
Lecture 8: Unix Pipes and Signals (Feb 10, 2005)

Yap

February 17, 2005

1 ADMIN

• Our Grader will be Mr. Chien-I Liao (cil217@nyu.edu).

• Today’s Lecture, we will go into some details of Unix pipes and Signals.
This is in preparation of upcoming programming assignments.

• The primary reference for this lecture is the book Jump Start to C

Programming & The Unix Interface, by Derek Kiong Beng Kee,
Prentice Hall (Singapore), 1995. I will refer to this as [Jumpstart].

2 Review

• Q: Give two models for cooperating threads within a process.

A: One model is manager/worker. The other model is assembly line (or
pipeline).

3 Unix System Calls

• A system call looks just like a function call.

• The man pages will tell you which header files to include. E.g., to make
the system call sysinfo, you can type ”man -s 2 sysinfo” and it will tell
you to do #include <sys/systeminfo.h>.

• Generally, system calls return the value -1 to indicate failure.

• The most recent error code is stored in the external variable errno. This
code can be used to index the external string array sys errlist to obtain
a concise description of the error. Here is a sample from [Jumpstart]:

1

//==

#include <stdio.h>

#include <sys/systeminfo.h>

...

int code = system_call();

if (code == -1) {

extern int errno;

extern char * sys_errlist[];

printf("%s\n", sys_errlist[errno]);

exit(1);

}

...

//==

• //==

#include <stdio.h>

void report_err(char * prefix)

{

extern int errno;

extern int sys_nerr; // size of array sys_errlist

extern char *sys_errlist[];

if (prefix != NULL)

printf("%s: ", prefix);

if (0 < errno && errno < sys_nerr)

printf("%s\n ", sys_errlist[errno]);

else

printf("unknown error\n");

exit(1);

}

//==

// THIS CODE COMPILES IN CYGWIN AND SOLARIS

You do not need to implement this routine because this code is equivalent
to the library function perror() [Jumpstart].

4 Redirection of I/O

• Suppose we want to execute ”ls” and then send the output to a file called
”SPOOL”.

• The main process initially forks. Then it waits on its child process.

• Child Process:
(1) creats a file ”SPOOL”

2

(2) make SPOOL the standard output
(3) close current standard output
(4) exec ”ls /etc .” (listing 2 dirs)

• Here is the code

//==

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

main()

{ char *prog = "ls";

char *argv[] = {"ls", "/etc", ".", NULL};

int pid;

printf("Before execute\n");

pid = fork();

if (pid==0) {

/* child */

int f;

if ((f=creat("SPOOL", S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) == -1)

perror("SPOOL");

dup2(f, STDOUT_FILENO);

close(f); // original not needed after dup2

execvp(prog, argv);

perror(prog);

} else if (pid>0)

/* wait for child */

wait(NULL);

else

perror("execute");

printf("After execute\n");

exit(0);

}

//==

// THIS CODE COMPILES and RUNS IN CYGWIN AND SOLARIS

5 Using Pipes

• IO File and their Descriptors:

1. All I/O must be done by writing to a file or reading from an abstract
concept of an ”IO file”.

3

2. These must be created using creat, which returns an integer called
the ”file descriptor”.

3. Initially, every process is given 3 such file descriptors: std input, std
output, std error. These are numbered 0, 1, 2 or symbolically as
STDIN FILENO, STDOUT FILENO and STDERR FILENO.

4. If you close one of these IO files, then the next creat will reuse the
lowest available unused integer.

• A pipe is an I/O Buffer associated with 2 IO file. To create a pipe, you
call pipe():

//==

#include <unistd.h>

int pipe(int fildes[2]);

The two file descriptors of the new pipe are stored in fildes[0] and
fildes[1].

• Reading from fildes[0] will access data written into fildes[1] on a
FIFO basis.
Conversely, for a bidirectional pipe, reading from fildes[1] will access
data written into fildes[0] on a FIFO basis.

• In Unix shells, you create such pipes by the “—” command. E.g.

> ls | less

This command spawns two processes and creates a pipe shared by both
processes. Process 1 executes the ”ls” command, which lists the current
directory, but its output is sent to fildes[1] of the pipe. Process 2
executes the ”less” command, but its input is taken from fildes[0]. The
output of Process 2 is your screen (the default).

• To use pipes, we exploit two facts: (1) a child process inherits all the files
(in particular pipes) of the parent process, (2) calling exec() also does not
modify the files.

• Here is a toy example:

//==

// file: hello_pipe.c from [Jumpstart]

// Synopsis: Simple illustration of pipe

// (1) Creates a pipe

// (2) Writes "Hello World" into one end

// (3) Reads from the other end

// (4) Write the result of reading to std output.

