
Oct 30, 2006

Lecture 10: Deadlocks

November 6, 2006

1 ADMIN

Please read Chapter 8 on deadlocks.

2 REVIEW

• Q: As CPU’s become faster (relative to I/O devices), this makes CPU scheduling more critical. Argue
both sides.

A: If CPU are so fast, no matter how we poorly we schedule, the jobs still get completed in reasonable
time.

As CPU becomes faster, each minor unnecessary delay translates into mega-cycles of CPU.

• Q: Give a method to give scheduling priority to shorter processes.

A: Use Quantum Queues Q0, Q1, Q2, . . .: Jobs in Qi will be given 2i quanta. Initially, all jobs are put
in Q0. When a job from Qi is preempted at the end of its allocated time, it is put into Qi+1. Jobs in
Qi has higher priority than jobs in Qi+1.

• Q: To give scheduling priority to IO-Bound processes, we need some way estimating the probability
that the process is IO-Bound. How can we do this?

3 DEADLOCKS

• WHAT IS THE DEADLOCK PROBLEM?

1. Deadlock Condition: a set of processes, each waiting on an event that only another in the set can
cause.

2. Example: Dining Philosophers.

3. System Deadlock: no process in the system can may progress. (CONTRAST: a subset of processes
may be locked out, but the system is not deadlocked)

• Process-Resource Model:

1. Each process may need one or more of a resource.

2. Physical Resource Examples: CPU, monitor, printer, scanner, CD recorder, plotter, tape drive,
etc.

3. Logical Resources Examples: files, semaphores, monitors, etc.

4. Some resouces are exclusive.

5. Some resources are preemptable but some are not.

1



6. There may be many copies of the same resource.

7. Some process may need several resources simultaneously.

8. PROTOCOL: a process must REQUEST a resource before use, and must RELEASE resource
after use.

• 4 NECESSARY AND SUFFICIENT CONDITIONS FOR DEADLOCK (Coffman et all (1971):

1. (MUTUAL EXCLUSION) Processes require EXCLUSIVE use of resources

2. (HOLD AND WAIT) Processes requests more than ONE resources, and must WAIT until all
requests have been granted.

3. (NON-PREEMPTION) Use of resource is non-preemptable (e.g., printer, CD burner)

4. (CIRCULARITY) Two or more processes are waiting in a cyclic fashion: process Pi waits for
P(i+1) mod n for i = 0, 1, . . . , n − 1.

REMARK: this is an if and only if list of conditions.

• Holt’s RESOURCE GRAPHS are bipartitite dgraphs with 2 kinds of nodes:

1. Circles= processes, Squares=resources

2. (circle P →square R): process P is blocking on resource R.

3. (square R →process P): resource R is currently used by process P.

4. DEADLOCK: cycle

5. How to draw bipartite graph.

Note that this is a runtime graph.

• Example (Figure 3-4):

1. A: Request R, Request S, Release R, Release S.

2. B: Request S, Request T, Release S, Release T.

3. C: Request T, Request R, Release T, Release S.

4. SHOW THE HOLT GRAPH after each step of the following execution sequence:

5. A request R, B request S, C request T,

6. A request S, B request T, C request R.

• 4 APPROACHES TO DEADLOCKS

1. Ostrich Algorithm: Ignore (Unix, Windows)

2. Detect and Recover (reboot?)

3. Dynamic avoidance: careful resource allocation

4. Prevention: negate one of the 4 conditions for deadlock.

• Detection of Deadlock in the Simple Case:

1. Simple Case means this: each resource is unique (single copy).

2. In the simple case, we have deadlock IF and ONLY IF there is a cycle in the resource graph.

3. ALGORITHM: use depth first search from EACH node of the graph.

4. MORE PRECISELY: initially all nodes and edges are marked “unseen”. A driver loop will run a
dfs search from each unseen node.

When a node or edge is first seen, it is marked “seen”. However, when all the outgoing edges of
a node have been marked “seen”, the node is marked “done”.

When we first traverse an edge, we check to see if the node at the other end of the edge is “unseen”,
“seen” or “done”. If unseen, we extend our recursive search to this node; if seen, we have detected
a cycle; if “done”, we back up from our DFS search.

2



5. REMARK: This algorithm is superior to the one in Tanenbaum text. It has running time O(m+n)
where the digraph has m edges and n nodes.

• Generalization to Multiple Copies of Resources.

