
Lecture 13: File Systems (Mar 8, 10, 22, 2005)

Yap

March 24, 2005

1 ADMIN

• READING GUIDE FOR Chap.6 on File Systems. Read up to page 424
(Section 6.3.6).

2 Review

Question FOR NEXT CLASS:

• Q: Suppose you have a 40 GB disk, and your block size is 2KB. What is
the size of your FAT table if each block entry in the table takes 6 bytes?

A:

40 GB = 40x109. So the number of entries is 40x109/2000 = 20x106 i.e.,
20 million entries. So we need 120 Megabytes of FAT table.

Q: Suppose you use a bit map. What is the size of the bit map table?

A:

• Q: What is the relative advantage/disadvantage of FAT tables versus I-
Nodes?

A:

• Q: What are typical block sizes?

A: 1-2 KB.

3 Overview of File Systems

• Overall organization:

– rooted tree hierarchy (basically)

– leaves are ”files”

– internal nodes are ”directories” (or ”folders”)

1



– concepts: root, path

– relative or absolute path

– special paths: ”dot” and ”dotdot” and ”tilde”

– current directory (cwd)

• File Names

– Firstname.SecondName

– SecondName = ”extension” (e.g., .ps, .pdf, .txt)

– as convention (unix) or enforced (windows)

– special chars in file name

– length of file names

• Types of Files

– regular files (”actual files” and directory files)

– but Unix also has irregular files (”char special files” to represent serial
I/O devices, and ”block special files” to represent disks).

– regular non-directory files are either ASCII or binary.

• File Attributes

– access: sequential/random (today: mostly random)

– passwd

– permission (r, w, x)

– creator

– owner

– time of creation, last access, last change

– size

• Nondirectory File Operations

– create, delete, open, close, read, write

– rename, get/set attributes

– link/unlink

• Directory File Operations

– create, delete, opendir, closedir

– readdir, rename

2



4 Physical File Implementation

• storage in disk (most common case)

• simple solution: contiguous allocation

– useful in CDROM and read only media

• GENERAL SOLUTION: disk blocks

– What is ideal block size? Experimentally, 1-2 Kb.

• SOLUTION 1: linked list of blocks for each file

– disadvantage: slow sequential access

• SOLUTION 2: FAT (= linked list + table)

– store File Allocation Table in main memory

– Disadvantage: space.

– E.g., 20 GB disk, 1 Kb blocks implies 20 million entries in FAT. If each
entry takes 4 bytes, we need 80 MB for FAT

• SOLUTION 3: I-Nodes (index nodes)

– Each entry in directory stores a fixed number of I-nodes. If more are
needed, the last entry points to another fixed size list.

– Advantage: space for files depends only on the actual file sizes, not on
the entire physical disk size.

• Tracking Free Blocks:

–SOLUTION A: free list (can used empty blocks to do this!)

–SOLUTION B: bitmaps

• Issue: Trashing in Free Blocks

– SOLUTION: introduce some hysterisis

5 Implementing Directories

• Main function: mapping an ascii name (+path) to the blocks containing
the file

• SOLUTION 1 (Windows):

– Each file has an entry in the directory file, storing all the file attributes,
including the file name.

• SOLUTION 2 (Unix):

– Each file entry in directory is just the file name PLUS I-node.

– the first I-node contains all the file attributes

3



6 File Consistency

• Unix (fsck), Windows (scandisk)

• Consistency problem:

A block that has been modified but not yet written before the system
crashes.

Different problems arise depending on whether this block is

(1) an i-node, or (2) directory block, or (3) an free-list block, or (4) an
ordinary file block.

• Suppose we want to check the consistency of the current file system (say
after a system reboot).

– We must first ensure that our directory system is consistent. Next we
ensure that the block within the files are consistent.

– This gives rise to two kinds of consistency checks: block consistency and
file consistency

• File Consistency Check:

– This may also be called ”Directory Consistency Check”

– We maintain a counter on a ”per file” basis

ALGORITHM:

– Start at the Root Directory, to recursively inspect each directory.

– For each file in a directory, we increment a counter for that files usage.
Initially, that counter value is 0.

– RECALL: hard links cause this counter value to be greater than 1.

– SOFT links has no such effects.

– FINALLY, we verify that this count is consistent with the number of
link counts stored as a file attribute. If so, the system is CONSISTENT.

– IF NOT, we just reset the link count to the counter value.

– PROBLEM 1: If the counter value is LARGER than the link count in
I-node. What could happen if not fixed?

– PROBLEM 2: If the counter value is LESS than the link count in I-node.
What could happen if not fixed?

• Block Consistency Check:

ALGORITHM:

–Build up 2 tables for all blocks

–Table 1: each block has a counter, initially 0.

This counts the number of times each block appears in a file

–Table 2: each block has a counter, initially 0.

4



This counts the number of times each block appears in free list

–First, read all I-nodes of files in directories

–For each I-node, follow links to all the I-nodes in this file. This updates
Table 1.

–Then it goes into the free list, and locate all the blocks in this list. The
count in Table 2 is updates.

–If file system is consistent, each block has a TOTAL count of 1 in Tables
1 and 2.

• BLOCK CONSISTENCY PROBLEMS:

– Missing blocks: in neither table!

(SOLUTION: add to free list)

– Duplicate free blocks: twice in Table 2 (free list)!

(SOLUTION: rebuild free list)

– Duplicated in files: twice in Table 1 (file list)!

WHY IS THIS BAD? If we delete both files, the block will put in free list
twice, etc.

(SOLUTION: make a copy of block for each file)

– Free and used at the same time: used in both Tables!

SOLUTION: remove from free list

5


