
Honors Basic Algorithms;V22.0310;Fall 2000;Oct 23, 2000 Page 1

MIDTERM (with solutions)

Please answer all 6 questions, worth 140 points in all. Read carefully. Keep your
scratch work neat — they may come in useful. This is a closed book exam, but
you may refer to a prepared 8”X11” 2-sided sheet of notes. Go to it!

Problem 1 TRUE or FALSE [5 points each]
Minus 3 points for wrong answers. Brief justification is needed for full credit.
(a) Let T be an array that represents a min-heap (i.e., the minimum item is at the root of the
heap). If we reverse the elements of the array, we obtain a max-heap.
ANSWER: False. Suppose T = [1, 2, 4, 3], which represents a min-heap. But [3, 4, 2, 1] is
not a max-heap.
(b) A binary tree with n nodes has n− 1 edges.
ANSWER: True: each node, except the root, has an edge to its parent, and this accounts
for all the edges.
(c) The sum S(n) =

∑n
i=1(i/ lg i) is O(lg(n!)).

ANSWER: False: S(n) = Θ(n2/ lg n) since it is a polynomial sum. But lg(n!) = Θ(n lg n).

Problem 2 SHORT QUESTIONS [10 points each]
(a) What is a primitive 16th root of unity modulo M = 264 + 1?
ANSWER: 28 is a primitive 16th root of unity mod 264 + 1. In general, 22L/K is a primitive
Kth root of unity mod 2L + 1.
(b) Give the domain transformation that transforms T (n) = T (

√
n) + n to standard form.

Also, state the standard form (but don’t solve it).
ANSWER: Change the n-domain to N -domain where N = lg lg n. If t(N) = T (n) then we
have t(N) = t(N − 1) + 22N

.
(c) Apply the Master Theorem to solve the following recurrence: T (n) = 6T (n/3) + n2. You
must justify the relevant case of the Master Theorem used.
ANSWER: If the recurrence is T (n) = f(n) + a · T (n/b) then case (+1) of the Master
theorem is where the function f(n) satisfies the regularity condition af(n/b) ≤ c · f(n) for
some constant c < 1. In our case, the regularity conditionis satisfied with the constant c = 2/3:
6(n/3)2 = (2/3) · n2 = c · f(n).
(d) In Skip Lists, we construct a hierarchy of lists L0 ⊇ L1 ⊇ L2 ⊇, . . . ,⊇ Lm = ∅ by a
randomized process so that m is expected to be O(lg n). Why don’t simply pick every other
element in the list Li to put into Li+1?
ANSWER: This deterministic property cannot be maintained when arbitrary elements are
inserted/deleted dynamically.
(e) Suppose we relax the definition of a ”complete binary tree” as follows: if level i is not full
and it has k nodes, then level i+1 has at most k/4 nodes. Give an upper bound on the height
of such a tree if it has n nodes.
ANSWER: There are at most lg(n) levels that are full. There are at most log4(n) levels
that are not full. Hence height is at most lg(n) + log4(n) = O(log n). CAN YOU GIVE A
SHARPER BOUND?

Problem 3 HEAPS [20 points]
Here is an array T = [6, 4, 7, 9, 8, 10, 2, 5, 1, 3] with 10 keys.
(a) Draw it as a complete tree. This is not yet a min-heap.
(b) Construct a min-heap from this array using the bottom-up method. Show the intermediate



Honors Basic Algorithms;V22.0310;Fall 2000;Oct 23, 2000 Page 2

heaps (drawn as complete binary trees) after each stage of the construction. A “stage” is when
we heapify all subtrees at a given level.
(c) Show the result after we remove the minimum item.
ANSWER: (a) Omitted, but the root is 6. (b) After stage 1, the array is [6, 4, 7, 1, 3, 10, 2, 5, 9, 8].
Note: although we only show an array here, you are supposed to draw this array as a binary
tree. After stage 2, the array is [6, 1, 2, 4, 3, 10, 7, 5, 9, 8]. Finally, the array is [1, 3, 2, 4, 6, 10, 7, 5, 9, 8].
(c) After removing the min, we get [2, 3, 7, 4, 6, 10, 8, 5, 9].

