
Oct 2 and 4, 2006

Lecture 8: Threads, Contd

October 4, 2006

1 ADMIN

I have posted lectures 3-7 on the web. Please use them in conjunction with the Notes you take in class.
Some of the material in these lecture notes may not be discussed in class, but you are are to understand
them.

On Oct 2, we spent time going over the mechanics of doing hw2 – timing and using pipes for Communi-
cation.

READING: Start reading Chapter 6 on Process Synchronization.

2 Review

1. Q: Describe the two general methods for processes to communicate among themselves in UNIX. Discuss
how to do this, and their pros/cons.

A: The 2 methods are Pipes and Files. Pipe is a 2-way communication (there is no multi-way pipe).
Moreover, the 2 communicating processes need to have a common ancestor (regard a process as its
own ancestor).

Files is a more neutral medium and can involve any number of processes which have no ances-
tor/descendent relation. So this is a pro for using files.

Some synchronization is necessary to prevent simultaneous writes into the file. One standard trick is
to create a file with a special name like ”IwantX”. If someone has already created such a file, another
process can detect this, and will wait until ”IwantX” does not exists. Thus we create/delete the file
”IwantX” to achieve MUTEX. We can then use another file ”X” to share data.

Q: How do you establish a 2-way communication link between two child processes (called X and Y)
using pipes? Go through the mechanics, but do not describe the C program. Be sure to close any I/O
files that are not used.

A: X and Y must be children of a common parent process. The parent has to set up two pipes, called
XtoY and YtoX. It also has a Boolean variable called IamX. The parent will set IamX=true, and
fork to create process X. Then it will set IamX=false, and fork to create process Y. Then X will close
XtoY[0] and YtoX[1]. Similarly, Y will close XtoY[1] and YtoX[0]. They can now communicate with
X writing into XtoY[1], and reading from YtoX[0]. Similarly for Y.

3 Timing in C Programs

You will need to use this information for hw2.
There are two units for time in C and unix: in seconds, and in clock ticks. Clock ticks has a much finer

granularity than seconds. The corresponding functions to obtain such times are called time and clock.
Both functions return some integer type (int, long, etc) with the following interpretations:

1

time() returns the number of seconds since Jan 1st 1970 (conventional birth moment of UNIX). ¡li¿
clock() returns the number of clock ticks since the execution of the program started. You may identify
the clock ticks with the number of CPU cycles. To convert clock ticks into seconds, you must divide by
CLOCKS PER SEC.

These functions and definitions are found in include files called time.h and sys/types.h. E.g., on my
computer, the later file is in /usr/include/sys/types.h.

The function time takes a pointer to time t as an argument and returns a value of time t on exit. In
simple usage, the pointer can be set to NULL, so we only use the return value.

/* file: mytime.c

*

* Operating Systems Class, Fall 2006, Professor Yap.

* THIS code is adapted from the website

* http://beige.ucs.indiana.edu/B673/node104.html by Zdzislaw Meglicki

*/

#include <sys/types.h>

#include <time.h>

#include <unistd.h>

#include <stdio.h>

#include <math.h>

main()

{

time_t t0, t1;

clock_t c0, c1;

long count;

double a, b, c;

t0 = time(NULL);

c0 = clock();

printf ("\tbegin time in sec: %ld\n", (long) t0);

printf ("\tbegin clock ticks: %d\n", (int) c0);

printf ("\t\tsleep for 5 seconds ... \n");

sleep(5);

printf ("\t\tperform some computation ... \n");

for (count = 1l; count < 10000000l; count++) {

a = sqrt(count); b = 1.0/a; c = b - a;

}

t1 = time(NULL);

c1 = clock();

printf ("\tend time in sec: %ld\n", (long) t1);

printf ("\tend clock ticks: %d\n", (int) c1);

printf ("\telapsed elapsed time in sec: %ld\n", (long) (t1 - t0));

printf ("\telapsed elapsed ticks in sec: %f\n",

(float) (c1 - c0)/CLOCKS_PER_SEC);

}

Saving this program as time.c, we compile and run it on my CYGWIN:

yap@prog[68c] gcc time.c -lm

yap@prog[684] a.exe

using UNIX function time to measure wallclock time ...

using UNIX function clock to measure CPU time ...

