Lecture 5: Scheduling (Feb 1, 2005) Yap

February 17, 2005

1 ADMIN

e Hwl due today (but programming part has extension to Thursday Feb 3)
e Todays Reading: p.132-152
e Start Reading Chapter 3

2 Review

e Q: What is common to producers, consumers, barbers, philosophers, readers-
writers?

A: They are prototypes of the kinds of synchronization problems that must
be solved in an OS.

e (Q: Peterson’s solution to mutual exclusion still has one potential defect.
Explain.
A: It does busy waiting. If processors have different priorities, we can still
get a deadlock.

e Q: Tanenbaum explains that the Producer-Consumer Problem requires
the solution of two kinds of IPC issues, which he calls "mutual exclusion”
and ”synchronization”. Explain.

A: Call these MUTEX and SYNCH problems.
MUTEX: P and Q must not be in the critical section at the same time.

SYNCH: P and Q must satisfy MUTEX for a critical section but in addi-
tion, they must visit them in a particular order. In our case, P must not
over produce and QQ must not over consume.

e Q: Name the 3 most important registers in a CPU?

A: PC, PS, PSW Registers.

REMARK: in a hardware interrupt, only these 3 registers are saved. The
other registers need to be saved by this is dependent on the particular
interrupt.



3

Scheduling - BACKGROUND

Scheduling provides the “substrate” in which processes interact!

This substrate is rather independent of how the processes interact (in IPC
communication) or do not interact.

In scheduling we need to distinguish between I/0O bound and CPU-bound
processes.

As CPU’s get faster, scheduling the former is getting more critical.

There are 2 kinds of scheduling — preemptive and non-preemptive.

Actually, preemption is usually relative to the system clock interrupts. At
each clock interrupt, we must decide if we want to preempt.

Three kinds of environments for scheduling:
BATCH, INTERACTIVE, REALTIME.

The mechanisms and goals needed are quite different.

GOALS OF SCHEDULING:

1. fairness (per process, per user, per thread)

2. load balance (per computing unit)

®

metric: throughput (maximize) — total CPU utilization, total # pro-
cesses completed

metric: turnaround (minimize)
metric: responsiveness (interactive)

metric: meeting deadlines (realtime)

N o

proportionality: subjective expectation that more difficult tasks should
take more time.

Scheduling —- BATCH Systems

First come first serve

Shortest jobs first

Shortest remaining time first (PREEMPTIVE)

3 LEVEL SCHEDULING: 4 entities (input queue, RAM, CPU, Disk)
1. Admission Scheduler: who goes from input queue to RAM

2. CPU Scheduler: who goes from to RAM to CPU (and back)
3. Memory Scheduler: who goes from to RAM to Disk (and back)



5 Scheduling - INTERACTIVE Systems

e Round Robin — each process has a quantum

1. Advantage: no need to know the length of job. Disadvantage: process
switching expensive

2. TRADEOFTF: context switching takes 1ms. Quantum is chosen to be
20-50 ms.

e Priority Scheduling — e.g., mail daemon has lower priority than video
renderer.

1. Priority classes

2. Higher priority is scheduled first, and/or has more quantum.

3. Combining Priority and Round Robin: round robin within priority
classes, priority

e METHODS OF ASSIGNING priority:

1. If a process uses fraction f of its quantum, its priority next time is
1/f.

2. QUANTUM QUEUES Q; (i = 0,1,2,...). Queue Q; has 2° quanta.
Initially, all processes go to QQg. When preempted from @Q;, goes into
Qit+1-

3. AGING: How to estimate time to completion? If T is current esti-

mate, and after the current run that takes time 7", the next estimate
is (T'+1")/2.

4. LOTTERY SCHEDULING:

— Each process holds a number of lottery tix.
— Scheduling is based on who owns the winning tix.
— If you hold 20 of 100 outstanding tix, your chance is 1/20.

— Cooperating processes can exchange tix (e.g., a client blocks and
gives all his tix to server).

6 Scheduling - REALTIME Systems

e E.g., playing audio/video, monitoring physical processes in a hospital or
nuclear plant, autopilot transportation.

e Difference from before: we now have hard deadlines. Note we can have
“semi-hard” deadlines too.

e HOW TO ACHIEVE THIS?

Divide program into small processes, each with predictable and known
computing time.



e 2 kinds of events — periodic and aperiodic events

e (Calculation of feasibility for periodic events: the ith event occurs every P;
seconds and requires C; seconds of CPU time. Then feasible iff

C
;Figl.

e Scheduler can be static or dynamic.