Problem 4 SUMMATION TECHNIQUE [15 points]
Show that Hn →∞ as n→∞. HINT: For any integer k ≥ 1, if n = 2k then Hn ≥ k/2. Break
up the terms of Hn into k groups.
ANSWER: Assume n = 2k and break up the terms of Hn into k groups G0, G1, . . . , Gk−1,
where the i-th group has 2i consecutive terms. Thus G0 = 1 and G1 = (1/2) + (1/3) and
G2 = (1/4) + (1/5) + (1/6) + (1/7). But each term in Gi is at least 2−i−1 and there are 2i

terms. Hence the sum of the terms in Gi is at least 1/2. Hence Hn ≥ k/2.

Problem 5 INDUCTION PROOF [5+15 points]
(a) Let the inorder and preorder traversal of a binary tree T with 10 nodes be (a, b, c, d, e, f, g, h, i, j)
and (f, d, b, a, c, e, h, g, j, i), respectively. Draw the tree T .
ANSWER: To avoid drawing trees, I will give a linear representation of trees using paren-
theses: write “r(L,R)” for the binary tree with root r and whose left and right subtrees are
linearly represented by L and R, respectively. If r has no children, we just write “r”, and if r
has only one child, we may write “r(L, )” or “r(, R)”. Returning to our question, the tree T has
the form f(· · · , · · ·) (i.e., f is the root). But what are the left and right subtrees? Expanding
again, we see T = f(d(· · · , · · ·), h(· · · , · · ·)). Eventually, we get T = f(d(b(a, c), e), h(g, j(i, ))).
(b) Assume that T is a binary tree with n distinct nodes. Show by induction on n that, given
the inorder In(T ) and preorder Pre(T ) listing of the nodes of T , we can reconstruct the tree T .
HINT: if r is the root of T and the left and right subtrees of T are TL and TR (respectively),
then In(T ) = (In(TL), r, In(TR)) and Pre(T ) = (r,Pre(TL),Pre(TR)).
ANSWER: Note that the issue here is how to deduce Pre(TL) and Pre(TR) from Pre(T ), and
similarly for In(T ). In other words, even though we know that Pre(T ) = (r,Pre(TL),Pre(TR)),
we do not know where Pre(TL) ends in the string Pre(T )! All that we need is the length of
Pre(TL), and this we can obtain from In(TL).

Here then is the proof: The result is trivial for n = 0 and n = 1. Assume n > 1. Let the left
and right subtree of T be TL and TR. We know the root r of T by looking at Pre(T ). Hence
In(T ) = In(TL)rIn(TR). This gives us In(TL) and In(TR). Hence, we know know the number
of nodes in TL and TR. It follows that we can deduce In(TL) and In(TR) from In(T ). Now, by
induction, we can construct TL and TR from their inorder and preorder lists. Hence T can be
reconstructed.

Problem 6 RECURRENCES [20 points]
Solve the following recurrence by using domain and range transformations: T (n) =

√
nT (

√
n)+

n. HINT: this is similar to problem 2(b).
ANSWER: By the domain transformation, N = lg lg n and t(N) = T (n), we get t(N) =
22N−1

t(N − 1)+22N
. By the range transformation, s(N) = t(N)/22N−1, we get s(N) = s(N −

1)+ 2. Thus s(N) = 2N . Thus t(N) = 2N · 22N−1 = N · 22N
. Finally, T (n) = t(N) = n lg lg n.

NOTES: Note that this is somewhat unlike the Master recurrence where T (n) = bT (n/b) + n



Honors Basic Algorithms;V22.0310;Fall 2000;Oct 23, 2000 Page 3

ought to give the solution Θ(n log n). The reason is that “b” in our problem is not a constant,
but depends on n. What about the recurrence T (n) =

√
nT (

√
n) + f(n) where f(n) = n lg n?

or, f(n) = n lg n lg n?


