
Lecture 13 Appendix: More PThreads (Mar 8,

2005) Yap

March 24, 2005

1 Review of POSIX Threads

• We review pthreads so that you can do homework 4.

• The original notes on pthreads are found in Lecture 7. BUT PLEASE
RELOAD THAT CHAPTER, AS WE HAVE REVISED/EXTENDED
THE PTHREAD MATERIAL.

• The 3 main classes of objects in pthreads are (1) Pthreads, (2) Mutexes,
(3) Conditional Variables. There are associated attribute objects for each.
Hence we have 6 main classes of objects overall.

• For each kind of object, you have operations to create and to destroy them.

The creation operation is sometimes called create and sometimes called
init.

Do not forget to destroy the objects before you exit the program because
they represent system resources which are tied up otherwise.

In the following, the create and destroy operations will be taken for
granted.

• Mutex variables are easiest to understand: they guard critical sections to
ensure mutual exclusion.

The two interesting actions on a mutex variable are lock and unlock.

Each mutex variable is associated with a queue. When a thread fails to
lock a mutex (because someone else is currently holding the lock), that
thread is put on the queue. When that lock holder unlocks (releases the
lock), one thread from the queue (if non-empty) will be woken up.

• Conditional Variables (CondVars) is the trickiest: it is always used in
conjunction with an associated mutex variable.

1

• The interesting operations on CondVars are wait, signal and broadcast.

Each CondVar is associated with a queue. When a thread waits on that
CondVar, it is put on the queue. When someone signals the CondVar, one
thread from the queue (if non-empty) will be woken up. When someone
broadcasts the CondVar, all thread from the queue will be woken up.

• Example of Use of Conditional Variables: two procedures called dec() and
inc():

pthread_mutex_t count_lock;

pthread_cond_t count_nonzero;

unsigned count;

dec()

{ pthread_mutex_lock(&count_lock);

while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lock);

count = count - 1;

pthread_mutex_unlock(&count_lock);

}

inc()

{ pthread_mutex_lock(&count_lock);

if (count == 0)

pthread_cond_signal(&count_nonzero);

count = count + 1;

pthread_mutex_unlock(&count_lock);

}

Source: David Marshall (www.cs.cf.ac.uk/Dave/C/node31.html)

• Discussion of above code:

Why the while loop?

Shouldn’t we increment the count variable before the if-statement, and
change the if-statement to test if count is 1?

• Sharing of Thread Code.

If more than one thread will run a piece of code, you may need to give
each thread its own stack to avoid them interfering with each other!

For details on how to do this, please read the (updated) Lecture 7.

2

• Some Suggestions from Chien-I, our grader:

A simple example:
http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTION002940000000000000000

Some of you might use Cygwin to simulate the UNIX system, however,
some feature of pthread is NOT availabe in Cygwin, here is a reference:

http://rustam.uwp.edu/support/faq.html

Here section 16 is totally about thread management.

Since pthread attr setstackaddr is NOT implemented in Cygwin, every
thread shared same stack and symbol table. Therefore, if you use ”i” as
a local variable, it might be changed by other threads.

To illustrate this, we list two programs below: th wrong.c and th array.c.

Try compiling and running these programs. The first program is wrong
and the second program fixes this by introducing an array of local vari-
ables.

/************************

/ th_wrong.c

/

/ There is only one i variable,

/ so when Thread 2 initialize i in (*)

/ i in Thread 1 also changed,

/ and will start from 0 again.

/ Note ii was also wrong in this

/ program.

/

/************************/

#include <pthread.h>

#include <stdio.h>

#include <sys/types.h>

void *loop(void *arg)

{

int i,ii;

ii=*(int *)arg; // ii: thread index, also changed by other threads!

for(i=0;i<10;i++) //////////////////////// (*)

printf("Thread %d : loop %d\n",ii,i);

printf("Thread %d terminated!\n", ii);

pthread_exit(NULL);

}

int main(void){

pthread_t a[10];

3

int i,ret;

for(i=0;i<10;i++){

ret=pthread_create(&(a[i]), NULL, loop, (void *)(&i));

printf("Create %d : %d\n",i ,ret);

// Sleep(1);

}

for(i=0;i<10;i++){

pthread_join(a[i],NULL);

}

return 0;

}

/**************************

/ th_array.c

/

/ In this program, the bug

/ was fixed by using i[10]

/ instead of i

/

/**************************/

#include <pthread.h>

#include <stdio.h>

#include <sys/types.h>

void *loop(void *arg)

{

int i[10];

for(i[*(int *)arg]=0;i[*(int *)arg]<10;i[*(int *)arg]++)

printf("Thread %d : loop %d\n",*(int *)arg, i[*(int *)arg]);

printf("Thread %d terminate!\n",*(int *)arg);

pthread_exit(NULL);

}

int main(void){

pthread_t a[10];

int i,ret,index[10];

for(i=0;i<10;i++){

index[i]=i;

ret=pthread_create(&(a[i]), NULL, loop, (void *)(&index[i]));

printf("Create %d : %d\n",i ,ret);

}

for(i=0;i<10;i++){

pthread_join(a[i],NULL);

}

4

return 0;

}

• PRAGMATICS OF THREAD PROGRAMMING:

1. It is suggested that #include <pthread.h> is the very first one in
your include files. This is to ensure that you use only ”thread safe”
code for other include files.

2. In Unix (solaris, linux but not cygwin), when you link your program,
be sure to include -lpthread to your gcc compiler.

3. When you have more than one thread running the same thread rou-
tine, remember that all automatic variables are NOT safe, unless you
have thread-specific stacks.

5

