Mon Sep 11, 2006
Lecture 2: Process Management

September 13, 2006

1 Review

”70OS mediates between hardware and user software”

QUIZ: Q: Name three abstract layers of a computer system where the OS is one of these layers.

A: Hardware, OS, Application Programs

Q: Which of the following concepts do not belong in the group?

Interrupt, Bootstrap, System Call, Trap, Exception

A: Bootstrap. The others are just different forms of interrupts.

Interrupt is a generic name for any instruction that stops the CPU in its current execution. TRAP
are self-generated software-generated interrupts System Calls. Exceptions are interrupts generated by some
error condition or special status. System calls is an OS-specified function called via a TRAP. I/O Interrupt
is generated by I/0O hardware.

Q: An OS provide services. How does a user access these services?

A: Make system calls.

MECHANICS of a System Call (say, to READ from disk): [Silbers. p.30,32]

User Program loads the arguments and calls a system library READ routine This routine loads the code
for reading and TRAPS CPU switch to kernel mode, and executes at fixed address in the kernel. CPU
returns to the library READ routine Library READ returns to user program.

Why is multiprogramming important (This should be review, except I did not cover it last lecture)

2 Intro to Multiprogramming

We could begin with the simple view of an OS as a software to manage a set of processes.

A process (or job or task) is a program in execution. As such, it has source code, current state, memory
and files, resources such as printers and I/0O.

A closely related, more modern concept is thread, which can be regarded as a executional unit of a
process. The relation between threads and processes is OS-dependent. But an extended notion of OS is that
“an OS manages a collection of processes and their threads”.

The OS, as a manager of processes/threads, has to provide these functions:

e Process Management:

(1) Create/delete, schedule, synchronize and provide communication among processes.

(2) Process scheduling

e Memory management:
(1) Main Memory Management
(2) File management

(3) Memory hierarchy issues



e Resources management:
e.g., Deadlock management.
e.g., Networking

e.g., I/O management

e Security and Protection:

Just as there is some hierarchy involving threads and processes, we may also have hierarchy among the
processes. E.g., in Unix, each process (except the root) has a parent process. The OS has to manage this
hierarchy.

3 Memory Management for Multiprogramming

KEY FUNCTION: provides multiprogramming environment

Usefulness of multiprogramming: 1/0O bound vs CPU bound processes User processes vs Kernel processes
When useful?

What is needed for multiprogramming? Process management (process table) Memory management In-
terrupts (and ability to turn on/off interrupts) ...

Requirements: to isolate processes from each other, to isolate processes from kernel, to relocate programs.

Relocation problem: when a program is compiled, it must be assumed that each instruction is placed in
sum location, and the locations conventionally start at 0. When this program is LOADED, it will begin at
some address determined at runtime. Also, a certain amount of space is allocated for data.

THE CDC MODEL (CDC is an early computer, one of the first models was delivered to Courant Institute
in NYU in the 70s):

e Each process occupies a contiguous chunk of memory.

e THIS CALLS for a BASE REGISTER and a LIMIT REGISTER: Limit register tells the size of the
program+data. Chunk = [base, base + limit] These registers are protected from users

e How does this modify our execution cycle? Each instruction or data fetch is checked to be within the
limit, and then ”offset” by base. But actually, it is done by the MMU.

e THIS illustrates —virtual address vs physical address. —context switching: the values of the register
pair is a context!

e Drawback: we need to predict how much data is needed. So everyone overestimates.

e MODIFIED CDC MODEL: Have two pairs of Base+Limit registers. Pair 1 for program, Pair 2 for
data. ADVANTAGE: processes can share program!

4 Processes

Our first programming effort will involve multi-processes. So...
We will examine processes in Unix and Windows!

How are processes created?
e At system initialization (foreground process, e.g., login shells), (background, e.g., email, http daemons)

e Users can create them (e.g., multiple window processes)
E.g., > cat chapl.txt chap2.txt — grep process

Current process creates two new process, one to run “cat” (which contenates 2 files), the other to run
"grep” (to look for word ”process”).



UNIX: "fork” (creates a clone of caller process! but the the child can next do some manipulation and
ultimately execute a ”"execve” to do its job)

BUT both have different address spaces.
THEY CAN share resources like open files.

Windoz: ”CreateProcess” with 10 parameters! and lots of related functions.

Process Hierarchies

Windoz: no hierarchy! The parent process has only one special advantage: it has the ”token” or
"handle” to control the child, but can give the handle away!

Unix: from fork, get parent-child relation. ALL PROCESSES are descendents of the ”init” process!

The hierarchy cannot change except through process creation or process termination: when a parent
process exits, all its children will have the ”init” process as parent!

Unix: Process group — a process and all its descendents. If a signal is sent to root of group, it is
delivered to all.

How are Processes terminated?

Normal exit (voluntary),

Error exit (voluntary),

Fatal error exit (involuntary),

Killed by another process exit (involuntary),

Unix: normal termination is achieved by a process executing the exit() system call. The exiting
process may return a status value to parent.

Unix: a process can terminate another process by calling abort(). E.g., a parent process aborts a
child process if it is taking too long, or its services is no longer needed.

EXAMPLE: Unix Fork

The main interface to unix is the shell (there are many variants, bash being our default in cygwin).
Each shell controls a window (assuming a multi-window GUI)

The shell sits in a loop to process use commands.

Suppose we type ”1s” (list current directory).

The shell would execute a ”fork()” system call.

This creates a new process, a CHILD of the current process.

The PARENT process then executes a ”wait()” for the CHILD to terminate.

After the CHILD does its job (listing current directory), it terminates and sends the parent a signal.
The parent receives the signal and continues.

