More EBM Applications:
Trainable dissimilarity Metrics,
Segmentation,
Sequence Labeling

Yann LeCun (Courant Institute, NYU)
Sumit Chopra, Raia Hadsell, Feng Ning (NYU)
Leon Bottou (NEC), Yoshua Bengio (Montreal), Patrick Haffner (AT&T)

http://yann.lecun.com
http://www.cs.nyu.edu/~yann
Learning an Invariant Dissimilarity Metric with EBMs

[Chopra, Hadsell, LeCun CVPR 2005]

Training a **parameterized, invariant dissimilarity metric** may be a solution to the **many-category problem**.

Find a mapping \(G_w(X) \) such that the Euclidean distance \(||G_w(X_1) - G_w(X_2)|| \) reflects the “semantic” distance between \(X_1 \) and \(X_2 \).

Once trained, a trainable dissimilarity metric can be used to classify **new categories using a very small number of training samples** (used as prototypes).

This is an example where probabilistic models are too constraining, because we would have to limit ourselves to models that can be normalized over the space of input pairs.

With EBMs, we can put what we want in the box (e.g. A convolutional net).

Siamese Architecture

Application: face verification/recognition
Learning an Invariant Dissimilarity Metric with EBMs

Siamese models: distance between the outputs of two identical copies of a model.

\[E(W,X_1,X_2) = \| G_w(X_1) - G_w(X_2) \| \]

If \(X_1 \) and \(X_2 \) are from the **same category**, train the two copies of the model to produce **similar outputs**

If \(X_1 \) and \(X_2 \) are from **different categories**, train the two copies of the model to produce **different outputs**

Loss function: square-exponential loss:

\[
L(W, Y, X_1, X_2) = (1 - Y) \cdot \frac{2}{R} \left(\| G_w(X_1) - G_w(X_2) \| \right)^2 + Y \cdot 2Re^{-\frac{K}{R} \| G_w(X_1) - G_w(X_2) \|}
\]
Face Verification datasets: AT&T/ORL

- The AT&T/ORL dataset
- Total subjects: **40**. Images per subject: **10**. Total images: **400**.
- Images had a moderate degree of variation in pose, lighting, expression and head position.
- Images from **35** subjects were used for training. Images from **5** remaining subjects for testing.
- Training set was taken from: **3500** genuine and **119000** impostor pairs.
- Test set was taken from: **500** genuine and **2000** impostor pairs.
- http://www.uk.research.att.com/facedatabase.html
Face Verification datasets: AR/Purdue dataset

- The AR/Purdue dataset
- Total subjects: **136**. Images per subject: **26**. Total images: **3536**.
- Each subject has 2 sets of 13 images taken 14 days apart.
- Images had very high degree of variation in pose, lighting, expression and position. Within each set of 13, there are 4 images with expression variation, 3 with lighting variation, 3 with dark sun glasses and lighting variation, and 3 with face obscuring scarfs and lighting variation.
- Images from **96** subjects were used for training. The remaining **40** subjects were used for testing.
- **Training set drawn from**: 64896 genuine and 6165120 impostor pairs.
- **Test set drawn from**: 27040 genuine and 1054560 impostor pairs.
Face Verification dataset: AR/Purdue
Dataset for Verification

- **AT&T dataset**
 - Number of subjects: 5
 - Images/subject: 10
 - Images/Model: 5
 - Total test size: 5000
 - Number of Genuine: 500
 - Number of Impostors: 4500

- **Purdue/AR dataset**
 - Number of subjects: 40
 - Images/subject: 26
 - Images/Model: 13
 - Total test size: 5000
 - Number of Genuine: 500
 - Number of Impostors: 4500

Verification Results

- **The AT&T dataset**
 - False Accept: 10.00%
 - False Reject: 0.00%
 - False Accept: 7.50%
 - False Reject: 1.00%
 - False Accept: 5.00%
 - False Reject: 1.00%

- **The AR/Purdue dataset**
 - False Accept: 10.00%
 - False Reject: 11.00%
 - False Accept: 7.50%
 - False Reject: 14.60%
 - False Accept: 5.00%
 - False Reject: 19.00%
Internal state for genuine and impostor pairs
Classification Examples

Example: Correctly classified genuine pairs

![Images of correctly classified genuine pairs with energies 0.3159, 0.0043, and 0.0046.]

Example: Correctly classified impostor pairs

![Images of correctly classified impostor pairs with energies 20.1259, 32.7897, and 5.7186.]

Example: Mis-classified pairs

![Images of mis-classified pairs with energies 10.3209 and 2.8243.]

Yann LeCun
C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock-Out Experiments

Automatically determining if a roundworm embryo is developing normally after a gene has been knocked out.

Time-lapse movie
Architecture

- Region Classification with a convolutional network
- Local Consistency with a Markov Field of non-linear factors
- Embryo classification with elastic model matching

Region Labeling

Convolutional Network

Local Consistency Satisfaction

Markov Field on non-liner factors

Classification

Elastic Model Matching
Region Labeling with a Convolutional Net

- Supervised training from hand-labeled images
- 5 categories:
 - nucleus, nuclear membrane, cytoplasm, cell wall, external medium
Learn local consistency constraints with an Energy-Based Model so as to clean up images produced by the segmentor.
C. Elegans Embryo Phenotyping

Analyzing results for Gene Knock-Out Experiments

Original Images

Segmentation #1

Segmentation #2

Non-Linear CRF Cleanup

(1) (2) (3) (4) (5)
C. elegans Embryo Phenotyping

Analyzing results for Gene Knock-Out Experiments
Many applications manipulate variable-length sequences, rather than fixed-size vectors or images.

- Speech Recognition, Handwriting Recognition, