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Abstract

A conservativamplementation of a predicate returns true only if thectpredicate is true.
That is, we accept a one sided error for the implementatiar. ggometric predicates, such as
orientation- or incircle-tests, this allows efficient flivaf point implementations of the predicates
with rare occurrences of the one sided error.

We discuss the use of such conservative implementationsoforex hull and triangulation
algorithms for point sets in the plane. The resulting praggahow a minor slowdown compared
to an implementation that completely ignores the finite isien issue. However, our programs
always produce output that satisfies basic desirable pgiepeiThe output can be easily checked
for correctness and — if necessary — it can be repaired witxaot implementation of the needed
predicates.

Although (or since?) conservative implementations of jmates cannot detect degeneracies,
the programs work for degenerate input. In fact, in our expents the advantage in running
time compared to exact implementations of predicates (bandloating point filters) was most
apparent for highly degenerate inputs.

1 Introduction

The field of Computational Geometry has produced a rich body of algorithms for geopretriems.

A number of fundamental techniques have been designed, and key problems and problesn classe
have emerged; see the textbooks [Meh84, PS85, Ede87, OR094, Mul94, Kle97, Ber*97, BY98] and
the handbooks [GO97, SU98]. To a large extent the theory has been developed with asymptotic
complexity analysis and under the assumption of the real RAM model, where computeitionsal
numbers can be performed in constant time. For most algorithms and problems dhjssisfied
assumption that can be perfectly simulated with finite precision numidettse input has limited
precisiort. However, when geometric algorithms are actually transformed into pmsjtapleasant
effects can occur. We might ignore the finite precision issue, i.e., aritbrapérations on floating

*Support from the ESPRIT IV LTR Project No. 21957 (CGAL) is acknowksdlg
IClearly, that is questionable, since the larger the input, the largenthders we need. This, however, is not what
we are concerned about here.



point numbers give only approximate results. Then we often experience that sopédstilcgorithms
become very sensitive to numerical problems, more than many brute for¢edset The lack of
accuracy is not our primary concern here. Rather, the numerical problems ntayydgsometric
consistency an algorithm may rely ©nAs a result the program may crash, may run into an infinite
loop, or — perhaps worst of all — may produce unpredictable erroneous output.

Hence, this is a crucial issue in almost every effort for implementing g&oeralgorithms, and for
libraries of geometric programs in particular. Examples are the geometrpfotue Library of Effi-
cient Data types and Algorithms LEBAMN95, Meh*97], the Computational Geometry Algorithms
Library CGAL* [Fab*98], the GcomLIB® project [Bak*97], or the rich collection of geometric pro-
grams in the Directory of Computational Geometry SoftWdfene97].

As mentioned before, the numerical problems can usually be circumvented byasiguhfinite
precision. Several successful techniques have recently been proposed irodeiep the slowdown
small — see [Bur*95, FW96, She97, Avn*97] —, but some penalty in running time has to &gtadc
This is particularly annoying, since a brute-force implementation may enconragag answers only
rarely — but it may!

Instead of using the more expensive exact implementation of the predicate throughalgbtitbm,
we suggest to start with a simple and fast implementation of the preditaitéstallowed to have
a one-sided error. On the one hand, this error occurs rarely as experience sbewsy.s[DP98]
for an analysis of random points. On the other hand, we show that there are algorithroartha
be implemented using this simple implementation such that the generated oiltguiasantees a
number of desirable properties. For example the correctness of the output can peleadied and
repaired with an exact implementation of the predicate, if this is nacgss

Predicates. We consider pointg in the plane given by their cartesian coordinates (p., p,). The
geometric predicates which we will need here areléixeographic orderfor pointsp andg

p<q = p;<q; or (p,=q, and p, <gq,),
and thesidednessfor orientation-)predicatefor pointsp, ¢, andr

Pe Py 1
pleftofgr <= |q¢ ¢, 1|>0.

