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After Chapter 4 (Processes), please continue with reading Chapter 7 on Process Synchronization as a natural
follow up. We will return to Chapters 5 and 6 later.

2 Review

• Q: What is the other command that seems to go hand-in-hand with fork()?

A: exec* (7 variants of this command)

• Q: Suppose you have a Makefile that is ready made. How can you determine what actions you can
take in this Makefile?

A: Look at the ”targets” in the Makefile. These are the list of names that begin a colon (”:”) terminated
line. E.g. a line in the file

action1 hw1:

says that ”action1” and ”hw1” are names for the same target. You execute these actions by typing

> make action1

or

> make hw1

• Q: Give two reasons why keyboard editors are more efficient and more productive than WYSIWYG
editors, and one reason why people like WYSIWYG.

A: Here are two reasons for superiority of keyboards:

(1) Keyboard editors are more powerful because you can compose sophisticated and repetitive com-
mands using the keyboard. With WYSIWYG, this ability is limited.

E.g., You cannot tell WYSIWYG to ”search the next 100 lines of file, and replace each occurrence of
the word ”GOOD” to ”BAD”.

But in (say) vi/vim/gvim, you type this sequence:

:.,+100s/GOOD/BAD/g
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(2) WYSIWYG editors requires hand-eye coordination. With keyboard editors, you can can even look
elsewhere if you know how to touch type!

Here is a reason why people seem to like WYSIWYG:

The learning curve for WYSIWYG is low – you can pick it up intuitively. The learning curve for
keyboard editors is steep. But the payoff is more than worth the effort.

By the way, I think gvim is superior to emacs because you generally can do things with much fewer
key strokes (because many basic facts about text files are built into the editor).

3 Inter Process Communication (IPC)

• One of the goals of an OS is to run a set of processes in such a way that each THINKS it has exclusive
use of the CPU and resources!

In other words, we seek to ISOLATE processes from each other. So, when we discuss IPC, we are in
essense, backtracking a little.

• Why we need IPC:

– parent-child communication (in UNIX, these are accomplished through ”pipes”)

– non-interference of each other (coordination of shared resources)

– proper sequencing of actions across processes (perhaps the processes are working together to accom-
plish a common task)

– shared resource (memory or variables, files, devices)

– E.g., print spooler

To print a file, a process enters the name in the spooler directory. A printer daemon periodically checks
this directory, prints the file, and removes the entry from spooler directory.

• Q: What is a ”race condition”?

A: When the outcome of two interacting processes depends on the speed or order in which the processes
execute commands, but the outcome ought not to depend on such orders of execution.

• Q: Give an example.

A: Let P and Q be processes that are both accessing a variable ”Balance”, initialized to 100.

o P: Balance++

o Q: Balance–

o Intuitively, after both processes are done, Balance=100.

o But we might get 101 or 99. HOW CAN THIS HAPPEN? HINT: the commands ”Balance++” and
”Balance–” are non-atomic.

o ANSWER: Balance++ is really (X=Balance; X++; Balance=X) or alternatively (READ(X,Balance);
INC(X); WRITE(Balance,X)) and X is a local variable. Similarly for Balance–.

Now imagine that the two sequences Balance++, Balance– of atomic actions are interleaved...

• SOLUTION STRATEGY:

We must prevent the interleaving of certain code fragments. This is called the mutual exclusion

problem (MUTEX problem). The code fragments which must be ”atomic” are called critical sec-

tions.

We can associate each critical section with a variable (called a resource or semaphore). When a process
is inside the critical section, we say it is accessing that resource/semaphore. Following Dijkstra, we
write P(S), V(S) for accessing and releasing the semaphore S.
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• PROPERTIES:

1. [MUTEX] No two processes may be simultaneously access a resource.

2. [SPEED] The speeds and number of processes are arbitrary.

3. [NONBLOCK] Processes outside a critical section may not block other processes.

4. [FAIRNESS] Each process wanting to access a resouce will eventually be able to do so.

Remark that Fairness is stronger than asserting ”no deadlock”. A scenario is where a fast process
keeps getting to its critical section (hence no deadlock), but a slower process is repeatedly denied
access (lockout). Stronger and weaker forms of FAIRNESS (4.) have been proposed. A weaker form
is this: it is fair as long as each process makes progress.

• NO INTERRUPT SOLUTION: Turn off interrupts.

We can allow the user programs to turn off interrupts, but this is clearly dangerous.

We can restrict this ability only to system processes. But this will not help user processes achieve
mutual exclusion (e.g., the Balance update problem).

Also, this would not help in multi-CPU situations.

