MIDTERM (with solutions)

Please answer all 6 questions, worth 140 points in all. Read carefully. Keep your scratch work neat — they may come in useful. This is a closed book exam, but you may refer to a prepared 8"X11" 2-sided sheet of notes. Go to it!

Problem 1 TRUE or FALSE [5 points each]

Minus 3 points for wrong answers. Brief justification is needed for full credit.

(a) Let T be an array that represents a min-heap (i.e., the minimum item is at the root of the heap). If we reverse the elements of the array, we obtain a max-heap.

ANSWER: False. Suppose T = [1, 2, 4, 3], which represents a min-heap. But [3, 4, 2, 1] is not a max-heap.

(b) A binary tree with n nodes has n-1 edges.

ANSWER: True: each node, except the root, has an edge to its parent, and this accounts for all the edges.

(c) The sum $S(n) = \sum_{i=1}^{n} (i/\lg i)$ is $O(\lg(n!))$.

ANSWER: False: $S(n) = \Theta(n^2/\lg n)$ since it is a polynomial sum. But $\lg(n!) = \Theta(n \lg n)$.

Problem 2 SHORT QUESTIONS [10 points each]

(a) What is a primitive 16th root of unity modulo $M = 2^{64} + 1$?

ANSWER: 2^8 is a primitive 16th root of unity mod $2^{64} + 1$. In general, $2^{2L/K}$ is a primitive Kth root of unity mod $2^L + 1$.

(b) Give the domain transformation that transforms $T(n) = T(\sqrt{n}) + n$ to standard form. Also, state the standard form (but don't solve it).

ANSWER: Change the *n*-domain to *N*-domain where $N = \lg \lg n$. If t(N) = T(n) then we have $t(N) = t(N-1) + 2^{2^N}$.

(c) Apply the Master Theorem to solve the following recurrence: $T(n) = 6T(n/3) + n^2$. You must justify the relevant case of the Master Theorem used.

ANSWER: If the recurrence is $T(n) = f(n) + a \cdot T(n/b)$ then case (+1) of the Master theorem is where the function f(n) satisfies the regularity condition $af(n/b) \leq c \cdot f(n)$ for some constant c < 1. In our case, the regularity condition is satisfied with the constant c = 2/3: $6(n/3)^2 = (2/3) \cdot n^2 = c \cdot f(n)$.

(d) In Skip Lists, we construct a hierarchy of lists $L_0 \supseteq L_1 \supseteq L_2 \supseteq, \ldots, \supseteq L_m = \emptyset$ by a randomized process so that m is expected to be $O(\lg n)$. Why don't simply pick every other element in the list L_i to put into L_{i+1} ?

ANSWER: This deterministic property cannot be maintained when arbitrary elements are inserted/deleted dynamically.

(e) Suppose we relax the definition of a "complete binary tree" as follows: if level i is not full and it has k nodes, then level i + 1 has at most k/4 nodes. Give an upper bound on the height of such a tree if it has n nodes.

ANSWER: There are at most $\lg(n)$ levels that are full. There are at most $\log_4(n)$ levels that are not full. Hence height is at most $\lg(n) + \log_4(n) = O(\log n)$. CAN YOU GIVE A SHARPER BOUND?

Problem 3 HEAPS [20 points]

Here is an array T = [6, 4, 7, 9, 8, 10, 2, 5, 1, 3] with 10 keys.

(a) Draw it as a complete tree. This is not yet a min-heap.

(b) Construct a min-heap from this array using the bottom-up method. Show the intermediate

heaps (drawn as complete binary trees) after each stage of the construction. A "stage" is when we heapify all subtrees at a given level.

(c) Show the result after we remove the minimum item.

ANSWER: (a) Omitted, but the root is 6. (b) After stage 1, the array is [6, 4, 7, 1, 3, 10, 2, 5, 9, 8]. Note: although we only show an array here, you are supposed to draw this array as a binary tree. After stage 2, the array is [6, 1, 2, 4, 3, 10, 7, 5, 9, 8]. Finally, the array is [1, 3, 2, 4, 6, 10, 7, 5, 9, 8]. (c) After removing the min, we get [2, 3, 7, 4, 6, 10, 8, 5, 9].

Problem 4 SUMMATION TECHNIQUE [15 points]

Show that $H_n \to \infty$ as $n \to \infty$. HINT: For any integer $k \ge 1$, if $n = 2^k$ then $H_n \ge k/2$. Break up the terms of H_n into k groups.

