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Abstract

A conservativeimplementation of a predicate returns true only if theexactpredicate is true.
That is, we accept a one sided error for the implementation. For geometric predicates, such as
orientation- or incircle-tests, this allows efficient floating point implementations of the predicates
with rare occurrences of the one sided error.

We discuss the use of such conservative implementations forconvex hull and triangulation
algorithms for point sets in the plane. The resulting programs show a minor slowdown compared
to an implementation that completely ignores the finite precision issue. However, our programs
always produce output that satisfies basic desirable properties. The output can be easily checked
for correctness and – if necessary – it can be repaired with anexact implementation of the needed
predicates.

Although (or since?) conservative implementations of predicates cannot detect degeneracies,
the programs work for degenerate input. In fact, in our experiments the advantage in running
time compared to exact implementations of predicates (based on floating point filters) was most
apparent for highly degenerate inputs.

1 Introduction

The field of Computational Geometry has produced a rich body of algorithms for geometricproblems.
A number of fundamental techniques have been designed, and key problems and problem classes
have emerged; see the textbooks [Meh84, PS85, Ede87, ORo94, Mul94, Kle97, Ber*97, BY98] and
the handbooks [GO97, SU98]. To a large extent the theory has been developed with asymptotic
complexity analysis and under the assumption of the real RAM model, where computationswith real
numbers can be performed in constant time. For most algorithms and problems this isa justified
assumption that can be perfectly simulated with finite precision numbers, if the input has limited
precision1. However, when geometric algorithms are actually transformed into programs unpleasant
effects can occur. We might ignore the finite precision issue, i.e., arithmetic operations on floating�Support from the ESPRIT IV LTR Project No. 21957 (CGAL) is acknowledged.

1Clearly, that is questionable, since the larger the input, the larger thenumbers we need. This, however, is not what
we are concerned about here.
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point numbers give only approximate results. Then we often experience that sophisticated algorithms
become very sensitive to numerical problems, more than many brute force methods. The lack of
accuracy is not our primary concern here. Rather, the numerical problems may destroy geometric
consistency an algorithm may rely on2. As a result the program may crash, may run into an infinite
loop, or – perhaps worst of all – may produce unpredictable erroneous output.

Hence, this is a crucial issue in almost every effort for implementing geometric algorithms, and for
libraries of geometric programs in particular. Examples are the geometry part of the Library of Effi-
cient Data types and Algorithms LEDA3 [MN95, Meh*97], the Computational Geometry Algorithms
Library CGAL4 [Fab*98], the GEOML IB5 project [Bak*97], or the rich collection of geometric pro-
grams in the Directory of Computational Geometry Software6 [Ame97].

As mentioned before, the numerical problems can usually be circumvented by simulating infinite
precision. Several successful techniques have recently been proposed in order to keep the slowdown
small – see [Bur*95, FW96, She97, Avn*97] – , but some penalty in running time has to be accepted.
This is particularly annoying, since a brute-force implementation may encounterwrong answers only
rarely – but it may!

Instead of using the more expensive exact implementation of the predicate throughout thealgorithm,
we suggest to start with a simple and fast implementation of the predicate that is allowed to have
a one-sided error. On the one hand, this error occurs rarely as experience shows, see e.g. [DP98]
for an analysis of random points. On the other hand, we show that there are algorithms that can
be implemented using this simple implementation such that the generated output still guarantees a
number of desirable properties. For example the correctness of the output can be easily checked and
repaired with an exact implementation of the predicate, if this is necessary.

Predicates. We consider pointsp in the plane given by their cartesian coordinatesp = (px; py). The
geometric predicates which we will need here are thelexicographic orderfor pointsp andqp < q :() px < qx or (px = qx and py < qy) ;
and thesidedness-(or orientation-)predicatefor pointsp, q, andrp left of qr :() ������� px py 1qx qy 1rx ry 1 ������� > 0 :
In geometric terms,p is left of qr, iff q and r are distinct points, andp lies left of the directed
line throughq andr that encountersq andr in this order. There are several ways to evaluate this
determinant. A possible implementation is7

return (q.x-p.x)*(r.y-p.y) - (q.y-p.y)*(r.x-p.x) > 0;