2

begin time in sec: 1159825726

begin clock ticks: 61

sleep for 5 seconds ...

perform some computation ...

end time in sec: 1159825738

end clock ticks: 6374

elapsed time in sec: 12

elapsed ticks in sec: 6.313000

yap@prog[685]

REMARK: In CYGWIN, we could just call ”gcc time.c”, but in general, you need to tell the compiler
to look search the math library ”-lm”. You might also try ”time a.exe” to use the UNIX time function to
compare with mytime. The two results should be consistent!

4 POSIX THREADS

Threads are quite diverse, and so a generic treatment is inadequate to point out differences between the
various versions.

We must go into the details of some important realizations of threads for this purpose.
We are going to look at POSIX threads (or “pthreads”). To ensure portability of code, you should try

to program only pthreads. Note: POSIX = ”portable operation system interface” (a registered trademark
of IEEE).

• Is pthreads available in cygwin?

A: Yes! The library is found in C:/cygwin/lib/libpthread.a, and the include file in C:/cygwin/usr/include/pthread.h.

• Tutorials? A: There are various tutorials to be found on the web. One such tutorial (which we
henceforth call ”pthreadTutor”) may be found at Lawrence Livermore National Lab (LLNL), at the
URL
www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

• Books? A: See ”Threads Primer: A guide to multithreaded programming” by Bil Lewis and Daniel J.
Berg, Sunsoft Press, 1996.

• What are some models for writing threaded programs?

Your program must break up its task into work that can be done by independent concurrent threads.

(1) Manager/worker: manager thread assigns work to other worker threads. Typically, manager handles
all inputs and parcels out work to workers. (can have static or dynamic worker pool) [Tanenbaum]
illustrates this with web server application.

(2) Pipeline: line an automobile assembly line.

(3) Peer: the manager thread is like a worker thread after the initial setup.

• How can I use pthread?

It is only defined for the C language.

Your C program must include ”pthread.h”.

Please make sure that your #include <pthread.h> statement is the very first of all your include files.
REASON: other include files may have ”thread-safe” features which are turned on only after pthread.h
has been included.

When you compile and link, be sure to tell your linker to use the pthread library. E.g.,

gcc -lpthread mythreadprog.c

3

• What is the pthread API?

There are three main types of objects: threads, mutex variables, condition variables.

But associated with each main type of objects are corresponding attribute objects. Thus we have
objects for (resp.) thread attributes, mutex attributes and condition attributes. Some people call them
opaque objects.

The API has over 60 subroutines divided into 3 classes of calls:

(1) Thread management: create, detach, join, etc. set/query thread attributes (joinable, scheduling,
etc).

(2) Mutexes: create, destroy, lock, unlocking mutexes. set/query mutex attributes.

(3) Condition variables: communication between threads that share a mutex. Create/destroy/wait/signal.
Also set/query condition variable attributes.

• Names in the pthread module can be bewildering at first, so remember the following name prefix
conventions:

pthread_... are threads themselves and misc.subroutines

pthread_attr_ are thread attribute objects

pthread_mutex_ are mutexes

pthread_mutex_attr are mutex attribute objects

pthread_cond_ are condition vars

pthread_cond_attr are condition attribute objects

pthread_key_ are thread-specific data keys

In other words, every method in this API will begin with the prefix pthread .

• Attribute Objects. This is an interesting concept that must be mastered if you want to use pthreads.
We focus on thread attributes at first.

A thread attribute object stores the following information (the default values are in parenthesis):
Scope (PTHREAD SCOPE PROCESS)
Detached State (PTHREAD CREATE JOINABLE)
Stack Address (NULL)
Stack Size (NULL)
Priority (NULL)

When we create a thread, one of the arguments is an attribute object. The attributes are thereby
transferred to the thread.

• HOW TO USE ATTRIBUTE OBJECTS:

1. You must create an attribute object before using it. Do:

// declare attr to be attribute variable

pthread_attr_t attr;

// initialize attr

if (0 != phtread_attr_init(pthread_attr_t *attr))

perror("initializing pthread attribute");

This returns a 0 if successful, else an error number is returned. Now attr is an initial object with
all the default values.