Ty Ty 1

In geometric termsp is left of ¢r, iff ¢ andr are distinct points, ang lies left of the directed
line throughg andr that encounterg andr in this order. There are several ways to evaluate this
determinant. A possible implementation is

return (g.x-p.X)*(r.y-p.y) - (9q.y-p.y)*(r.x-p.x) > 0;

2Imagine an algorithm learns for variablesh andc thata < b, b < ¢, andc < a, which contradicts transitivity.
3http://www.mpi-sb.mpg.de/LEDA/leda.html

“http://www.cs.ruu.nl/CGAL/

Shttp://www.cs.jhu.edu/labs/cgc/

Shttp://www.geom.umn.edu/software/cglist/

"We present program examples in C++ syntax. Note the conventional condespees, e.g[i] andp; or p.x andp,.
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Clearly, rounding errors may lead to wrong results if we use floating poiritragtic to evaluate the
expression. From such an implementation, we should not and cannot expect even tgethasitric
consistency thai left of ¢r iff r left of pq iff ¢ left of rp. For example, about one to three inconsistent
triples occurred among th(éogoo) triples from 1000 random points {0, 1) x [0, 1) in an experiment
using IEEE single precision coordinates. However, no such inconsistenadieobaerved for IEEE
double precision (although they will happen).

An implementation of a predicate eonservativef it returns true only if the considered predicate
is true, and we will call such an implementatiorcanservative predicatdor short. We describe
possible implementations of left-of predicates, which are conservative gedain assumptions on
the input coordinates and the use of the IEEE 754 arithmetic standard [IEEE].

First, let us assume that the input coordinates lie in the raBgeB]| for some numbeB. Then —
according to Sterbenz’ Theorem [Ste74] (cf. [Hig96, Theorem 2.5]) — the differbrtween two
such numbers is evaluated exactly in IEEE floating point arithmetic. Nieat) expression of the
form

a*b - c*d

is positive (evaluated in floating point arithmetic using round-to-neardsj the underlying exact
valueab — cd is positive. Still, the rounded expression may evaluateliecause of rounding errors in
the multiplication. In any case, the ad hoc implementation as presented eboanservative under
the given assumption.

The typical approach for floating point filters is to derive a threshslach that if the absolute value of
the predicate expression is greater thame sign of the expression is known to be correct. Otherwise
an exact implementation (or refined filter with better threshold) is needlddtermine the sign. If we
compare the expression itself instead of its absolute value with the thresleliiin a conservative
predicate. We save the absolute value computation, which might involve a funatian a two-sided
test with an additional branching instruction, though it could be as simple asacss®jle bit. Also,

the conservative predicate does not retract to an exact implementatio, earnde superfluous in
an algorithm that is able to decide later that this decision is not needed Ahakample are convex
hulls, where there is no need for a degenerate point set to bother the algorithmIgahéhan will
detect anyway that this point set is inside the final convex hull.

The threshold can be computed at runtime, e.g. depending on the actual paramstfBei@5,
She97], or it can be based on a static analysis with a priori assumptions ondhegpar sizes [FW96].

If the input coordinates lie in the range B, +B] for some positive numbeB, a static threshold

t = 8(3u + 6u? + 4u® + u*)B? can be derived using standard error analysis (e.g. along the lines
of [She97, page 348]), whereis the unit roundoff of the number system. We have- 2753 for

IEEE double precision, and = 22! for IEEE single precision floating point numbers. Note that an
actual implementation will need a thresheld> ¢ that is representable in the floating point number
system. The error analysis that yields this threshold is generally appliedfle,the use of Sterbenz’
Theorem is limited to simple predicates.

By now the reader may wonder, what all the effort is for. There is always ay way for a con-
servative implementation: just return false. However, our point is titetonservative predicates as
suggested will rarely give the wrong answer. For example, in all our experifheatencountered not
a single instance of three random points wdthubleprecision coordinates i, 1) x [0, 1) where the

8This experimental evidence is substantiated by results in [DP98].



absolute value of the sidedness determinant was smaller than the thresholdlgven Such cases
had only been observed with input setsi6f random points “on” the unit circfe

Here an immediate objection may be: “Inputs are not random, they often coméemded) de-
generacies, where the sidedness determinant vanishes and lies betweeesth@dbr’ But note, a
conservative sidedness-predicate is never wrong on a degeneracy, althouglottveify it! In fact,
the benefit of using conservative predicates is most apparent for highly degener#teas already
indicated above.

In the remaining part we describe two known algorithms for convex hull computatom the lit-
erature. We briefly recapitulate their description, with careful abento details in order to make
their applicability for conservative predicates explicit. Then we repoxgerimental results of the
implementation of the algorithms.

Notation. Input for programs comes usually as sequences not as sets, which sometimas entail
the simplest degeneracy: repeated copies of the same point. We emphasizdittusatisand use

P,Q, ... for point sequences, arfd, (), . . . for the sets of points occurring in those sequences. If we
consider sets to begin with, we use calligraphic letferg, . . ..

2 Two convex hull algorithms

We describe two algorithms for the convex hull computation in the plane that aadleuior conserva-

tive sidedness predicatesuccessive local repa{SLR) — a variant of Graham’s scan [Gra72, For89],
andrandomized incremental constructiQRIC) with history graph [CS89, BT86]. Both algorithms
compute separately the lower and the upper chain of a polygon bounding the convex hull. The de-
scriptions are restricted to the lower hull.

Lower convex hull polygons. A sequenc&l = (qo,-..,qx1) Of k points islex-increasing if
gi-1 < g forall 1 <i < k. Q is alower convex hull (LCH-) polygoaf a point setP, if (i) Q C P,
(i) g0 = pmin, the lexicographically smallest point iR, andq, 1 = pmax the lexicographically
greatest point inP, and (iii) the polygon determined by traces the lower part of the convex hull
of P from pmin 10 pmaxe @ is calledan LCH-conserving polygoaf P, if (i) Q C P, (i) Q is lex-
increasing, and (iii) there is a subsequefgg, ¢;,, ..., ¢, ,), 70 < i1 < ... < i1, of @ that is an
LCH-polygon of P.

An LCH-polygon must contain all vertices of the lower convex hull/Rfbut it may also contain
other points from the boundary of the convex hull. An example of an LCH-conserving polyg@n of
is the lex-increasing sequence of all pointsin Note that lex-increasing does not allow repetitions
of points in the sequence.

Observation 1 LetP be a point set. Ip, p’, p" € P satisfy? p' < p < p" andp left of p'p”, thenp

appears in no LCH-polygon @?. E

SWe put “on” in quotation marks, since the generated points are not exactycircle due to rounding.
10we refer here to the lexicographic ordering< ¢ :<= p<gq or p =q.



Observation 2 If @ = (qo,...,qx_1) is an LCH-conserving polygon of a point séf and forno

i,1 <1< k—1,holdsg; left of¢; 1g;+1, then@ is an LCH-polygon. E

Successive local repair. Observations 1 and 2 suggest a simple scheme for computing an LCH-
polygon of a point sequende. We start with the lex-increasing sequer@ef the points inP, i.e.

we have to sorP and to remove repetitions. Whenever we find a consecutive {ipte ) in @ with

q left of pr, we removey from the sequence. Observation 1 guarantees that the sequence remains
LCH-conserving. As soon as no such triple exists, Observation 2 ensures thesulteng sequence

is an LCH-polygon ofP.

We call this schemsuccessive local repair (SLRfor an implementation, it remains to specify in
which order triples are visited. The reader is encouraged to recognize Gakeam or Divide-and-
Conquer as variants of this scheme depending on the order chosen. We suggest to progeed as i
Graham’s scan.

/I p[0..n-1] lex-increasing sequence of n > 0 points.

q[0] = p[0];
int k = 1;
for inti =0;i<n;i=1i+1){
while ( k > 1 && q[k-1].left_of(q[k-2], p[i]))
k = k - 1;
atk] = pfil;
k = k + 1;
}

/I q[0..k-1] is an LCH-polygon of p[0..n-1].

O(nlogn) time is needed to sort the points ihand to remove repeated points. A simple analysis
shows that the procedure from above is lineas it uses exactly. — k left-of tests which return true
and at most — 2 left-of tests which return false.

If we use a conservative implementation of the left-of predicate with ttie &heme, we still gain
the following useful properties for the output:

e Observationl guarantees that we obtain an LCH-conserving polygon of the input points.
e The result) = (qo, ..., ¢x_1) has all points ofP on or above it.

e The SLR-scheme can be applied@o= (qo,...,q 1) a second time with an exact left-of
predicate, which can check whether the sequence is already an LCH-polygénasfcan
perform further local repairs, otherwise.