ANSWER: Assume $n = 2^k$ and break up the terms of H_n into k groups $G_0, G_1, \ldots, G_{k-1}$, where the *i*-th group has 2^i consecutive terms. Thus $G_0 = 1$ and $G_1 = (1/2) + (1/3)$ and $G_2 = (1/4) + (1/5) + (1/6) + (1/7)$. But each term in G_i is at least 2^{-i-1} and there are 2^i terms. Hence the sum of the terms in G_i is at least 1/2. Hence $H_n \ge k/2$.

Problem 5 INDUCTION PROOF [5+15 points]

(a) Let the inorder and preorder traversal of a binary tree T with 10 nodes be (a, b, c, d, e, f, g, h, i, j) and (f, d, b, a, c, e, h, g, j, i), respectively. Draw the tree T.

ANSWER: To avoid drawing trees, I will give a linear representation of trees using parentheses: write "r(L, R)" for the binary tree with root r and whose left and right subtrees are linearly represented by L and R, respectively. If r has no children, we just write "r", and if r has only one child, we may write "r(L,)" or "r(, R)". Returning to our question, the tree T has the form $f(\dots, \dots)$ (i.e., f is the root). But what are the left and right subtrees? Expanding again, we see $T = f(d(\dots, \dots), h(\dots, \dots))$. Eventually, we get T = f(d(b(a, c), e), h(g, j(i,))). (b) Assume that T is a binary tree with n distinct nodes. Show by induction on n that, given

the inorder $\operatorname{In}(T)$ and preorder $\operatorname{Pre}(T)$ listing of the nodes of T, we can reconstruct the tree T. HINT: if r is the root of T and the left and right subtrees of T are T_L and T_R (respectively), then $\operatorname{In}(T) = (\operatorname{In}(T_L), r, \operatorname{In}(T_R))$ and $\operatorname{Pre}(T) = (r, \operatorname{Pre}(T_L), \operatorname{Pre}(T_R))$.

ANSWER: Note that the issue here is how to deduce $\operatorname{Pre}(T_L)$ and $\operatorname{Pre}(T_R)$ from $\operatorname{Pre}(T)$, and similarly for $\operatorname{In}(T)$. In other words, even though we know that $\operatorname{Pre}(T) = (r, \operatorname{Pre}(T_L), \operatorname{Pre}(T_R))$, we do not know where $\operatorname{Pre}(T_L)$ ends in the string $\operatorname{Pre}(T)$! All that we need is the length of $\operatorname{Pre}(T_L)$, and this we can obtain from $\operatorname{In}(T_L)$.

Here then is the proof: The result is trivial for n = 0 and n = 1. Assume n > 1. Let the left and right subtree of T be T_L and T_R . We know the root r of T by looking at Pre(T). Hence $In(T) = In(T_L)rIn(T_R)$. This gives us $In(T_L)$ and $In(T_R)$. Hence, we know know the number of nodes in T_L and T_R . It follows that we can deduce $In(T_L)$ and $In(T_R)$ from In(T). Now, by induction, we can construct T_L and T_R from their inorder and preorder lists. Hence T can be reconstructed.

Problem 6 RECURRENCES [20 points]

Solve the following recurrence by using domain and range transformations: $T(n) = \sqrt{n}T(\sqrt{n}) + n$. HINT: this is similar to problem 2(b).

ANSWER: By the domain transformation, $N = \lg \lg n$ and t(N) = T(n), we get $t(N) = 2^{2^{N-1}}t(N-1) + 2^{2^N}$. By the range transformation, $s(N) = t(N)/2^{2^N-1}$, we get s(N) = s(N-1) + 2. Thus s(N) = 2N. Thus $t(N) = 2N \cdot 2^{2^N-1} = N \cdot 2^{2^N}$. Finally, $T(n) = t(N) = n \lg \lg n$. NOTES: Note that this is somewhat unlike the Master recurrence where T(n) = bT(n/b) + n

ought to give the solution $\Theta(n \log n)$. The reason is that "b" in our problem is not a constant, but depends on n. What about the recurrence $T(n) = \sqrt{n}T(\sqrt{n}) + f(n)$ where $f(n) = n \lg n$? or, $f(n) = n \lg n \lg n$?