2Imagine an algorithm learns for variablesa; b andc thata < b, b < c, andc < a, which contradicts transitivity.
3http://www.mpi-sb.mpg.de/LEDA/leda.html
4http://www.cs.ruu.nl/CGAL/
5http://www.cs.jhu.edu/labs/cgc/
6http://www.geom.umn.edu/software/cglist/
7We present program examples in C++ syntax. Note the conventional correspondences, e.g.p[i] andpi or p:x andpx.
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Clearly, rounding errors may lead to wrong results if we use floating point arithmetic to evaluate the
expression. From such an implementation, we should not and cannot expect even the basicgeometric
consistency thatp left of qr iff r left of pq iff q left of rp. For example, about one to three inconsistent
triples occurred among the

�10003 �
triples from 1000 random points in[0; 1)� [0; 1) in an experiment

using IEEE single precision coordinates. However, no such inconsistencies were observed for IEEE
double precision (although they will happen).

An implementation of a predicate isconservativeif it returns true only if the considered predicate
is true, and we will call such an implementation aconservative predicate, for short. We describe
possible implementations of left-of predicates, which are conservative undercertain assumptions on
the input coordinates and the use of the IEEE 754 arithmetic standard [IEEE].

First, let us assume that the input coordinates lie in the range[B; 2B] for some numberB. Then –
according to Sterbenz’ Theorem [Ste74] (cf. [Hig96, Theorem 2.5]) – the difference between two
such numbers is evaluated exactly in IEEE floating point arithmetic. Next, if an expression of the
form

a*b - c*d

is positive (evaluated in floating point arithmetic using round-to-nearest), then the underlying exact
valueab�cd is positive. Still, the rounded expression may evaluate to0 because of rounding errors in
the multiplication. In any case, the ad hoc implementation as presented above is conservative under
the given assumption.

The typical approach for floating point filters is to derive a thresholdt such that if the absolute value of
the predicate expression is greater thant the sign of the expression is known to be correct. Otherwise
an exact implementation (or refined filter with better threshold) is needed to determine the sign. If we
compare the expression itself instead of its absolute value with the threshold,we gain a conservative
predicate. We save the absolute value computation, which might involve a functioncall or a two-sided
test with an additional branching instruction, though it could be as simple as to seta single bit. Also,
the conservative predicate does not retract to an exact implementation, which can be superfluous in
an algorithm that is able to decide later that this decision is not needed at all. An example are convex
hulls, where there is no need for a degenerate point set to bother the algorithm if the algorithm will
detect anyway that this point set is inside the final convex hull.

The threshold can be computed at runtime, e.g. depending on the actual parameter sizes [Bur*95,
She97], or it can be based on a static analysis with a priori assumptions on the parameter sizes [FW96].
If the input coordinates lie in the range[�B;+B] for some positive numberB, a static thresholdt = 8(3u + 6u2 + 4u3 + u4)B2 can be derived using standard error analysis (e.g. along the lines
of [She97, page 348]), whereu is the unit roundoff of the number system. We haveu = 2�53 for
IEEE double precision, andu = 2�24 for IEEE single precision floating point numbers. Note that an
actual implementation will need a thresholdt0 � t that is representable in the floating point number
system. The error analysis that yields this threshold is generally applicable,while the use of Sterbenz’
Theorem is limited to simple predicates.

By now the reader may wonder, what all the effort is for. There is always an easy way for a con-
servative implementation: just return false. However, our point is that the conservative predicates as
suggested will rarely give the wrong answer. For example, in all our experiments8 we encountered not
a single instance of three random points withdoubleprecision coordinates in[0; 1)� [0; 1) where the

8This experimental evidence is substantiated by results in [DP98].
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absolute value of the sidedness determinant was smaller than the threshold givenabove. Such cases
had only been observed with input sets of106 random points “on” the unit circle9.

Here an immediate objection may be: “Inputs are not random, they often contain (intended) de-
generacies, where the sidedness determinant vanishes and lies between the thresholds.” But note, a
conservative sidedness-predicate is never wrong on a degeneracy, although it cannot verify it! In fact,
the benefit of using conservative predicates is most apparent for highly degenerate input, as already
indicated above.