HERE IS THE CODE to SIMULATE the process:



#include < stdio.h >
#include < unistd.h >
int main (int arge, char *argv(]){
int pid;
pid = fork();
if (pid < 0) {
fprintf(stderr, ”fork failed”); exit(-1);}
else if (pid == 0) {
execlp(” /bin/1s”, ”1s”, NULL);}
else {
wait(NULL); printf(”child completed”); exit(0);}

5 Process States and Transition

e Cyclic States: Ready, Running, Blocked.
Transitory States: New, Terminated.
Refinements: Ready-suspended, blocked-suspended. (suspension is related to process swapping)
NOTE: there is at most ONE process in the Running state (for each CPU).

e Possible state transitions (draw a transition diagram)
Ready < Running — Blocked — Ready.

Also: New — Ready, Running — Terminated.

e Names of transitions:

1) create (New — Ready)

1) terminate (Running — Terminated)

3) block (Running — Blocked)

)
)
2) preempt (Running — Ready) caused by scheduler
)
)
3) unblock (Blocked — Ready) caused by event

-
- (
-
— (2) run (Ready — Running) caused by scheduler
= (
- (

6 Process Scheduler
e OBJECTIVES OF SCHEDULING:

— Efficient use of resources (e.g., CPU usage). That is the reason for ”blocking” a process.

— Fairness among processes (time-to-completion should be proportional to job size). That is the
reason for ”preempting” a process at the end of a quantum.

e (running — ready) and (ready — running)
are done by process scheduler!

These 2 transitions requires context switching, which is hardware supported.

e Scheduler [p.142-3]. Round Robin is simplest preemptive scheduler:
(1) Ready processes are in FIFO queue (ready queue)

(2) Each process runs in a fixed quantum (e.g. 50ms)



(3) Current process P runs till it BLOCKS, in which case it is moved to ”blocked queue”, or it finished
its quantum, and put in end of "ready queue”.

(4) Next process at top of FIFO queue is next running.

e Scheduler Queues:
Job Queue: all current jobs
Ready Queue: jobs in main memory in Ready state
Device Queue: jobs waiting for a particular device
See DIAGRAM of transitions between queues. [Silberschatz, Fig 4.5, p.109]

e REFINEMENTS of Schedulers (Silbershatz, p.109):
CPU Scheduler (or short-term scheduler): manages the ready queue

JOB Scheduler (or long-term scheduler): manages the Job Queue on disk (swaps processes in/out of
main memory) It decides on how to admit New processes into the ready queue.

7 Process Management
We now look a bit into the nitty-gritty for process management.

e Datastructure called Process Table (one entry/process). Each entry is called a Process Control
Block (PCB).

e Fach entry or PCB:

— Process ID

— Process State

— Registers: PC, SP, PSW, etc
— memory allocation

— files and their status

— accounting

— scheduling info

— I/0O status

— info for context switching

e Process Image: memory must be organized to store each current process (in any state).
TYPICAL LAYOUT IN MEMORY:
text section (code),
data section (global variables),
stack section (params of calls, return addr, local vars)
e Each I/O Class (floppy, hard disk, timers, terminals,...) has a location called an interrupt vector. It
has the address of the interrupt routine.

If process 3 is running when a disk interrupt occurs: then HARDWARE causes process 3’s PC, registers,
etc to be pushed onto the current stack, and make CPU jumps to the interrupt vector.

That is all the hardware does. From then on, the interrupt service procedure takes over.

When done, returns to the scheduler.



8 THREADS
What is a THREAD?

e View a traditional process as a single thread.

e A process can have SEVERAL threads of execution.
The threads all SHARE the same address space.

e The reason for threads are similar to the ones for processes BUT:
easy to create and destroy
the need to share data

useful when threads are I/O bound

e E.g. Process running an editor: the process can run several threads at the same time:
(1) thread for backup of file in background
(2) thread for reformatting of file while we continue to edit the file
(3) thread for reading from keyboard
(4) thread for writing to screen
(5) thread to do spell checking in background
WHAT IS THE POINT? WHY DON'T WE JUST HAVE JUST HAVE 5 PROCESSES?

e Processes share resources, but threads are executional units, that does not have independent resources.
So sharing among threads within a process is very cheap.

e Thread can be implemented in kernel or user space

9 Buses

We did not have time to talk about this last time.

Various hardware devices talk to each other using buses. A bus is a set of wires with a well-defined
protocol for sending and receiving messages along the wires. Various devices (monitor, procesor, keyboard,
disk, etc) can be attached to the bus. Usually, devices have a dedicated unit called controller to interface
with the bus.

PC’s have 8 BUSES.

e original IBM:
ISA (ISA bridge « various devices) Rate of 16 MB/sec.

e successor to ISA:
PCI (PCI bridge « various slots, inc.ISA Bridge) Rate of 528 MB/sec.

e Newer buses:
cache (CPU« Level 2 cache)
local (CPU~PCI bridge)
memory (PCI bridge«» Main Memory)
SCSI (high performance bus for fast disks, scanners, etc) Rate of 160 MB/sec.

USB (for slow I/O devices like keyboard, mouse) Rate of 1.5 MB/sec. Convenient to add devices,
without reboot.

Since 2001, USB 2.0 (Hi-Speed USB) introduced with rate of 60 MB/sec.
IDE (for peripherals such as CD ROMs, disks)



e New: FireWire (a.k.a. i.Link or IEEE 1394) (50 MB/sec) like USB but much faster (useful for au-
dio/video devices like camcorders, etc) Partly viewed as replacement for USB.



