
Lecture 17: Segmentation I (Apr 5, 2005) Yap

Apr 5, 2005

1 ADMIN

• Today, we return to a topic we skipped over in our initial introduction to
memory management, viz., segmentation.

2 Review

• Q: How many instructions are there in STML?

A: 16

Q: In STML, how would you load a constant, say 123, into register R1?

A: 3 steps:

(1) Choose a location L that is past the end of your program instructions.

(2) At the appropriate place where you want to load the constant, you
execute the instruction:

LOA R1,L

(3) At location L in your program, simply enter the value 123 (in Hex).

REMARK: see the sort.stm program for example

Q: What is ”123” in Hex?

A: 123 is slightly less than 126=27 = 8(24). So the most significant digit
is 7. But 123 − 7(24) = 11 = 0xB. Hence 123 = 0x7B.

3 Review of Memory Management

• Memory Hierarchy (capacity/speed tradeoff)

• E.g., Registers, Cache, RAM, Disk, Tape

• When we speak of ”memory management” we are basically talking about
the RAM part of memory!

1



Strictly speaking, there is also the Disk memory that lurks behind all our
schemes. The issue is how to ”represent parts of the Disk memory in
RAM”.

• The issues with managing memory can be divided into three distinct sets
of problems: allocation, paging, segmentation.

• PROBLEM 1: Allocation and Swapping Problems

1. How to allocate memory for processes?

2. REMARK: ”memory” means RAM

3. SWAPPING is an another wrinkle in the allocation problem – pro-
cesses can be swapped out.

4. Two basic functions: free and allocate

5. Keep track of allocation of memory to processes

6. Use 2 linked lists: allocated and free list

7. Each list, may be ordered by address

8. If ordered, may have cross-links between 2 lists

9. Allocation policies: first fit, best fit, worst fit, quick fit

• PROBLEM 2: Paging Problem

1. Goes hand-in-hand with virtual memory

2. REMARK: 2 senses of physical memory (in RAM and in DISK)

3. Basic parameter: page size

4. Physical RAM memory divided into page frames

5. Page table to track mapping from virtual pages to frames

ENTRY: (present-bit, page frame number, R-bit, M-bit, cache-enable-
bit, protection, ...)

6. Need method to translate virtual address to physical addresses on
DISK. USUALLY, MMU

7. MAIN TOPIC: page eviction policies/algorithms

(NOTE: page placement is a non-issue because pages are all the same
size)

• PROBLEM 3: Segmentation Problem

1. This lecture!

• REVIEW OF PAGE TABLES

1. Since segmentation will be integrated with paging, we need to recall
some details on paging

2



2. Address = (page#, offset)

3. Each page has a Page Table Entry (PTE) in the page table

4. This information is hardware, not OS, oriented. (Because this must
be fast and automatic)

5. What is in PTE?

– PRESENT or VALID bit: TRUE iff page is loaded in a frame.

Page fault generated if invalid page is accessed.

– FRAME NUMBER: virtual to RAM address translation

– R- or REFERENCED BIT: used in page eviction policies

– M- or MODIFIED or DIRTY BIT: used to decide if writing to disk
is needed.

– PROTECTION BITS: read/write/execute permissions.

This is probably more naturally done at the segment level.

6. Consider the transition graph for the four states of (R,M):

(00), (01), (10), (11).

– These 2 bits are very important and is very effectively used by the
various paging algorithms

– Here are some ”puzzles”:

– How can we ever get into (01)?

– Is there a transition INTO state (00)?

– How can we ever begin in (00)? Demand paging seems to preclude
this state!

Ans: From (10) we can get to (00) after a clock tick This also accounts
for (01).

ALSO: instead of ”demand paging”, we may have proactive paging
which brings in a block of pages (because it is cheap, or because there
is a likelihood of using neighboring pages). Thus a page may start
out with (00).

7. Multilevel Page Tables:

– Page tables MUST reside in main memory (otherwise the whole
purpose of paging is defeated)

– But page tables can be very large! (How many entries in page table
if you have a 80 GB disk, and 1 KB page size?)

– Multilevel is important for reducing page tables.

– The first level may be called the Page Directory.

– Keep only the Page Directory in memory

– With 2 levels, Address = (pageDir#,page2#, offset)

– Can generalize to more levels

8. Translation Lookaside Buffers (TLB)

– Why is this needed? Each memory reference requires 2 or 3 more
memory references. We would like to speed this up.

3



– a kind of associative memory (content-addressable memory)

– It is the NATURAL kind (e.g., our brains). We do not recall
information in our heads by specifying addresses...

– Explain ”index field”

– The index field in TLB is the Page Number!

– Associative memories are expensive but fast

– So TLB’s are small

– On a TLB miss, we do 3 things:

(a) We resort to the usual Page Table lookup

(b) We CHOOSE a TLB entry for replacement

(c) We put the new page into the TLB

4 Segmentation

• Motivation:

Different parts of a process memory has different properties

We would like to tag such ”segments” with different protection and paging
policies

• Example: Compiler process may have 5 ”segments”

1. Source text that is being compiled

2. Symbol table, being built

3. Table of constants

4. Parse tree, being built

5. Stack for procedure calls

PROPERTIES:

– The first 4 grows, but 5th may grow and shrink

• Example: (Tanenbaum, Sec.4.6.4) PDP-11 is a pioneer here, and is com-
mon in Unix

– Two segments, called Instruction or I-space and Data or D-space.

– I-space for (program) text is clearly executable and does not grow.

– D-space can grow and may be read-only or both read and write.

– Each entry in Process table will store pointers to the appropriate D-space
page table and I-space page table.

– This arrangement facilitates sharing (Tanenbaum, Sec.4.6.5). Thus, if
two processes share a given I-space, they just need to have to use same
I-space page table.

4



– Some issues arise in sharing of pages (we should have some way of
indicating if a page is shared, so that a shared page is not evicted when a
process using the page is evicted).

– Consider how we can exploit this in the ”fork” system call of Unix.
I-space can be shared between parent and child processes.

– D-space are not to be shared... but there is better way than just copying
data pages automatically.

– We can have a ”copy on write” rule – data pages can be shared UNTIL
one process (child or parent) tries to write.

– All the above are discussed under paging, but it is relevant to segmen-
tation (i.e., 2-segment system).

– Tanenbaum (Sec.4.6.6) also discuss the concept of a ”paging daemon”
to automatically keep pages up-to-date, etc.

• Concept/Implementation of segmentation

– Each segment has a max length

– Each segment address begins with 0, to its max length

– Addresses comprise (seg#, offset).

– WHEN combined with paging, address = (seg#, page#, offset)

– like paging, but pages sizes are fixed, not segment sizes

– Segment table

– Each segment has an entry (STE=Segment Table Entry)

– What is in STE?

Has a ”valid bit” (if segment is loaded)

Has a base and limit

Has a disk address

– If segment is accessed, we check if it is loaded

– If not loaded, the base, limit and disk address is restored from process
table

– We must solve the PLACEMENT and REPLACEMENT problems

– An address lookup requires 3 memory references (STE, PTE, actual
address). A TLB can help!

• Advantages:

– linking is simplified (if one segment is modified, the other segments are
unchanged)

– shared library is possible (e.g., GUI libraries)

– protection permission of segments can be customized (code segment is
execute only, text segment may be read only, etc)

5



• Example: Traditional Unix has 3 segments

– shared text (execute only)

– data segment (global and static vars)

– stack segment (automatic vars)

6