1. QUESTION: Why can’t the general case of multiple copies be reduced to this one? E.g., if there
are 5 copies of resource r1, just duplicate r1 five times. ANSWER: You could, but it does not truly
reflect the fact that these 5 copies are interchangeable. So, you lose something in this reduction
to the simple case.

2. Assume n processes and m resources.

3. Processes are p1, . . . , pn, resources are r1, . . . , rm.

4. We know the Maximum Request Matrix M is a n×m matrix, where indicating that pi never
request more than Mij copies of rj .

5. There is a total of ej ≥ 0 copies of rj (j = 1, . . . ,m) Let E = (e1, . . . , em).

6. Let F = (f1, . . . , fm) ≤ E be the free vector. This can determined from A and E. In fact,
fj = ej −

∑
i = 1nAij .

7. The Current Allocation matrix A is a n × m matrix, where pi holds Aij copies of rj .

8. Define the Claim Matrix C which is simply M −A. Thus Cij is the number of units of rj that
pi has a claim on.

9. Depending on the problem, we may also have a queue Q of Pending Requests.

10. PROBLEM FORMULATION: the ith process can, at any time, release ALL of its allocated
resources, or request a vector B = (b1, . . . , bm) of resource. We require bj ≤ Cij for j = 1, . . . ,m.
Our algorithm has to respond to each request for resources, or release of resources. When a
request is made, we either fulfil it (and update A by incrementing the ith row with vector B), or
put it on hold (by placing the vector B in the Q). When resources are released, we check to see
if any pending requests in Q can be fulfilled.

11. STATE: this is defined as the the current allocation matrix A.

12. ASSUMPTION: a process will terminate in finite time when all its requests are satisfied.

13. A state is safe if eventually all requests currently holding resources can terminate.

14. GENERALIZED RESOURCE GRAPHS: In the text (section 8.5.2), a graphical representation
of the state is given by introducing a third kind of edge, a ”claimed edge”.

• Banker’s Algorithm:

1. Before trying to solve the general problem, suppose there is only ONE kind of resource (call it
MONEY).

2. In other words, the number of resources, m is equal to 1. All the above matrices n × m becomes
n-vectors, and all vectors becomes a single number. Instead of writing Mij , we just write Mi, etc.
Assume the Bank has a total of e1 dollars to be lent.

3. The algorithm is called the BANKER.

4. Each process is called a CUSTOMER.

5. The Maximum Request Matrix is just a vector M = (M1, . . . ,Mn) where Mi is the credit limit
for customer i. It is assumed that Mi ≤ e1 for all i.

6. The Current Allocation Matrix is just a vector A = (A1, . . . , An) and the Claimed Matrix C

becomes C = (C1, . . . , Cn) where Ci = Mi − Ai.

7. Each customer can either ask to borrow more money (up to its credit limit) or return borrowed
money.

8. The banker has to decide to satisfy a request for money or to put it on hold.

9. The Free Vector is just a number f1, equal to e1 −
∑n

i=1 Ai.

3



10. WHAT DOES IT MEAN for A to be SAFE? It means this: eventually, every customer who is
holding resources will return all borrowed money.

11. ASSUMPTION: a customer may borrow up to its limit, and if this limit is reached, it will
eventually return all the borrowed money (if not earlier).

12. We say the state A is safe if either A = (0, . . . , 0) or there exists some i = 1, . . . , n with Ai > 0
such that f1 ≥ Ci and the updated state with Ai = 0 (so f1 = f1 + Ai) is safe.

13. EXAMPLE:

14. This easily leads to an O(n2) time algorithm to check for safety.

• Safety Checking Algorithm

1. This algorithm checks if a state is safe. It depends only on the matrices A and M and the Free
Vector F .

2. Mark every process i corresponding to the ith row of A that is non-zero. The other processes are
unmarked.

3. Let G be initialized to the free vector F .

4. Do as long as the following condition hold: (1) there is a marked process, pi, and (2) Ai +G ≥ Mi

where Mi and Ai are the ith rows of M and A, resp. When (1) and (2) holds, we add Ai to G

and unmark pi.

5. At this point, (1) or (2) fails. If (1) fails, all processes are unmarked. We conclude that A is safe.
If (2) fails, we have found an marked process that can cause a deadlock.

6. What does unmarking a process pi mean? It means that if the process pi can complete its job if
we wait long enough.

4