In the remaining part we describe two known algorithms for convex hull computationfrom the lit-
erature. We briefly recapitulate their description, with careful attention to details in order to make
their applicability for conservative predicates explicit. Then we report onexperimental results of the
implementation of the algorithms.

Notation. Input for programs comes usually as sequences not as sets, which sometimes entails
the simplest degeneracy: repeated copies of the same point. We emphasize this distinction and useP;Q; : : : for point sequences, and~P; ~Q; : : : for the sets of points occurring in those sequences. If we
consider sets to begin with, we use calligraphic lettersP;Q; : : :.
2 Two convex hull algorithms

We describe two algorithms for the convex hull computation in the plane that are suitable for conserva-
tive sidedness predicates:successive local repair(SLR) – a variant of Graham’s scan [Gra72, For89],
andrandomized incremental construction(RIC) with history graph [CS89, BT86]. Both algorithms
compute separately the lower and the upper chain of a polygon bounding the convex hull. The de-
scriptions are restricted to the lower hull.

Lower convex hull polygons. A sequenceQ = (q0; : : : ; qk�1) of k points is lex-increasing, ifqi�1 < qi for all 1 � i < k. Q is a lower convex hull (LCH-) polygonof a point setP, if (i) ~Q � P,
(ii) q0 = pmin, the lexicographically smallest point inP, andqk�1 = pmax, the lexicographically
greatest point inP, and (iii) the polygon determined byQ traces the lower part of the convex hull
of P from pmin to pmax. Q is calledan LCH-conserving polygonof P, if (i) ~Q � P, (ii) Q is lex-
increasing, and (iii) there is a subsequence(qi0 ; qi1 ; : : : ; qil�1), i0 < i1 < : : : < il�1, of Q that is an
LCH-polygon ofP.

An LCH-polygon must contain all vertices of the lower convex hull ofP, but it may also contain
other points from the boundary of the convex hull. An example of an LCH-conserving polygon ofP
is the lex-increasing sequence of all points inP. Note that lex-increasing does not allow repetitions
of points in the sequence.

Observation 1 LetP be a point set. Ifp; p0; p00 2 P satisfy10 p0 � p � p00 andp left of p0p00, thenp
appears in no LCH-polygon ofP.

9We put “on” in quotation marks, since the generated points are not exactlyon a circle due to rounding.
10We refer here to the lexicographic ordering:p � q :() p < q or p = q.
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Observation 2 If Q = (q0; : : : ; qk�1) is an LCH-conserving polygon of a point setP, and for noi; 1 � i < k � 1, holdsqi left of qi�1qi+1, thenQ is an LCH-polygon.

Successive local repair. Observations 1 and 2 suggest a simple scheme for computing an LCH-
polygon of a point sequenceP . We start with the lex-increasing sequenceQ of the points in~P , i.e.
we have to sortP and to remove repetitions. Whenever we find a consecutive triple(p; q; r) in Q withq left of pr, we removeq from the sequence. Observation 1 guarantees that the sequence remains
LCH-conserving. As soon as no such triple exists, Observation 2 ensures that theresulting sequence
is an LCH-polygon of~P .

We call this schemesuccessive local repair (SLR). For an implementation, it remains to specify in
which order triples are visited. The reader is encouraged to recognize Graham’s scan or Divide-and-
Conquer as variants of this scheme depending on the order chosen. We suggest to proceed as in
Graham’s scan.

// p[0..n-1] lex-increasing sequence of n > 0 points.
q[0] = p[0];
int k = 1;
for (int i = 0; i < n; i = i + 1) {

while ( k > 1 && q[k-1].left_of(q[k-2], p[i]))
k = k - 1;

q[k] = p[i];
k = k + 1;

}
// q[0..k-1] is an LCH-polygon of p[0..n-1].O(n logn) time is needed to sort the points inP and to remove repeated points. A simple analysis

shows that the procedure from above is linear inn. It uses exactlyn�k left-of tests which return true
and at mostn� 2 left-of tests which return false.

If we use a conservative implementation of the left-of predicate with the SLR scheme, we still gain
the following useful properties for the output:� Observation1 guarantees that we obtain an LCH-conserving polygon of the input points.� The resultQ = (q0; : : : ; qk�1) has all points of~P on or above it.� The SLR-scheme can be applied toQ = (q0; : : : ; qk�1) a second time with an exact left-of

predicate, which can check whether the sequence is already an LCH-polygon of~P , or can
perform further local repairs, otherwise.