Triangulation. SLR can also be used to compute a triangulation of a poirfPset triangulation
of P is a collection of closed triangles whose union covers the convex h@#larfd whose interiors
are pairwise disjoint. The vertices of the triangles are points fRgrand no other part of the triangles
contains any point fror.



Figure 1:Two triangulations obtained by the SLR algorithm. For thartgulation to the left a conservative
implementation of the sidedness predicate with threshalsl wsed. For the triangulation to the right, the same
predicate was switched from true to false in 30% of the cdlladom. It represents the same triangulation as
the one to the left minus the missing triangles at the boyndad with a single diagonal swapped in the upper
right part.

If we generate a triangle with verticés;, gx 1, gx_2) whenevery, , is left of ¢, _op;, the algorithm
from above produces such a triangulation. Even if we run the algorithm with a c@tiserleft-

of predicate we keep all properties of a triangulation, except that the union afaaifkes does
not necessarily cover the convex hull of the input points. In particular, we caramgga that all
triangles have disjoint interiors, they are non degenerate, and their eftice, 1, qx ») are in

counterclockwise order.

Randomized incremental construction. TheO(nlogn) time bound of SLR is worst-case optimal,
but there are better solutions available if the number of vertices of the cdniteds small. As an
example we consider a randomized incremental construction. This algorithm psaass input
point after the other in random order and maintains the LCH-polygon for all points sefan s&
central step in the algorithm is the decision, whether a new point is above tletcu@H-polygon
and can be discarded, or whether the point needs to be inserted in the LCH-polygon anghiére.
Thislocation problenwill be solved with the help of a so calléustory graph introduced as influence
graph in [BT86]. This data-structure records all changes made to the LCH-polydbe aourse of
the algorithm.

Since we are heading for an algorithm that has an expected running time linkarsize of the input
in many cases, we cannot afford to sort the input sequence or to remove poiitiaepeln principal,
a random permutation of the input points is needed as a preprocessing step to guheexpetted
running time as explained below.

We are given a sequenée= (py,...,p, 1), n > 1, of points in the plane withn, the lexicograph-
ically smallest anghax the lexicographically largest point in the sequence. For the description, we
defineP_, = {pmin,pmax} andP; =P,_, U {pi}, 0<1<n.



If Pmin = Pmax We return(pmin) as LCH-polygon. Otherwise, we start Wi€h 1 = (pmin, Pmax), the
LCH-polygon of P_;, and successively compuég, the LCH-polygon ofP;. We assume for now
that we are given the history graph, which decides foritheinput pointp = p; whether it is above
Q,_1 and can be ignored, or it returns the lexicographic positigniaf(); ;, i.e. an index such that
¢ < p<gj. If p=gq;orp= g, the pointp can be ignored an@; = Q,_,. Otherwise, we
insertp betweeny; andg;,. The resultis an LCH-preserving polygon®Bf, on which we apply the
successive local repair scheme to obtain finally the LCH-polyganHowever, we can restrict the
successive local repair to triples that hawvas first or as last element.

For the history graph, we maintain the current LCH-polyggnas a doubly-linked list of its edges.
That is, for every paifq;, ¢;+1) of adjacent points irf);, we have an edge with a referencez,
to the pointy;, a referenceny , to the pointy;,,, a reference,n ¢ to the previous edge for the pair
(¢;-1,¢;), and a referenceny . to the next edge for the pafy;1, ¢j12). For the first and last edge
the respective dangling references are set to NULL.

The algorithm will keep all edges, even if they disappear from the current polggom boolean
flag einner IS Used to mark inner edges inherited from previous stages. The flag is faldefedges

of the current LCH-polygon. Whenever an edgaisappears from the current polygon,itsange is
covered by one or both of the new edges of the polygon. We will rezpisgandey « to reference
these new edges. More precisely, deande” be the new edges such thét, . = €”, and letp be
their common endpoinp = e’nxtp = egrv_p. If eprvp < P < enxep We Setepn e = € andepye = €”. If
enxtp < D We Setepy e = €’ and consideen, e as undefined, and for the remaining case ef ey