2. You can subsequently change the attribute fields. E.g., to set the detached state, do

phtread attr setdetachstate(pthread attr t *attr, int state)

where state=PTHREAD CREATE DETACHED or state=PTHREAD CREATE JOINABLE.

4

3. To see the current value of the detached state, use

phtread attr getdetachstate(const pthread attr t *attr, int *state)

4. If you subsequently change the attribute object, this has no effect on the thread which was created
earlier with this object.

5. REMARKS ON STACK: The default is no stack – the stack address and stack size pointers are
both NULL in the pthread attribute object.

When do you need a thread-specific stack? If the thread code is run by more than one thread,
you should consider giving your thread its own stack! BE SURE THAT EACH THREAD HAS

A DIFFERENT STACK ADDRESS.

To get the thread-specific stack you need to set the stack size and stack address attributes.

6. SETTING STACK SIZE: You might think that this is easy. But there is a catch: if you set it
smaller than some constant PTHREAD STACK MIN, there will be an error (presumably the default
stack size of 0 will be used). Also, I found that PTHREAD STACK MIN, was not defined in my
environment. So I had to define my own value and verify that it is big enough. The following
seems good:

#define PTHREAD_STACK_MIN 10000

size_t my_stacksize;

if (0!= pthread_attr_setstacksize(&attr, (size_t)PTHREAD_STACK_MIN))

perror("set stack size");

pthread_attr_getstacksize(&attr, &my_stacksize);

printf("my stack size = %d \n", (int)my_stacksize);

7. SETTING A STACK ADDRESS: Well, you first need to allocate the space with the standard
system call ”malloc”.

void * stackaddr; // stack address pointer

stackaddr = (void *)malloc((size_t)PTHREAD_STACK_MIN);

pthread_attr_setstackaddr(&attr, &my_stacksize);

8. SCOPE NOTE: The scope of the thread can be ”process level” (default) or ”system level”. A
process-scope thread is not visible to the kernel, and a system-scope is. E.g., the system does not
schedule a process-level thread.

We also say the process is unbound when it has has process-scope, and bound otherwise. This
terminology arise from the fact that bound processes are identified with a LWP (light weight process)
which are kernel objects capabable of being scheduled.

• OK, I am ready, how do I create a pthread?

Initially, there is a single main thread associated with the main() program. All other threads must
be explicitly created by the programmer using: Here is the exact prototype for the call:

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void * (*start_routine)(void *),

void *arg);

Suppose we call: pthread create(&thread, &attr, start routine, (void *)&arg).

A successful call returns a 0. The new thread ID is pointed to by the thread argument. The caller
can use this ID to perform other operations.

5

The attr parameter is used to set thread attributes. You can use a ”thread attribute object” or NULL
to accept the defaults.

The start routine is a C routine that the thread will execute when it is created. The argument to
start routine is a pointer to a void; this argument is the last argument of pthread create().

The last arg is passed to the start routine by reference (recase as a pointer of type void).

• HOW TO TERMINATE THREADS?

This can happen in several ways:

– the main (initial) thread returns

– the thread calls pthread exit

– it is canceled by another thread via pthread cancel

– the process is terminated by a call to exit or exec

Note that the thread function turns a void *. In particular, the routine can call int pthread exit(void

*status) to exit, so status contains the return value.

int pthread_exit(void *status)

If the main thread finishes using pthread exit() before its descendent threads, the other threads
continue running; if pthread exit() is not used, the descendents are terminated automatically.

The termination ”status” is stored as a void pointer which any thread may join. To understand
this remark, we must know that every thread will be defined to have either the DETACHED or the
JOINABLE state (but not both). If DETACHED, all its resources and exit status are discarded when
the thread terminates. If JOINABLE, this information will be retained until it is ”joined” to another
thread (and thereby available to this thread). The default state is JOINABLE.

int pthread_join (pthread_t thread, void **status_ptr);

CLEANUP: pthread exit() does not close files...

SUGGESTION: Use pthread exit() to exit from all threads, esp. main().

• How about a sample code?

