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1 ADMIN

• TODAY’s Lecture: We have discussed ”multiprocessor systems”. This
is the first of the 3 categories of parallel computers. Today we discuss
the remaining two categories: ”multicomputer systems” and ”distributed
systems”.

2 Review

• Q: Draw the Omega network for a 16 × 16 node system.

A: Starting from a column of 16 nodes, draw 4 consecutive stages of the
shuffle exchange connection.

• Q: Give a basic tradeoff when implementing mutual exclusion for multi-
processes. Discuss.

A: Should the process wait for the mutex variable or should we switch to
a new process?

• Q: We want to keep increasing the processing power of computers (in
terms of number of operations per second). But we run into fundamental
physical limits (like speed of light). What is one avenue of computer design
which avoids such limits?

A: Parallel Processing.

• Q: Give a proof of correctness of the routing method in Omega-network.

A: See previous lecture.

3 More General Remarks

Before we delve into multicomputers, let us make various general remarks.
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• We have emphasized that classification of parallel computers is a fairly
difficult one because of the many parameters involved.

There is a famous taxonomy of parallel computers from Mike Flynn (1972)
(this is not discussed in the text, unfortunately, but you should know it):

The basis of Flynn’s taxonomy is the distinction between instruction

stream and data stream. In uniprocessor machines, you have one stream
of each. In parallel computers, you could have many of them. This gives
rise to the four basic classes:

1. SISD (single instruction, single data) Computer

This is just a uniprocessor computer.

2. SIMD (single instruction, multiple data) Computer

Of course, to have parallelism, you need multiple processing units
(PU’s). But one of these is the brain (denoted K), and it issues the
(same) instructions to the remaining PU’s.

The vector machine is usually cited as an SIMD computer, although
some people think of it as SISD. The Cray T-90 machine is an exam-
ple.

The ILLIAC-IV is the first machine of this class.

3. MISD (multiple instruction, single data) Computer

There are few commercial examples of this. The systolic array is
an example.

4. MIMD (multiple instruction, multiple data) Computer

What we call multicomputers is definitely in this class.

• Measuring Parallel Performance

– The basic parameters are number of processes p, the size of a problem
n and parallel time T .

– We assume p and n are independent parameters.

– Thus, T (p, n) is the time to solve problem size n with p processors.

– We say the speedup is S(n, p) = T (1, n)/T (p, n)

– The efficiency is S(n, p)/p (ideal is 1)

• The theoretical ideal for a multiprocessor system is called a PRAM. It is
not achievable in practice.

– assume that the cost to access any memory location from any processor
is unit time

– what happens if several PU’s tries to read/write a location?

–We get four variants: EREW, CRCW, CREW, ERCW
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• Abstract Programming Models for Parallel computation

NOTE that we consistently held on to the fiction of what constitute a
uniprocessor computer (we already noted that they are all parallel com-
puters in modern architecture).

This fiction is really a ”programming model”. Because of this fiction,
we do not have to rewrite our programs each time Intel builds a new
architecture.

The same phenomenon will be important in parallel computing. His-
torically, programming models follow closely the architecture. This has
tremendous problems (the life span of parallel architectures is remarkably
short lived!)

In practice, the ”programming model” is captured by the ”programming
language” and its semantics.

4 Multicomputers

• Multicomputers, as the name suggests, involves several independent com-
puters trying to cooperate in solving a common task.

– Also called: cluster computers, clusters of workstations (COWS)

• Comparing ”multicomputers” and ”multiprocessor systems”

Feature Multiprocessors Multicomputers

Memory Global Local
Communication Shared variables Message passing
Synchronization Mutex, semaphores, etc Protocols
OS One, uniform Many (not necessarily same type)
Hardware CPU-memory unit network Computer-computer network

• CONTRAST BETWEEN SHARED VARIABLES AND MESSAGE PASS-
ING:

–In shared variables, we have the usuall LOAD(VAR) and STORE(VAR)

–This can be refined to LOAD(MemoryUnit,VAR) STORE(MemoryUnit,VAR)

–What is message passing? The idea is capture by its use of two instruc-
tions:

SEND(destination,data)

RECEIVE(source,data

–Note that we address CPU’s, not memory, in message passing.
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• Computer-Computer Interconnection Network – TOPOLOGY

Topology Parameters:

p=number of processes

n=parameter of the topology

connectivity,

diameter,

bisection width (smallest number of wires to cut to divide network into
two equal halves)

1. array or ring

–connectivity: constant (2)

–diameter: p

2. grid or double torus

–connectivity: constant (4)

–diameter:
√

p

– E.g., Intel Paragon (2D torus), Cray T3D (3D torus)

3. hypercube

–connectivity: linear (lg p)

–diameter: lg p

–number each node by a string of k = lg n bits.