Triangulation. SLR can also be used to compute a triangulation of a point setP. A triangulation
of P is a collection of closed triangles whose union covers the convex hull ofP and whose interiors
are pairwise disjoint. The vertices of the triangles are points fromP, and no other part of the triangles
contains any point fromP.
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Figure 1: Two triangulations obtained by the SLR algorithm. For the triangulation to the left a conservative
implementation of the sidedness predicate with threshold was used. For the triangulation to the right, the same
predicate was switched from true to false in 30% of the calls at random. It represents the same triangulation as
the one to the left minus the missing triangles at the boundary and with a single diagonal swapped in the upper
right part.

If we generate a triangle with vertices(pi; qk�1; qk�2) wheneverqk�1 is left of qk�2pi, the algorithm
from above produces such a triangulation. Even if we run the algorithm with a conservative left-
of predicate we keep all properties of a triangulation, except that the union of all triangles does
not necessarily cover the convex hull of the input points. In particular, we can guarantee that all
triangles have disjoint interiors, they are non degenerate, and their vertices (pi; qk�1; qk�2) are in
counterclockwise order.

Randomized incremental construction. TheO(n logn) time bound of SLR is worst-case optimal,
but there are better solutions available if the number of vertices of the convexhull is small. As an
example we consider a randomized incremental construction. This algorithm processes one input
point after the other in random order and maintains the LCH-polygon for all points seen sofar. A
central step in the algorithm is the decision, whether a new point is above the current LCH-polygon
and can be discarded, or whether the point needs to be inserted in the LCH-polygon and, if so, where.
This location problemwill be solved with the help of a so calledhistory graph, introduced as influence
graph in [BT86]. This data-structure records all changes made to the LCH-polygon inthe course of
the algorithm.

Since we are heading for an algorithm that has an expected running time linear in the size of the input
in many cases, we cannot afford to sort the input sequence or to remove point repetitions. In principal,
a random permutation of the input points is needed as a preprocessing step to guarantee the expected
running time as explained below.

We are given a sequenceP = (p0; : : : ; pn�1), n � 1, of points in the plane withpmin the lexicograph-
ically smallest andpmax the lexicographically largest point in the sequence. For the description, we
defineP�1 = fpmin; pmaxg andPi = Pi�1 [ fpig, 0 � i < n.
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If pmin = pmax we return(pmin) as LCH-polygon. Otherwise, we start withQ�1 = (pmin; pmax), the
LCH-polygon ofP�1, and successively computeQi, the LCH-polygon ofPi. We assume for now
that we are given the history graph, which decides for thei-th input pointp = pi whether it is aboveQi�1 and can be ignored, or it returns the lexicographic position ofp in Qi�1, i.e. an indexj such thatqj � p � qj+1. If p = qj or p = qj+1, the pointp can be ignored andQi = Qi�1. Otherwise, we
insertp betweenqj andqj+1. The result is an LCH-preserving polygon ofPi, on which we apply the
successive local repair scheme to obtain finally the LCH-polygonQi. However, we can restrict the
successive local repair to triples that havep as first or as last element.

For the history graph, we maintain the current LCH-polygonQi as a doubly-linked list of its edges.
That is, for every pair(qj; qj+1) of adjacent points inQi, we have an edgee with a referenceeprv p

to the pointqj, a referenceenxt p to the pointqj+1, a referenceeprv e to the previous edge for the pair(qj�1; qj), and a referenceenxt e to the next edge for the pair(qj+1; qj+2). For the first and last edge
the respective dangling references are set to NULL.