we setepnve = €’ andene = €. See Figure 2 for an illustration of this data structure after the
insertion of several points. Using this history graph, we can now easilglsdar the location of
the new point in the current LCH-polygon, or detect on the way thatannot appear in the new
LCH-polygon; see the program fragment below. Whenever we make the l&f$of ey penxp, the
invariantepy p < p < enxp holds. Thus, if the test returns true, Observation 1 allows us to remove
p and proceed to the next point. Note that in fact the stronger invagjang < p < enxp holds,
except where we locate a poimt= pmax. This is the reason for the asymmetric treatment ofethe
reference described above: We ignore theg. reference during the SLR steps to the leftpptout

we set it toe” during the SLR steps to the right pf Locatingp = pmax in the example in Figure 2
illustrates the violation of the stronger invariant.

/l e is a pointer to the initial edge connecting p_min and p_ma X.
I/l p is the point to be inserted next.
while (p.left_of(*(e->prv_p), *(e->nxt_p))) {
if (e->inner) {
if (p < *(e->prv_e->nxt_p))
e = e->prv_e;
else
e = e->nxt_e;
} else {
if (p != *(e->prv_p) && p !'= *(e->nxt_p))
/I insert point p between e->prv_p and e->nxt_p
break;
}
}
/[ Either p has been removed, since it cannot appear on the
I/l LCH-polygon, or p has been inserted in the LCH-polygon.
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max

~= NULL

min

prv_p inner nxt_p

prv_e nxt_e

Figure 2:A possible configuration of the RIC data structure after tiseition of 5 points.

The following program fragment illustrates the SLR steps performed on theitkf ofp. On the
right side, the additional assignmeny; . = ¢” has to be considered. At the end of this fragment, all
inner edges are updated and properly linked. We omit the description of the update obtheviw
edges¢’ ande”.

/[ insert point p between e->prv_p and e->nxt_p.
/l el and e2 are the two new edges on the LCH polygon.
| = e->prv_e; [/ SLR on left side
while ( | '= NULL && I|->prv_p->left_of( p, *(I->nxt_p))) {
I->inner = true;
tmp = |
| = I->prv_e;
tmp->prv_e = el;
}
/I similarly, perform SLR on the right side, incl. tmp->nxt_ e = ez;
e->inner = true;
e->prv_e = el;
e->nxt_ e = ez
/I the inner edges are updated.

If the input points occur in random order, the techniques of standard probabilistic arf@l$%8s,
Mul94, Sei93] give good expected time bounds, i.e., the average running time for all pgesitviu-
tations of the input sequence. We defifieas the expected number of points on the boundary of the
convex hull of a random subsequence of lengtfihe expected running time, which is determined by
the expected number of sidedness tests performed by the algorithm, is boun@éd By _., 1. /r?).

This amounts to the worst case boufign logn), if f, = O(r), but it becomes linear as soon as
fr = O(r'=¢), e > 0. For example, if the points are taken from a uniform distribution in a convex
set, f, = O(3/r). Or, if the points are taken from a uniform distribution in a convex polygonal, area
fr = O(logr) [RS63].

If we use a conservative implementation of the left-of predicate with kperithm above, we still
gain the following useful properties for the output:
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Figure 3:Two lower and upper convex hull polygons produced by the eamded incremental algorithm with
conservative predicates. In both cases the used consenmaplementation of the predicate with threshold
was randomly distorted from true to false. To the left in 2Q®othe right in 70% of the calls. Note that the
result is still correct on the left side.

e Observatiorl guarantees that we obtain an LCH-conserving polygon of the input points, since
the invariantepy , < p < enxp Needed for this observation remains true.

e The SLR-scheme can be applied to the output with an exact left-of predicate, whichecin
whether the sequence is already an LCH-polygo® pbr can perform further local repairs,
otherwise.

Note that we have lost the property of the SLR scheme, that all poirftsapé on or above the output
polygon. In fact, the polygon of the lower hull may even interfere with the polygon of the unytler
see Figure 3.