–Gray code routing

(a) CLAIM: we can number the nodes of a n-cube from 0 to 2n−1 so
that two integers have Hamming distance 1 iff they are connected
by an edge on the hypercube. [Proof by induction]

(b) Generalization: The hamming distance gives the distance be-
tween two nodes in a hypercube.

(c) Let the level of an edge in the hypercube be i if the ith bit of
the two integers differ.

(d) Hence, out of each vertex, we have n edges, with levels 1 to n.

(e) ROUTING: Suppose you want to go from source A to destination
B. You first compute C=XOR(A,B).
Starting with C at the source, repeat:
If C is all 0’s we are done (we are already at the destination.
Else, take ANY non-zero bit of C. If this is the i-th bit, take the
level i link to the next node. Also, zero the ith bit of C.

(f) It follows that if the distance from A to B is k, there are 2k

different paths of length k between them!

(g) Many other topologies can be embedded in the hypercube.

(h) Let us consider the problem of embedding the 2n-ring into the
n-cube. This is given by the Gray code.
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(i) An n-bit Gray Code is a permutation of the integers 0 to 2n−1
such that adjacent integers in the list (and also the first and last
in the list) has Hamming distance 1.

(j) Let G(1) = [0, 1] be the Gray Code for n = 1.

(k) Inductively, let G(n) = [g(0), g(1), . . . , g(2n − 1)].

(l) Then

G(n+1) = [0g(0), 0g(1), . . . , 0g(2n−1, 1g(2n−1), 1g(2n−2), . . . , 1g(0)].

[Correctness is clear]

(m) We can symbolically write this as

G(n + 1) = 0G(n); 1G′(n)

where G′(n) is the reverse of G(n).

(n) E.g., G(2) = [00, 01, 11, 10]. G(3) = [000, 001, 011, 010, 110, 111, 101, 100].

(o) Consider 2 Gray codes to be equivalent if one is a cyclic shift of
the other. Let g(n) be the number of non-equivalent Gray codes.
Thus g(n) = 1.

(p) For each G(n), we get two inequivalent Gray codes, G(n + 1) =
[0G(n), 1G′(n)] and G(n + 1) = [1G(n), 0G′(n)]. These are in-
equivalent because ? There are no others because? Hence g(n +
1) = 2g(n). Thus g(2) = 2 and g(3) = 4.

4. Trees

–assume complete binary trees

–assume PE’s at the leaves only

–connectivity: constant (3)

–diameter: p

–E.g., CM-5 machine

– FAT TREES: To avoid bottleneck at root, allow child-parent band-
width at depth k to be half of the bandwidth at depth k − 1.

– Define the capacity of a link to be the number of pairs of leaves
that has to communicate through the link.

– Links nearer the root has greater capacity.

– FAT TREES: the capacity at the level i is half the capacity at the
next level below.

5. n-to-n connection

–crossbar

–omega network (E.g., NYU Ultracomputer, BBN Butterfly)

6. arbitrary topology (internet)

– Typically, planar graphs

– Connectivity: linear p but expected constant O(1)

– Diameter: p worst case
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We can further generalize this to allow dynamic topology.

• ROUTING:

Given a certain topology, how do we route messages?

Message passing in arbitrary topology:

– packet switching:

A message is broken into packets, and injected into the network. Each
packet finds a path to the destination, and these are reassembled at the
destination.

E.g., internet messages.

– circuit switching

First set up a path from source to destination, then the entire message (or
session) is routed along this path.

E.g., Telephony.

– packet switching requires local memory at switches (e.g.,

• REMOTE PROCEDURE CALLS

– Tanenbaum [p.537] points out that the message passing was the DOM-
INANT paradigm for communication in multicomputers.

– But Birrell and Nelson (1984) introduced something rather different into
the landscape with the idea of RPC

– Client (Callee): the process calling the RPC; Server: the process receiv-
ing the RPC

– Mechanics:

1. Client program calls the CLIENT STUB in the local kernel (local
process call)

2. Client process is suspended

3. CLIENT STUB packages the parameters, etc and send message to
server machine (kernel).

4. The SERVER STUB on server machine calls the server program.

5. The return path is the reverse. The Client process is reactivated.

– ADVANTAGES:

procedure calls is well-understood high-level language mechanism

makes distributed computing easy to use

– Issues:

1. pointer parameters,

2. impossible with weak type information (e.g., vectors with unknown
length, printf statements)
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3. global variables

•
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