The algorithm will keep all edges, even if they disappear from the current polygonQi. A boolean
flag einner is used to mark inner edges inherited from previous stages. The flag is false forthe edges
of the current LCH-polygon. Whenever an edgee disappears from the current polygon, itsx-range is
covered by one or both of the new edges of the polygon. We will re-useeprv e andenxt e to reference
these new edges. More precisely, lete0 ande00 be the new edges such thate0nxt e = e00, and letp be
their common endpoint:p = e0nxt p = e00prv p. If eprv p � p < enxt p we seteprv e = e0 andenxt e = e00. Ifenxt p � p we seteprv e = e0 and considerenxt e as undefined, and for the remaining case ofp < eprv p

we seteprv e = e00 andenxt e = e00. See Figure 2 for an illustration of this data structure after the
insertion of several points. Using this history graph, we can now easily search for the location of
the new pointp in the current LCH-polygon, or detect on the way thatp cannot appear in the new
LCH-polygon; see the program fragment below. Whenever we make the testp left of eprv penxt p, the
invarianteprv p � p � enxt p holds. Thus, if the test returns true, Observation 1 allows us to removep and proceed to the next point. Note that in fact the stronger invarianteprv p � p < enxt p holds,
except where we locate a pointp = pmax. This is the reason for the asymmetric treatment of theenxt e

reference described above: We ignore theenxt e reference during the SLR steps to the left ofp, but
we set it toe00 during the SLR steps to the right ofp. Locatingp = pmax in the example in Figure 2
illustrates the violation of the stronger invariant.

// e is a pointer to the initial edge connecting p_min and p_ma x.
// p is the point to be inserted next.
while (p.left_of(*(e->prv_p), *(e->nxt_p))) {

if (e->inner) {
if (p < *(e->prv_e->nxt_p))

e = e->prv_e;
else

e = e->nxt_e;
} else {

if (p != *(e->prv_p) && p != *(e->nxt_p))
// insert point p between e->prv_p and e->nxt_p

break;
}

}
// Either p has been removed, since it cannot appear on the
// LCH-polygon, or p has been inserted in the LCH-polygon.
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Figure 2:A possible configuration of the RIC data structure after the insertion of 5 points.

The following program fragment illustrates the SLR steps performed on the left side ofp. On the
right side, the additional assignmentenxt e = e00 has to be considered. At the end of this fragment, all
inner edges are updated and properly linked. We omit the description of the update of the two new
edges,e0 ande00.

// insert point p between e->prv_p and e->nxt_p.
// e1 and e2 are the two new edges on the LCH polygon.
l = e->prv_e; // SLR on left side
while ( l != NULL && l->prv_p->left_of( p, *(l->nxt_p))) {

l->inner = true;
tmp = l;
l = l->prv_e;
tmp->prv_e = e1;

}
// similarly, perform SLR on the right side, incl. tmp->nxt_ e = e2;
e->inner = true;
e->prv_e = e1;
e->nxt_e = e2;
// the inner edges are updated.

If the input points occur in random order, the techniques of standard probabilistic analysis[CS89,
Mul94, Sei93] give good expected time bounds, i.e., the average running time for all possible permu-
tations of the input sequence. We definefr as the expected number of points on the boundary of the
convex hull of a random subsequence of lengthr. The expected running time, which is determined by
the expected number of sidedness tests performed by the algorithm, is bounded byO(nPnr=2 fr=r2).
This amounts to the worst case boundO(n logn), if fr = �(r), but it becomes linear as soon asfr = O(r1�"), " > 0. For example, if the points are taken from a uniform distribution in a convex
set,fr = O( 3pr). Or, if the points are taken from a uniform distribution in a convex polygonal area,fr = O(log r) [RS63].

If we use a conservative implementation of the left-of predicate with the algorithm above, we still
gain the following useful properties for the output:
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Figure 3:Two lower and upper convex hull polygons produced by the randomized incremental algorithm with
conservative predicates. In both cases the used conservative implementation of the predicate with threshold
was randomly distorted from true to false. To the left in 20%,to the right in 70% of the calls. Note that the
result is still correct on the left side.� Observation1 guarantees that we obtain an LCH-conserving polygon of the input points, since

the invarianteprv p � p � enxt p needed for this observation remains true.� The SLR-scheme can be applied to the output with an exact left-of predicate, which cancheck
whether the sequence is already an LCH-polygon of~P , or can perform further local repairs,
otherwise.

Note that we have lost the property of the SLR scheme, that all points of~P are on or above the output
polygon. In fact, the polygon of the lower hull may even interfere with the polygon of the upperhull,
see Figure 3.