3 Experimental results

We have made several experiments with our implementations to compare ¢reneffiof the different
approaches. Here we varied:

e The algorithm An implementation of successive local repair (SLR) following Gralsasgan
and randomized incremental construction with history graph (RIC).

e The sidedness predicate usebh ad-hoc implementation of the sidedness predicate as indi-
cated in the introduction (B-HOC), a conservative implementation of the predicate with static
threshold (©Ns), an adaptive floating point filter implementation by Shewchuk [She97E)S
and a static floating point filter by Fortune and Van Wyk [FW96Y (¥).

e The point distribution:random sets from a uniform distribution in a disk){on a circle ),
and random permutations of the complete x /n-grid ().



SLR, us per point RIC, us per point

after sorting after random shuffle

predicate] 10?2 | 10* | 10° predicate| 10?2 | 10* | 10°

e ADHOC | 0.86]0.82]0.72 e ApDHOC|1.31|1.15|1.16
CoNs | 1.15| 1.07| 0.83 CoNs | 1.24|1.31|1.24

SHE | 1.64| 1.00| 1.05 SHE | 1.81| 1.71| 1.45

Fvw | 1.52| 1.37| 0.97 FvW | 2.83| 1.54| 1.41

o ADHOC | 0.62|0.70| 0.70 o ADHOC | 3.02| 4.80| 20.2
CoNs | 0.81| 0.85| 0.77 CONs | 2.79| 4.59| 19.2

SHE | 1.18| 1.10| 0.94 SHE | 3.25| 5.68| 19.7

FvW | 1.05| 0.98| 2.28 FVYW | 3.73| 4.94| 23.6
AbHocC | 0.78] 0.73| 0.71 @ ADHOC | 1.19] 1.20| 0.91
CoNs | 0.93| 0.86| 0.80 CoNs | 1.30| 1.24| 0.98

SHE | 1.02| 0.97| 0.83 SHE | 2.88| 1.20| 1.25

FVW | 4.67| 4.22| 3.72 FvW | 5.52| 1.83| 1.20

Figure 4: Results of the run time experiments for input seti®®f10* and10°® points inus per point.

Figure 4 shows a number of run times that do not include the time needed for sortingipa&dl for
generating a random permutation for RIC. The time needed for these preparak®isthy no means
negligible. In fact, it usually dominates the algorithm: Using the quicksort dlgarin the Standard
Template Library of C++, lex-sorting of0° points took about 3.5 seconds. Again using STL, a
random shuffle took about 2.5 seconds, which we could lower to one second with the random number
generator made inline instead of a function call. Note that the sort is needdx foprirectness of the

SLR, but the random shuffle could be easily omitted if the input points are assurbedtdficiently
random. Anyway, these efforts are not influenced by the type of implementation oidgwnsess
predicate.

The numbers in the table are averaged over six experiments with diffeegtihg seeds for the ran-

dom number generator; each experiment itself consisting of multiple runs. Avkoage these ex-
periments, the average number of points that were on the convex hull was 15.8, 74.8 and 337.6 for
102, 10, and10° points taken from the uniform distribution in a disk. The exact number of points on
the convex hull for the points from the grid was 36, 396 and 3996.

Theimplementation. The test programs were written in C++ and compiled using Gnt version
2.8.1 with optimization levelO3. It was verified in the assembler output that the function inlining
took place as intended, i.e., no function call is involved in the evaluation of dukgates. In fact, the
whole SLR algorithm is a single function. Ignoring inlining would cost between 20% to 40eeper
performance, if we would call a function to evaluate the predicate. Howkrdloating point filters,
the exact evaluation should be separated as a function, while the filter remlaes The timings
were taken on a SUN UltraSPARC-II processor running on 248 MHz. As usuahgirasults should
be taken with care, even though the results were obtained using a suffitaegdysample of test runs
and were reliable for small as well as for large numbers of input points, but camydcensiderably
for 1000 up to 10000 points, which we credit to interferences with the processorsiaeh&lowever,
the observed differences were also consistent for these samples.
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SLR RIC

102 10% 108 10? 10% 10°

e total | 380 | 39918| 3999657 e total | 539| 53145| 5292522
exact 4 4 4 exact| 40 68 134

o total | 296 | 29996| 2999975 o total | 926 | 182184 27356644
exact 4 28| 962603 exact| 23 76| 2578720
total | 360 | 39600| 3996000 i total | 556 | 44778 4442407
exact| 179| 19799| 1997999 exact| 156 3131 48294

Figure 5: Results of the experiment counting predicate evaluations and exact fgedighations
for input sets ofi 02, 10* and10° points.

