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1 ADMIN

• Hw5 (STM) due on today.

2 Review

• April 12:

Q: Should page tables be stored per process, or per segment or globally?

A: Depends on which page table we are talking about! For the file sys-
tem, it is global. For processes without segmentation, we need tables
per process to track pages that are loaded in core. For processes with
segmentation, it is per segment.

• April 14:

Q: Suppose Intel’s next Pentium X CPU requires 1 trillion gates and each
gate occupies an area that is 0.1 micron square. What does the speed of
light imply about the maximum clock speed for Pentium X?

Assume that the CPU must be able to send a signal to any part of the
chip in one clock cycle, and other similar simplifications.

A: Let us do the calculations. Speed of light in a wire is 20cm/nsec. The
diameter of the CPU is at least ...

3 Introduction

• In 2000, we saw the arrival of the 1GHz CPU.

Today, we have reached 4GHz machines.

• Moore’s law (complexity of chips double every 18 months) is at work:

Predictive as well as prescriptive!
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• This trend cannot continue indefinitely because of fundamental physical
limits.

But beware of any predictions about where this limit is! History shows
that you are likely to be wrong.

• Speed of light:

30 cm/nsec (in vacuum)

20 cm/nsec (in copper or optic fibre)

10 GHz clock means the signal can travel 2cm in a cycle.

• Heat dissipation is another problem

• Let us measure computer speed by ”operations per second” (OPS).

Of course, clock speed is closely correlated with OPS.

There is one way to obtain more OPS: introduce PARALLELISM!

ONE WAY: have more than one CPU in a computer, or perhaps use many
less-than-full-fledged CPU but independent computing units.

• Many forms of parallel architecture are possible!

(1) ”Superscalar Machines” just means the CPU can execute more than
instruction in one clock cycle. Thus, the instruction fetching unit can
fetch many instructions at a time, and the decoding unit can decide which
instructions can be done in parallel or otherwise pipelined, etc.

Practically all modern processors are superscalar!

(2) Vector machines

– these instructions that can can take a large number of operands for a
given operation.

(3) Multi-CPU systems

– number of CPU’s can go up to a million!

– MPP (massively parallel processor systems)

(4) Distributed networks

(5) Grid computers

REMARK: ”Super computers” just means computers that are capable of
achieving a large amount of parallelism.

• DO WE REALLY NEED ALL THIS SPEED?

APPLICATIONS: weather simulation, oil and mineral exploration, earth-
quake prediction, computational biology or drug design, molecular simu-
lation, etc.
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• In scientific computing, one simple benchmark is ”flops”.

Current supercomputers can reach teraflops (trillion flops).

NOTE: Flops is one benchmark of computer speed, and stands for ”FLoating-
point Operations Per Second”. Obviously it is biased for numerical/scientific
computations.

4 Shared Memory Computers

• Let us begin with a fairly simple classification of multi-CPU computers:

1. Shared Memory Computers

–tightly coupled

–small communication latency

–no message passing

2. Local Memory (only) Computers

–less tightly coupled

–medium communication latency

–message passing

3. Distributed System

–loosely coupled

–large communication latency

–message passing

NOTE: the range of communication latency is 3 orders of magnitude,
which Tanenbaum describes as ranging from 1 day to 3 years.

• Shared Memory Computers (a.k.a. multiprocessor computers)

– which memory is shared? RAM!

– shared disk? may be.

– classification: uniform memory access (UMA) and the non-uniform
memory access (NUMA)

– HOW TO ACHIEVE A GLOBAL SHARED MEMORY?

(bus, crossbar, multistage switching)

1. Bus Architecture

– contention in bus access is the bottleneck

– local cache is a solution

– cache lines can be read-only (multiple copies) or read/write (single
copy)

– can further add local memory

– limitations: ¡ 32 CPU’s ...
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2. Crossbar Switch

3. Multistage Switch

– Built out of a 2x2 switches (upper and lower inputs, upper and
lower outputs).