4

//

// REMARK: THIS PROGRAM WORKS ON BOTH CYGWIN and SOLARIS.

// Chee Yap (Feb 10, 2005)

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

main()

{ char *message = "Hello World!\n";

int length = strlen(message);

char buf[1024];

int fdv[2];

int n;

if (pipe(fdv) == -1)

perror("pipe");

if (write(fdv[1], message, length) != length)

perror("write to pipe");

n = read(fdv[0], buf, length);

if (n != length)

perror("read from pipe");

write(STDOUT_FILENO, buf, n);

exit(0);

}

//==

• Why is this a toy? Because pipes usually goes between 2 processes. Here
is a less toy program:

//==

// file: ls_less.c from [Jumpstart]

// Synopsis: Simple illustration of pipe between 2 processes:

// Executes "ls" and pipes output to "less".

// (1) Creates pipe

// (2) Forks

// (3) Child: redirect output to pipe, then exec "ls"

// (4) Parent: redirect input to pipe, then exec "less"

//

// Chee Yap

#include <unistd.h>

5

#include <stdio.h>

main()

{

int pid;

int pipev[2];

if (pipe(pipev) == -1)

perror("pipe");

pid = fork();

if (pid == 0) {

/* child */

char *argv[] = {"ls", "/etc", ".", NULL};

dup2(pipev[1], STDOUT_FILENO); // redirect output of ls

close(pipev[0]); close(pipev[1]);

execvp("ls", argv);

perror("ls");

} else if (pid >0) {

/* parent */

dup2(pipev[0], STDIN_FILENO); // redirect input of less

close(pipev[0]); close(pipev[1]);

execlp("less", "less", NULL);

perror("less");

} else

perror("fork");

printf("finish\n");

exit(0);

}

//==

• Pipe can be used for two-way communication, if the 2 processes can care-
fully coordinate when one will write/read.

But to provide a more flexible 2-way communication, we can open two
pipes, with the convention that one pipe is for communication in one
direction, and the other is for the opposite direction.

• Other useful calls:

popen(), pclose() -- open and close pipes

getpid(), getppid() -- get process ID and parent process ID

chdir(), fchdir() -- change current directory

getuid(), getgid() -- get REAL user and group IDs

geteuid(), getegid() -- get EFFECTIVE user and group IDs

6

6 Using Signals and Exceptions

• Signals are asynchronous notification of events.

– this is more efficient than sitting in a loop testing for the occurence of
an event.

• Mechanics:
– there are 20 different signals (with symbolic names like SIGHUP, SIG-
INT, SIGQUIT, ... corresponding to integers 1, 2, 3, ..., 20).
– each process can decide on one of three options (”dispositions”) for each
signal: ”handle”, ”ignore” or ”default”.
– To handle the signal means to write your own event handler for the
signal.
– We say a signal is ”caught” if it is ”handled” or takes the ”default”
action. (So ”caught” is the opposite of ”ignored”)
– the system or another process can send signals to any process
– when a signal is sent to a process, it will be interrupted, its event handler
for that signal processed.
– Under a normal return, the process continues its normal actions. But
one possible action is to kill the process.

• Signal 9 (SIGKILL) cannot be ignored or caught. It kills the process
receiving it.

• The signal() system call is used to change the ”disposition” of the process
for a particular signal.

#include <signal.h>

void (*signal (int sig, void (*disp) (int))) (int);

1. The variable sig specifies the signal (integer from 1 to 20),

2. The variable disp specifies the disposition, and can be SIG DFL,
SIG IGN or a pointer to a function to handle the signal.

3. If successful, signal() returns the previous disposition for this sig-
nal.

4. If unsuccessful, it returns SIG ERR and sets errno.

• The declaration of signal above is a remarkably complex construction!

void (∗ signal (int sig
︸ ︷︷ ︸

fa

, void (∗ disp) (int)
︸ ︷︷ ︸

fb

)

︸ ︷︷ ︸

fc
︸ ︷︷ ︸

fd

(int); (1)

7

1. Fragment fa describes the sig and fragment fb disp parts.

2. sig is an int

3. disp isa pointer to a handler function which takes an int argument,
returning void.

4. Combining fa, fb with signal, we get fragment fc.

5. If we now simplify the original declaration be substituting fc, we get

void (∗ fc) (int); (2)

THAT IS, is is a pointer to a handler.

6. Thus, this is our return type.

7. To check that this is the correct type, note that (2) is just like frag-
ment fc!

8