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid) {

printf("\n%d: hello world!\n", threadid);

pthread_exit(NULL);

}

int main (int argc, char * argv[]) {

pthread_t threads[NUM_THREADS];

int rc, t;

for (t=0; t<NUM_THREADS; t++) {

printf("Creating thread %d\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){

printf("ERROR; return code of pthread_create() is %d\n", rc);

exit(-1);

}

6

}

pthread_exit(NULL);

}

• Mutexes. Let us consider next the mutex synchronization objects. Each mutex is essentially an int
variable that are access in a very stylized way: either lock or unlock. Let L and U be the number of
lock and unlock operations on a mutex variable. If L > U , the mutex is in the “lock state”, and exactly
L−U of the processes that performed the lock operation will be blocked. Any ”unlock” operation will
unblock one of these processes.

int

pthread_mutex_init (pthread_mutex_t *mut, const pthread_mutexattr_t *attr);

-- creates a mutex variable

int

pthread_mutex_lock (pthread_mutex_t *mut);

-- locks a mutex variable

int

pthread_mutex_unlock (pthread_mutex_t *mut);

-- unlocks a mutex variable

int

pthread_mutex_trylock (pthread_mutex_t *mut);

-- either acquires a mutex variable or returns EBUSY.

int

pthread_mutex_destroy (pthread_mutex_t *mut);

• Condition Variables. Condition variables allows you to wait for some predicate to hold on the condition
variables.

It is always used in conjunction with an associated mutex variable.

There are two main operations on a cond.variable: wait and signal.

USAGE: this usage is very stylized (in some sense, the concept of cond.variables is not a primitive
concept). Let ”cond” and ”mut” be the condition var. and associated mutex var.
– HOW TO WAIT: thread locks ”mut” then then waits on ”cond” AND ”mut”. When wait returns,
it should unlock ”mut”. [REMARK: while waiting, ”mut” is actually unlocked by the wait call; it is
locked again upon return from wait call.]
– HOW TO SIGNAL: thread locks ”mut” and then signals ”cond”. When done, it unlocks ”mut”.

1. Initialisation:

int

pthread_cond_init (pthread_cond_t *cond, pthread_condattr_t *attr);

-- as usual, *attr can be NULL.

2. Waiting:

int

pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mut);

-- caller thread always blocks.

-- NOTE that a mutex variable (mut) is required.

-- You MUST lock "mut" before this call, and unlock "mut" after.

-- This call is equivalent to:

a. pthread_mutex_unlock (mut);

b. block_on_cond (cond);

c. pthread_mutex_lock (mut);

-- Note that c. requires the mutex lock to be acquired.

7

3. Signalling:

int

pthread_cond_signal (pthread_cond_t *cond);

-- this wakes up (at least?) one thread waiting on cond.

["At least" seems wrong: I think it should be "at most".

E.g., if there are no threads waiting on cond., then

nothing is woken up, according to description of signal.

If there are many, then I think you want to wake

up only one. OTHERWISE you should use "broadcast"

instead of "signal".]

-- because of step c. above, the threads will exit

the block, one at a time.

-- You MUST lock "mut" before this call, and unlock "mut" after.

4. Broadcast Signalling:

int

pthread_cond_broadcast (pthread_cond_t *cond);

-- wakes up all threads blocked on cond.

5. Waiting with timeout:

int

pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t *mut,

const struct timespec *abstime);

-- similar to wait, but with timeout (absolute time of day)

6. Deallocation:

int

pthread_cond_destroy (pthread_cond_t *cond);

• Example of Use of Conditional Variables

pthread_mutex_t count_lock;

pthread_cond_t count_nonzero;

unsigned count;

decrement_count()

{ pthread_mutex_lock(&count_lock);

while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);

count = count - 1;

pthread_mutex_unlock(&count_lock);

}

increment_count()

{ pthread_mutex_lock(&count_lock);

if (count == 0)

pthread_cond_signal(&count_nonzero);

count = count + 1;

pthread_mutex_unlock(&count_lock);

}

Source: David Marshall (www.cs.cf.ac.uk/Dave/C/node31.html)

• Other useful functions:

pthread t pthread self() returns the its own thread id.

8