– Connect 2n CPUs to 2n Memory Units (MUs) in n stages

– ASSUME the CPU’s are numbered 0 to 2n
− 1 in binary (from

top to bottom, in columns). SIMILARLY for the MU’s.
–Routing is from left to right

– Every stage is the same: there are N = 2n inputs and N = 2n

outputs.
–These inputs go into n/2 switches (arranged from top to bot-
tom, in a column)

– There are n + 1 stage of routing. All but the last stage has this
form:
–Working from top to bottom: let each of the 2n input choose
the topmost switch with a free upper input.
–When there is no more free upper input, choose the topmost
switch with a free lower input.
(ALTERNATIVELY: input address s will connect to output ad-
dress CSHIFTL(s) (circular shift left).

– The last stage is trivial: just connect the ith input to the ith
output.

– REMARK: the inputs for the first stage are the CPU’s, and the
output for the last stage are the MU’s.
–The outputs for the ith stage (i = 1, . . . , n) are just inputs for
the ith column switches

– EXAMPLE: n = 3 for N = 8 processors (DRAW FIGURE)
(000) → (000),
(001) → (010),
(010) → (100),
(011) → (110),
(100) → (001),
(101) → (011),
(110) → (101),
(111) → (111)

– ROUTING: Suppose the source address is (s1s2s3) = (101) and
the destinating address is (d1d2d3) = (100).
Initial LOCATION is (s1s2s3) = (101).
After first shuffle, LOCATION is (s2s3s1) = (011).
After first switch, LOCATION is (s2s3d1) = (011).
After second shuffle, LOCATION is (s3d1s2) = (110).
After second switch, LOCATION is (s3d1d2) = (110).
After third shuffle, LOCATION is (d1d2s3) = (101).
After third switch, LOCATION is (d1d2d3) = (100).
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That is it!!!

– Incidentally, this also constitute a proof that our routine algo-
rithm is correct.
That is, if you begin with at LOCATION (s1s2 · · · sn) and switch
using (d1d2 · · · dn), you will end up in LOCATION (d1d2 · · · dn).

– Omega, banyan, shuffle-exchange, etc are all basically equivalent
(can simulate each other in constant time).

– HISTORY: this was used in IBM RP3, BBN Butterfly, NYU’s
Ultracomputer

– Only need (N/2) lg N switches for N = 2n computers

– Unfortunately, this network can block.
– Proof: there are N ! permutations
– But with (N/2) lg N , we can get only 2(N/2) lg N = NN/2 per-
mutations.
– E.g., N = 8, we get only 84 = 4096 permutations out of the
8! = 40, 320 possible.
– ln(N !) = N lnN − N + 1

2 ln(2πN) + θ(1/N).

– lnNN/2 = (N/2) ln N .
– So there are permutations that cannot be represented!

• Multiprocessor Synchronizations:

– Recall the TSL (Test and Set Lock) Operation:

– TSL RX, LOCK

will first read memory contents of LOCK into register RX and then writes
1 into LOCK

– Convention: LOCK is shared variable, LOCK=1 means ”in use”, LOCK=0
means ”free”

– But TSL breaks down in multiprocessor environment.

– SOLUTION: the TSL operation is now:

(a) Lock Bus

(b) Read LOCK into RX

(c) Write 1 into LOCK

(d) Unlock Bus

– Refinements: the cache containing LOCK may be shuffled among the
contending CPU’s.

Prefix the above steps (a)-(d) with an attempt to read LOCK. Keep trying
until this succeeds.

Upon success, carry out steps (a)-(d) above.

• Scheduling in Multiprocessor Systems:
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1. To Switch or to Wait?

– in uniprocessor, if we need mutex, just wait for it (either by polling
or by joining a queue for the mutex)

– in multiprocessor, we have a choice: switch processor or wait (as
in the uniprocessor case).

– TRADEOFFS in this choice: waiting wastes CPU cycles, switching
is expensive (and may need new cache lines, etc).

– Solution: track the recent wait (spin) times: if this is small, then
waiting may be preferred. Otherwise, switching is preferred.

2. Which Process is Next?

– We must pick (CPU,Process) pair.

– Processes may be related

– Example: in a ”parallel make” of many targets, the different pro-
cesses invoked are related.
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