3 Experimental results

We have made several experiments with our implementations to compare the efficiency of the different
approaches. Here we varied:� The algorithm: An implementation of successive local repair (SLR) following Graham’s scan

and randomized incremental construction with history graph (RIC).� The sidedness predicate used: An ad-hoc implementation of the sidedness predicate as indi-
cated in the introduction (AD-HOC), a conservative implementation of the predicate with static
threshold (CONS), an adaptive floating point filter implementation by Shewchuk [She97] (SHE)
and a static floating point filter by Fortune and Van Wyk [FW96] (FVW).� The point distribution:random sets from a uniform distribution in a disk (�), on a circle (�),
and random permutations of the complete

pn�pn-grid ( ).
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SLR,�s per point
after sorting

predicate 102 104 106� ADHOC 0.86 0.82 0.72
CONS 1.15 1.07 0.83

SHE 1.64 1.00 1.05
FVW 1.52 1.37 0.97� ADHOC 0.62 0.70 0.70
CONS 0.81 0.85 0.77

SHE 1.18 1.10 0.94
FVW 1.05 0.98 2.28

ADHOC 0.78 0.73 0.71
CONS 0.93 0.86 0.80

SHE 1.02 0.97 0.83
FVW 4.67 4.22 3.72

RIC, �s per point
after random shuffle

predicate 102 104 106� ADHOC 1.31 1.15 1.16
CONS 1.24 1.31 1.24

SHE 1.81 1.71 1.45
FVW 2.83 1.54 1.41� ADHOC 3.02 4.80 20.2
CONS 2.79 4.59 19.2

SHE 3.25 5.68 19.7
FVW 3.73 4.94 23.6

ADHOC 1.19 1.20 0.91
CONS 1.30 1.24 0.98

SHE 2.88 1.20 1.25
FVW 5.52 1.83 1.20

Figure 4: Results of the run time experiments for input sets of102, 104 and106 points in�s per point.

Figure 4 shows a number of run times that do not include the time needed for sorting for SLR, and for
generating a random permutation for RIC. The time needed for these preparatory tasks is by no means
negligible. In fact, it usually dominates the algorithm: Using the quicksort algorithm in the Standard
Template Library of C++, lex-sorting of106 points took about 3.5 seconds. Again using STL, a
random shuffle took about 2.5 seconds, which we could lower to one second with the random number
generator made inline instead of a function call. Note that the sort is needed for the correctness of the
SLR, but the random shuffle could be easily omitted if the input points are assumed tobe sufficiently
random. Anyway, these efforts are not influenced by the type of implementation of the sidedness
predicate.

The numbers in the table are averaged over six experiments with different starting seeds for the ran-
dom number generator; each experiment itself consisting of multiple runs. Averaged over these ex-
periments, the average number of points that were on the convex hull was 15.8, 74.8 and 337.6 for102, 104, and106 points taken from the uniform distribution in a disk. The exact number of points on
the convex hull for the points from the grid was 36, 396 and 3996.

The implementation. The test programs were written in C++ and compiled using Gnug++ version
2.8.1 with optimization level-O3 . It was verified in the assembler output that the function inlining
took place as intended, i.e., no function call is involved in the evaluation of the predicates. In fact, the
whole SLR algorithm is a single function. Ignoring inlining would cost between 20% to 40% percent
performance, if we would call a function to evaluate the predicate. However, for floating point filters,
the exact evaluation should be separated as a function, while the filter remainsinline. The timings
were taken on a SUN UltraSPARC-II processor running on 248 MHz. As usual, timing results should
be taken with care, even though the results were obtained using a sufficientlylarge sample of test runs
and were reliable for small as well as for large numbers of input points, but could vary considerably
for 1000 up to 10000 points, which we credit to interferences with the processor cachesize. However,
the observed differences were also consistent for these samples.
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SLR102 104 106� total 380 39918 3999657
exact 4 4 4� total 296 29996 2999975
exact 4 28 962603
total 360 39600 3996000
exact 179 19799 1997999

RIC102 104 106� total 539 53145 5292522
exact 40 68 134� total 926 182184 27356644
exact 23 76 2578720
total 556 44778 4442407
exact 156 3131 48294

Figure 5: Results of the experiment counting predicate evaluations and exact predicate evaluations
for input sets of102, 104 and106 points.