• SOME WRONG SOLUTIONS:

Initially P1wants = P2wants = false

P1: P2:

Loop forever Loop forever

P1wants <-- true ENTRY P2wants <-- true

NO MAN ZONE

while (P2wants) {} while (P1wants) {}

critical-section critical-section

P1wants <-- false EXIT P2wants <-- false

non-critical-section non-critical-section

WHAT IS wrong? Can get stuck if both P1 and P2 enters the NO MAN ZONE at the same time.
Neither can go forward!

The trouble was that setting ”want” before the loop. Try again:

Initially turn=1

P1: P2:

Loop forever Loop forever

while (turn = 2) {} while (turn = 1) {}

critical-section critical-section

turn <-- 2 turn <-- 1

non-critical-section non-critical-section
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This one forces alternation – no process can enter its CS twice in a row! This is unfair for a fast
process.

Specifically, it fails condition 3: a process in its NCS can stop another process from entering CS.

Many earlier “solutions” were found and several were published. The first correct solution was from
Dekker (1964). It is clever, but complicated. Subsequent solutions with better fairness properties were
found (e.g., no task has to wait for another task to enter the CS twice).

• PETERSON’s SOLUTION (1981):

When first published, it’s simplicity was a surprise.

Initially P1wants=P2wants=false and turn=1

P1: P2:

Loop forever Loop forever

P1wants <-- true P2wants <-- true

turn <-- 2 turn <-- 1

while (P2wants and turn=2) {} while (P1wants and turn=1) {}

critical-section critical-section

P1wants <-- false P2wants <-- false

non-critical-section non-critical-section

JUSTIFICATION:

1. If the other process does not ”want”, it is safe!

2. So the danger is when both ”wants”. In that case, the last process to set ”turn” goes first!

VERIFY PROPERTIES 1-4.

REMARK:
1. This extends to any number of processes. See Operating Systems Review Jan 1990, pp. 18-22. See
Tanenbaum p.106.
2. This solution requires each process to know a unique value (e.g., its PID).
3. Note that Semaphores (e.g., P1want, turn) are GLOBAL variables in a very strong sense, in the
system-wide sense! Such variables are controlled by the OS. Normal ”global variables” in processes are
local to each process (they are only outside all ”scopes” of that process).

• HARDWARE ASSISTED SOLUTION:

(test and set lock)

TSL (Reg, LockVar)

It copies LockVar into register Reg, and stores ”1” (or any non-zero value) into LockVar. All this is
ATOMIC.

ALTERNATIVE:

TAS (boolVar)

4



ATOMICALLY sets boolVar to TRUE and returns the OLD value of boolVar.

Now implementing a critical section for any number of processes is trivial.

loop forever

while (TAS(boolVar)) {}

CS

boolVar<--false

NCS

• Sleep and Wakeup

THE ABOVE solutions requires busy-waiting.

WHAT COULD GO WRONG: Process H and L with HIGH and LOW priorities. After L enters critical
region, H is busy waiting for L. Now both are stuck.

To solve this, two new system calls:

– SLEEP() causes process to block.

– WAKEUP(pid) causes process pid to unblock.

• P and V and Semaphores:

DICTIONARY: Semaphore – any system of signaling (e.g., with lights or flags).

HERE, semaphore is just a special variable (representing a resource).

Note: Tanenbaum does both busy waiting (like above) and blocking (process switching) solutions. We
will only do busy waiting.

The entry code is often called P and the exit code V (Tanenbaum only uses P and V for blocking, but
we use it for busy waiting). So the critical section problem is to write P and V so that

loop forever

P

critical-section

V

non-critical-section

satisfies our list of requirements

1. Mutual exclusion

2. No speed assumptions

3. No blocking by processes in NCS

4’. Reasonable Progress (weaker form of above condition 4)

A binary semaphore abstracts the TAS solution we gave for the critical section problem.

* A binary semaphore S takes on two possible values “open” and “closed”

* Two operations are supported

* P(S) is

while (S=closed) {}

S<--closed //This is outside the body of the while

where finding S=open and setting S<--closed is atomic

* That is, wait until the gate is open, then run through and atomically close the gate

* Said another way, it is not possible for two processes doing P(S) simultaneously to both see S=open
(unless a V(S) is also simultaneous with both of them).
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* V(S) is simply S<--open

The above code is not real, i.e., it is not an implementation of P. It is, instead, a definition of the effect
P is to have.

To repeat: for any number of processes, the critical section problem can be solved by

loop forever

P(S)

CS

V(S)

NCS

The only specific solution we have seen for an arbitrary number of processes is the one just above with
P(S) implemented via test and set.

Remark:
a. Peterson’s solution requires shared variables across processes (one alternative is to use shared files)
b. Peterson’s solution requires each process to know its processor number. The TAS soluton does not.
Moreover the definition of P and V does not permit use of the processor number.
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