
Lecture 4: Inter-Process Communication (Jan 27,

2005)

February 17, 2005

1 Review

• Q: What is the other command that seems to go hand-in-hand with fork()?

A: exec* (6 variants of this command)

• Q: Suppose you have a Makefile that is ready made. How can you deter-
mine what actions you can take in this Makefile?

A: Look at the ”targets” in the Makefile. These are the list of names that
begin a colon (”:”) terminated line. E.g. a line in the file

action1 hw1:

says that ”action1” and ”hw1” are names for the same target. You execute
these actions by typing

> make action1

or

> make hw1

• Q: Give two reasons why keyboard editors are more efficient and more pro-
ductive than WYSIWYG editors, and one reason why people like WYSI-
WYG.

A: Here are two reasons for superiority of keyboards:

(1) Keyboard editors are more powerful because you can compose sophis-
ticated and repetitive commands using the keyboard. With WYSIWYG,
this ability is limited.

E.g., You cannot tell WYSIWYG to ”search the next 100 lines of file, and
replace each occurrence of the word ”GOOD” to ”BAD”.

But in (say) vi/vim/gvim, you type this sequence:

1



:.,+100s/GOOD/BAD/g

(2) WYSIWYG editors requires hand-eye coordination. With keyboard
editors, you can can even look elsewhere if you know how to touch type!

Here is a reason why people seem to like WYSIWYG:

The learning curve for WYSIWYG is low – you can pick it up intuitively.
The learning curve for keyboard editors is steep. But the payoff is more
than worth the effort.

By the way, I think gvim is superior to emacs because you generally can
do things with much fewer key strokes (because many basic facts about
text files are built into the editor).

2 Inter Process Communication

• Why we need IPC:

– pipes, parent-child communication,

– non-interference of each other (coordination of shared resources)

– proper sequencing of actions across processes

– shared resource (memory or variables, files, devices)

– E.g., print spooler

To print a file, a process enters the name in the spooler directory. A printer
daemon periodically checks this directory, prints the file, and removes the
entry from spooler directory.

• Q: What is a ”race condition”?

A: When the outcome of two interacting processes depends on the speed
or order in which the processes execute commands.

• Q: Give an example.

A: Let P and Q be processes that are both accessing a variable ”Balance”,
initialized to 100.

o P: Balance++

o Q: Balance–

o Intuitively, after both processes are done, Balance=100.

o But we might get 101 or 99. HINT: the commands ”Balance++” and
”Balance–” are non-atomic.

• SOLUTION STRATEGY:

We must prevent the interleaving of certain code fragments. This is called
the mutual exclusion problem. The code fragments which must be
”atomic” are called critical sections.

2



We can associate each critical section with a variable (called a resource
or semaphore). When a process is inside the critical section, we say it is
accessing that resource/semaphore.

• PROPERTIES:

1. [MUTEX] No two processes may be simultaneously access a resource.

2. [SPEED] The speeds and number of processes are arbitrary.

3. [NONBLOCK] Processes outside a critical section may block other
processes.

4. [FAIRNESS] Each process wanting to access a resouce will eventually
be able to do so.

Stronger and weaker forms of FAIRNESS (4.) have been proposed. A
weaker form is this: it is fair as long as each process makes progress.

• NO INTERRUPT SOLUTION: Turn off interrupts

We can allow the user programs to turn off interrupts, but this is clearly
dangerous.

We can restrict this ability only to system processes. But this will not
help user processes achieve mutual exclusion (e.g., the Balance update
problem).

Also, this would not help in multi-CPU situations.

• SOME WRONG SOLUTIONS:

Initially P1wants = P2wants = false

P1: P2:

Loop forever Loop forever

P1wants <-- true ENTRY P2wants <-- true

NO MAN ZONE

while (P2wants) {} while (P1wants) {}

critical-section critical-section

P1wants <-- false EXIT P2wants <-- false

non-critical-section non-critical-section

WHAT IS wrong? Can get stuck if both P1 and P2 enters the NO MAN
ZONE at the same time. Neither can go forward!

The trouble was that setting ”want” before the loop. Try again:

3



Initially turn=1

P1: P2:

Loop forever Loop forever

while (turn = 2) {} while (turn = 1) {}

critical-section critical-section

turn <-- 2 turn <-- 1

non-critical-section non-critical-section

This one forces alternation – no process can enter its CS twice in a row!
This is unfair for a fast process.

Specifically, it fails condition 3: a process in its NCS can stop another
process from entering CS.

