) SAT is NP-complete.

Once we get one complete language, we can show more by the following technique:

Lemma 7 If L ∈ NP and L′ ≤P
m L then L′ is NP-complete implies L is NP-complete.

Lemma 8 3SAT in NP-complete.

Proof. By the previous lemma, we only have to reduce SAT to 3SAT . Q.E.D.

Lemma 9 HAM is NP-complete.

Proof. We will reduce 3SAT to HAM . Let F be a 3CNF formula. We will construct a graph G = GF such
that F is satisfiable iff GF has a Hamiltonian circuit. We need two types of “gadgets”:

Figure 2(a) shows the choice gadget and figure 2(b) shows the XOR (exclusive-or) gadget. These gadgets
have entry nodes (indicated by large black circles and labeled “in” or “out”, respectively). We will put
several of these gadgets together to form GF . There will be additional edges added in GF but these edges
will only connect to each gadgets via the entry nodes. Let us note some properties of these gadgets.

• The choice gadget is strictly speaking not a graph — it is a multigraph because it has two parallel
edges (i.e., edges sharing the same pair of endpoints). But this will not be a problem because in the
course of putting together these gadgets, we will be inserting vertices into one of the parallel edge. Let
us call the two parallel edges the choice paths (in a Hamiltonian cycle of the constructed graph, we
will have to choose one of these two paths). Also, the two non-entry vertices (a, b in figure 2(a)) of the
choice gadget are called choice vertices.

• The XOR gadget has 4 vertices of degree 2 each. These vertices can only be visited in a Hamiltonian
cycle that enters through one of these entry nodes. But it is not hard to see that if the Hamiltonian cycle

c© Chee-Keng Yap April 28, 2003

§7. Fundamental Questions and Completeness Lecture XXX Page 12

choice gadget exclusive−or gadget traversing the exclusive−or gadget schematic

(a) (b) (c) (d)

in1

out1 out2

in2 in1 in2

out1 out2

in1 in2

out1 out2

b

a

Figure 2: Gadgets for reducing SAT to HAM

enters the gadget through the entry node labeled in1 then it must exit via the node out1, as illustrated
in figure 2(c). Otherwise, the some vertex of degree 2 will not be visited. We call this a traversal of
the XOR gadget. Of course, the symmetrical traversal holds with respect to the entry nodes in2, out2.
These two traversals are the only ways to visit all the 4 vertices of degree 2 in a Hamiltonian circuit. In
figure 2(d), we have a schematic representation of the XOR gadget: intuitively, this schematic suggests
that in1 and out1 are connected by an “edge”, and so are in2 and out2. Moreover, only one of these
two “edges” can be traversed (hence they are linked by an exclusive-or ⊕ symbol).

It is best to show how we form GF by an example. Let F be the formula

(x + y + z)(x + y + z)(x + y + z). (4)

To form G, we use one choice gadget to “simulate” each variable in F and three XOR gadgets to “simulate”
each clause of F . For the choice gadget that simulates a variable xi (i = 1, 2, 3), its two choice paths are
labeled xi and xi, respectively. The choice gadgets are linked together sequentially in an arbitrary linear
order as shown in figure 3(a). Call this the “choice chain”. Let s0, t0 be the first and last node in the choice
chain.

Consider the clause x + y + z. The three XOR gadgets for simulating this clause corresponds to the
literals x, y, z. The six in1 or out1 entry nodes in these gadgets are identified in pairs so that they form
a “triangle” of nodes – see figure 3(b). The in2, out2 entry nodes of XOR gadget are “spliced into” the
choice paths that is labeled by the corresponding literal in the choice chain, as in figure 3(c). More precisely,
each XOR gadget has a path of length 5 connecting in2 and out2: this path is now made a subpath of the
corresponding choice path. We do this for each clause. In our example, the literal y occurs in two clauses.
Hence two paths of length 5 will be spliced into the choice path labeled y so that this choice path has length
13 in the final graph G. See figure 3(d).

Finally, we add the edges of the complete graph K defined on the following set of vertices: (i) entry nodes
in triangles (there are three such nodes per triangle), and (ii) the first and last entry node in each choice
path (there are four such nodes per choice gadget). This completes our description of the graph GF .