The SLR algorithm was used in a modified form with a sentinel, i.e., the first ggiduplicated,
which protects the inner loop from underflow instead of the explicittest 1. Similarly the RIC
algorithm was changed to work with two sentinels, bath andpmax Were duplicated, such that the
successive local repair steps are again protected against the boundary conditicmsakes the
edge updates easier as well. The sentinels introduce artificial degenerémiemg the predicate to
return false — which could influence timings for small input sets with exadipages. To quantify
this effect, we have counted thatal number of evaluated predicates, and how often a filter based on
our threshold would call thexactpredicate, for one experiment with a fixed random number seed,
see Figure 5. This table also explains the increase in running time observed fpoints on the
circle, since compared tm* points many more exact evaluations were needed.

The predicates. We used for our conservative implementation a threshold cf (3 - 275 +
271038 B2, which is representable as an IEEE double precision numktigiisfa power of two. The
FvW predicates were generated with the predicate compiler LN by Fortune andyaiF\W96].
The static threshold was set#o= 2-*8 B2, which is 4/3 times larger than the threshold used by us.
The C++ output of the predicate compiler was slightly adapted to be comparable toedicgbes,
e.g. by inlining and by removing a superfluous conditional. The dynamic fiker I8/ Shewchuk
was availabl&' in C and was adapted to C++ including inlining.

We also ran the algorithms with LEDfat _point s and their exact and filtered predicates [MN95,
Meh*97], which resulted in a slowdown by a factor between 4 for SLR and 40 f@r ¢dmpared
to ADHOC. Of course, LEDAs implementation is a much more general tool than the otiheneth
implementations of predicates! In fact, in some settings, it was conveettth the FvW predicate
(e.g.10° points, SLR,0).

Testing. Since we observe that the conservative predicate mostly behaves on our inplitejust
their exact counterparts, testing with such input tells us little about theglenade in this paper.
So we have artificially distorted the implementation of the predicatdellmsvs: After the original
conservative predicate decides to rettrre, we throw a biased coin that tells us to rettafseafter
all. The results in Figures 1 and 3 have been produced in this way. It isstiteydo observe that
SLR is much more sensitive to such a random distortion than RIC.

Uhttp:/iwww.cs.cmu.edu/ quake/robust.html
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Conclusions. Conservative implementations of predicates can speed up algorithms ifnsdedd
of exact predicates. We see that compared to Shewchuk’s predicate, whitihewasst competitive
in the experiments, a conservative implementation gains about 20%, sometgaesompared to
the static filter of Fortune and Van Wyk, a conservative implementation doesuffet §om the
degeneracies in the point sets chosen from the grid, which makes a differenfeetoiraf 4 for SLR.
Interestingly, Shewchuk’s predicate does not suffer either, which can be undenstb@dcloser look
at the implementation of the dynamic bounds: They can decide those degeneracies w#blvirig
to the costly part of the predicate. Shewchuk itself used a tilted and — deeihoing — perturbed
grid, which forced the predicates to perform the exact evaluation occasi¢g8hak97]. However, we
had not prepared such a test set.

4 Discussion

We have presented algorithms for convex hull and triangulation in the plane thatable, even
if they are used with a conservative implementation of the sidedness pgeedithe output of the
algorithms guarantees certain desirable properties with respect to the ifipistis in contrast to
so-called parsimonious algorithms, see [For89, Knu92]. These properties atiompée checking
and repair procedure with an exact predicate. Note that the checking does not bave tomplete
verification process, since we can rely on certain properties, for exewphever release vertices of
the convex hull. The benefit of conservative predicates goes beyond a gain in reffioeacy. We
experienced that they forced us to simplify programs by handling degeneraciesitimpistead of
their explicit treatment.

Whether or not similar results can be obtained for problems, such as Delawaragulation or convex
hull in higher dimensions, is not clear at this point and depends on the goal. Here, wablete
run a whole algorithm with the conservative left-of test. For more involwedlems, it may still be
beneficial to employ the right interleaved mixture of conservative and g@xadicates. If so, the gain
in efficiency will probably become more apparent in higher dimensions.
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