Many earlier “solutions” were found and several were published. The first
correct solution was from Dekker (1964). It is clever, but complicated.
Subsequent solutions with better fairness properties were found (e.g., no
task has to wait for another task to enter the CS twice).

• PETERSON’s SOLUTION (1981):

When first published, it’s simplicity was a surprise.

Initially P1wants=P2wants=false and turn=1

P1: P2:

Loop forever Loop forever

P1wants <-- true P2wants <-- true

turn <-- 2 turn <-- 1

while (P2wants and turn=2) {} while (P1wants and turn=1) {}

critical-section critical-section

P1wants <-- false P2wants <-- false

non-critical-section non-critical-section

4



JUSTIFICATION:

1. If at least one of them does not ”want”, it is safe!

2. So the danger is when both ”wants”. In that case, the last process to
set ”turn” goes first!

VERIFY PROPERTIES 1-4.

REMARKS: This extends to any number of processes. See Operating
Systems Review Jan 1990, pp. 18-22. See Tanenbaum p.106. Also, each
process MUST know a unique value (e.g., its PID).

• HARDWARE ASSISTED SOLUTION:

(test and set lock)

TSL (Reg, LockVar)

It copies LockVar into register Reg, and stores ”1” (or any non-zero value)
into LockVar. All this is ATOMIC.

ALTERNATIVE:

TAS (boolVar)

ATOMICALLY sets boolVar to TRUE and returns the OLD value of
boolVar.

Now implementing a critical section for any number of processes is trivial.

loop forever

while (TAS(boolVar)) {}

CS

boolVar<--false

NCS

• Sleep and Wakeup

THE ABOVE solutions requires busy-waiting.

WHAT COULD GO WRONG: Process H and L with HIGH and LOW
priorities. After L enters critical region, H is busy waiting for L. Now both
are stuck.

To solve this, two new system calls:

– SLEEP() causes process to block.

– WAKEUP(pid) causes process pid to unblock.

• Producer-Consumer Problem.

Example: Producer=ttyin() keyboard interrupt service routine, Consumer=getchar().

5



Example: Producer=ttyout() serial interface transmit interrupt, Con-
sumer=putchar().

[Source: http://www-rohan.sdsu.edu/faculty/gleonard/html/570/lecture15.html]

Buffer of size N.

Count variable, 0¡=COUNT¡=N

Producer:

loop forever:

item= produce();

if (COUNT == N) SLEEP();

insert(item)

COUNT++

if (COUNT == 1) WAKEUP(Consumer)

Consumer:

loop forever:

if (COUNT == 0) SLEEP();

item=remove(item)

COUNT--

if (COUNT == N-1) WAKEUP(Producer)

consume(item)

WHAT ARE RACE CONDITIONS HERE?

Consumer reads COUNT=0

• P and V and Semaphores:

DICTIONARY: Semaphore – any system of signaling (e.g., with lights or
flags).

HERE, semaphore is just a special variable (representing a resource).

Note: Tanenbaum does both busy waiting (like above) and blocking (pro-
cess switching) solutions. We will only do busy waiting.

The entry code is often called P and the exit code V (Tanenbaum only
uses P and V for blocking, but we use it for busy waiting). So the critical
section problem is to write P and V so that

loop forever

P

critical-section

V

non-critical-section

satisfies our list of requirements

1. Mutual exclusion

6



2. No speed assumptions

3. No blocking by processes in NCS

4’. Reasonable Progress (weaker form of above condition 4)

A binary semaphore abstracts the TAS solution we gave for the critical
section problem.

* A binary semaphore S takes on two possible values “open” and “closed”

* Two operations are supported

* P(S) is

while (S=closed) {}

S<--closed //This is outside the body of the while

where finding S=open and setting S¡–closed is atomic

* That is, wait until the gate is open, then run through and atomically
close the gate

* Said another way, it is not possible for two processes doing P(S) simul-
taneously to both see S=open (unless a V(S) is also simultaneous with
both of them).

* V(S) is simply S¡–open

The above code is not real, i.e., it is not an implementation of P. It is,
instead, a definition of the effect P is to have.

To repeat: for any number of processes, the critical section problem can
be solved by

loop forever

P(S)

CS

V(S)

NCS

The only specific solution we have seen for an arbitrary number of pro-
cesses is the one just above with P(S) implemented via test and set.

Remark:
a. Peterson’s solution requires shared variables across processes (one al-
ternative is to use shared files)
b. Peterson’s solution requires each process to know its processor number.
The TAS soluton does not. Moreover the definition of P and V does not
permit use of the processor number.

7


