Lecture 18: Segmentation II (Apr 7, 2005) Yap

Apr 7, 2005

1 ADMIN

e We continue discussion of segmentation.

2 Review

e Q: If you are allowed only 2 segments, how would you use your 2 segments
and set their permissions?

A: One segment for (program) text, which is executable but read-only,
another segment for data, which is read and write, but not executable.

Q: Why do we need TLB’s?

A: To speed up the memory reference in the presence of paging and seg-
mentation.

Q: Name 4 advantages of segmentation
A: 1. Facilitates sharing of library and data across processes
2. Simply the handling of data structures that grow/shrink independently

3. Supports the management of different parts of the data/code with
different permission properties.

4. Supports the separate compilation and linking of modules.

3 Review of Segmentation

e Segmentation and paging are similar and yet different.
— The 2 techniques are normally used simultaneously.

— Many variations of both techniques exist

e Here is a comparison (cf. Figure 4-37 of Tanenbaum):

For the purposes of this comparison, we assume ”pure segmentation”
which is not combined with paging.

| Property | Paging | Segmentation
Programmer aware of technique? No Yes
How many linear address spaces? 1 Many
Can address space exceed physical memory? Yes Yes
Separate protection of procedure and/or data? No(Maybe) | Yes
Sharing of procedures/data across processes? No Yes
Can table sizes that changes unpredictably be handled? | No Yes
Avoids external fragmentaion? No Yes

Segmentation in Intel Pentiums

16K segments
Each segment up to 1 Gigawords (32 bits)

2 tables: LDT (Local Descriptor Table) and GDT (Global Descriptor
Table)

Each process has a LDT, but there is only one GDT
LDT: describes segments for each process
GDT: describes segments for the OS

Segment Selectors: 16-bit word, (Index, GDT-or-LDT-bit, 4-Previlege-
bits)

— The index gives the entry into GDT or LDT
Pentium has 6 ”segment registers”

To access a segment, first load a selector for that segment into one of
segment registers

This will fetch the corresponding segment descriptor from LDT/GDT
into a 64-bit ”"microprogram registor”.

Using this segment descriptor, we can check validity of the offset and
whether the segment is loaded.

If so, we form the linear address from the segment descriptor and offset.
Linear address = (PageDir#, Page#, Offset)

To speed up, we keep a small TLB to map most recent (PageDir#, Page#)
into page frame#.

e PROTECTION: Levels 0 to 3 (kernel, system call, shared library, user
progs).
—Thus 2 bits in the PSW stores this info
—Each segment also has this protection level info

—A program trying to access a segment at DIFFERENT level will cause a
trap

—But controlled way to access different levels is possible (use selectors)

