
Lecture 18: Segmentation II (Apr 7, 2005) Yap

Apr 7, 2005

1 ADMIN

• We continue discussion of segmentation.

2 Review

• Q: If you are allowed only 2 segments, how would you use your 2 segments
and set their permissions?

A: One segment for (program) text, which is executable but read-only,
another segment for data, which is read and write, but not executable.

Q: Why do we need TLB’s?

A: To speed up the memory reference in the presence of paging and seg-
mentation.

Q: Name 4 advantages of segmentation

A: 1. Facilitates sharing of library and data across processes

2. Simply the handling of data structures that grow/shrink independently

3. Supports the management of different parts of the data/code with
different permission properties.

4. Supports the separate compilation and linking of modules.

3 Review of Segmentation

• Segmentation and paging are similar and yet different.

– The 2 techniques are normally used simultaneously.

– Many variations of both techniques exist

• Here is a comparison (cf. Figure 4-37 of Tanenbaum):

For the purposes of this comparison, we assume ”pure segmentation”
which is not combined with paging.

1



Property Paging Segmentation

Programmer aware of technique? No Yes
How many linear address spaces? 1 Many
Can address space exceed physical memory? Yes Yes
Separate protection of procedure and/or data? No(Maybe) Yes
Sharing of procedures/data across processes? No Yes
Can table sizes that changes unpredictably be handled? No Yes
Avoids external fragmentaion? No Yes

4 Segmentation in Intel Pentiums

• 16K segments

• Each segment up to 1 Gigawords (32 bits)

• 2 tables: LDT (Local Descriptor Table) and GDT (Global Descriptor
Table)

• Each process has a LDT, but there is only one GDT

• LDT: describes segments for each process

• GDT: describes segments for the OS

• Segment Selectors: 16-bit word, (Index, GDT-or-LDT-bit, 4-Previlege-
bits)

– The index gives the entry into GDT or LDT

• Pentium has 6 ”segment registers”

• To access a segment, first load a selector for that segment into one of
segment registers

• This will fetch the corresponding segment descriptor from LDT/GDT
into a 64-bit ”microprogram registor”.

• Using this segment descriptor, we can check validity of the offset and
whether the segment is loaded.

• If so, we form the linear address from the segment descriptor and offset.

• Linear address = (PageDir#, Page#, Offset)

• To speed up, we keep a small TLB to map most recent (PageDir#, Page#)
into page frame#.

2



• PROTECTION: Levels 0 to 3 (kernel, system call, shared library, user
progs).

–Thus 2 bits in the PSW stores this info

–Each segment also has this protection level info

–A program trying to access a segment at DIFFERENT level will cause a
trap

–But controlled way to access different levels is possible (use selectors)

3