The SLR algorithm was used in a modified form with a sentinel, i.e., the first pointq0 duplicated,
which protects the inner loop from underflow instead of the explicit testk > 1. Similarly the RIC
algorithm was changed to work with two sentinels, bothpmin andpmax were duplicated, such that the
successive local repair steps are again protected against the boundary conditions. This makes the
edge updates easier as well. The sentinels introduce artificial degeneracies– forcing the predicate to
return false – which could influence timings for small input sets with exact predicates. To quantify
this effect, we have counted thetotal number of evaluated predicates, and how often a filter based on
our threshold would call theexactpredicate, for one experiment with a fixed random number seed,
see Figure 5. This table also explains the increase in running time observed for106 points on the
circle, since compared to104 points many more exact evaluations were needed.

The predicates. We used for our conservative implementation a threshold oft0 = (3 � 2�53 +2�103)8B2, which is representable as an IEEE double precision number ifB is a power of two. The
FVW predicates were generated with the predicate compiler LN by Fortune and VanWyk [FW96].
The static threshold was set tot0 = 2�48B2, which is 4/3 times larger than the threshold used by us.
The C++ output of the predicate compiler was slightly adapted to be comparable to our predicates,
e.g. by inlining and by removing a superfluous conditional. The dynamic filter SHE by Shewchuk
was available11 in C and was adapted to C++ including inlining.

We also ran the algorithms with LEDArat point s and their exact and filtered predicates [MN95,
Meh*97], which resulted in a slowdown by a factor between 4 for SLR and 40 for RIC compared
to ADHOC. Of course, LEDA’s implementation is a much more general tool than the other tailored
implementations of predicates! In fact, in some settings, it was competitive with the FVW predicate
(e.g.106 points, SLR,�).

Testing. Since we observe that the conservative predicate mostly behaves on our inputs justlike
their exact counterparts, testing with such input tells us little about the claims made in this paper.
So we have artificially distorted the implementation of the predicates asfollows: After the original
conservative predicate decides to returntrue, we throw a biased coin that tells us to returnfalseafter
all. The results in Figures 1 and 3 have been produced in this way. It is interesting to observe that
SLR is much more sensitive to such a random distortion than RIC.

11http://www.cs.cmu.edu/˜quake/robust.html
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Conclusions. Conservative implementations of predicates can speed up algorithms if used instead
of exact predicates. We see that compared to Shewchuk’s predicate, which wasthe most competitive
in the experiments, a conservative implementation gains about 20%, sometimes less. Compared to
the static filter of Fortune and Van Wyk, a conservative implementation does not suffer from the
degeneracies in the point sets chosen from the grid, which makes a difference of afactor of 4 for SLR.
Interestingly, Shewchuk’s predicate does not suffer either, which can be understoodwith a closer look
at the implementation of the dynamic bounds: They can decide those degeneracies without resolving
to the costly part of the predicate. Shewchuk itself used a tilted and – due to rounding – perturbed
grid, which forced the predicates to perform the exact evaluation occasionally [She97]. However, we
had not prepared such a test set.

4 Discussion

We have presented algorithms for convex hull and triangulation in the plane that are stable, even
if they are used with a conservative implementation of the sidedness predicate. The output of the
algorithms guarantees certain desirable properties with respect to the input. This is in contrast to
so-called parsimonious algorithms, see [For89, Knu92]. These properties allow asimple checking
and repair procedure with an exact predicate. Note that the checking does not have tobe a complete
verification process, since we can rely on certain properties, for example we never release vertices of
the convex hull. The benefit of conservative predicates goes beyond a gain in run timeefficiency. We
experienced that they forced us to simplify programs by handling degeneracies implicitly instead of
their explicit treatment.

Whether or not similar results can be obtained for problems, such as Delaunay triangulation or convex
hull in higher dimensions, is not clear at this point and depends on the goal. Here, we wereable to
run a whole algorithm with the conservative left-of test. For more involvedproblems, it may still be
beneficial to employ the right interleaved mixture of conservative and exactpredicates. If so, the gain
in efficiency will probably become more apparent in higher dimensions.
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