F is satisfiable implies GF ∈ HAM : Suppose F is satisfiable by an assignment I to the variables. We
show how to construct a Hamiltonian cycle: starting from s0, we traverse each choice gadget such that for

c© Chee-Keng Yap April 28, 2003

§7. Fundamental Questions and Completeness Lecture XXX Page 13

(b) (c)(a)

x x

y y

z z

x x

y y

z z

Splicing the triangle into the chaintriangle for (x + y + z)choice chain

s0

t0

z x

y

details of splicing

(d)

Figure 3: Graph corresponding to F

each variable xi, if I(xi) = 1 then we take the choice path labeled xi, and otherwise we take the choice path
labeled xi. Now, as we traverse a choice path, we are obliged to traverse each XOR gadget that is spliced
into that path, in the canonical way illustrated in figure 2(c). Since I satisfies F , this means that in every
triangle, at least one of the three XOR gadgets is traversed. This proceeds until we reach node t0. At this
point, two kinds of entry nodes are still not yet visited:

(I) Entry nodes in choice paths that are not taken,

(II) Entry nodes that forms the corners of triangles (such entry nodes have subscript 1).

We now use the edges of the complete graph K: from t0, we start to visit entry nodes of type (I). When
this is done, we start to visit the entry nodes of type (II). But now, we also take the opportunity to traverse
any XOR gadget that is not yet traversed. Note that since I is a satisfying assignment, there are at most
two XOR gadgets in a triangle that is not yet traversed. It is easy to see how to traverse the 0, 1 or 2 XOR

c© Chee-Keng Yap April 28, 2003

§8. Postscript Lecture XXX Page 14

gadgets in each triangle, in addition to visiting the 3 entry nodes per triangle. At the end of this process, we
use an edge of K to take us back to the starting vertex s0. This completes our description of a Hamiltonion
circuit.

GF ∈ HAM implies F is satisfiable: Suppose H is a Hamiltonion cycle. First, we claim that H must
traverse exactly one of choice paths for each choice gadget: if it traverse neither of the choice paths, then
there is no way the two choice vertices of the gadget could be visited by H . If it traverse both choice paths,
then some entry node common to two choice gadgets will not be visited. From this claim, we conclude that
H defines an assignment I = IH corresponding to the choice paths that it traverses. We next claim that
IH must be a satisfying assignment. This means that each triangle must have at least one XOR gadget
traversed from the choice paths. If not, we could not traverse the three XOR gadgets using the entry nodes
in each triangle. This concludes our proof.

Q.E.D.

Exercises

Exercise 7.1: Complete the reduction of SAT to HAM . Show in particular: if F is satisfiable, then the
graph f(F) has a Hamiltonion circuit, and conversely. ♦

End Exercises

§8. Postcript

The significance of P ,NP is that P can be identified with the “tractable problems” and NP contains
many important problems of interest for which we do not know how to solve in polynomial time. Almost all
of these problems have been shown to be NP-complete. Hence if any of these is in P then all of them are.

The list has grown to hundreds of problems in all areas of computational literature. Thus it serves to
unify diverse areas.

It also serves as a guide to what problems can be put into P . If your problem of interest looks similar
to an NP-complete problem, you should be careful.

This forces us to consider other “computational modes” such as randomization, parallelization, or even
quantum modes. Another approach is to relax the optimization problem to epsilon-approximation problems.
Another direction is distinguish among the input complexity parameters of problem, and to improve on the
critical exponential parameter. For instance, in many problems, there are two input parameters say k and n
and the exponential behavior is in k alone. An example is the problem of deciding if a graph has chromatic
number at most k. If the graph has n vertices, then the algorithm is exponential in k but polynomial in k,
e.g., O(2kn2). If we can improve the algorithm to O(2αknO(1)) for some α < 1, then asymptotically, we have
a faster algorithm.

c© Chee-Keng Yap April 28, 2003

§8. Postscript Lecture XXX Page 15

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San Francisco, 1979.

[2] C. K. Yap. Introduction to the theory of complexity classes, 1987. Book Manuscript. Preliminary version,
URL ftp://cs.nyu.edu/pub/local/yap/complexity-bk.

c© Chee-Keng Yap April 28, 2003

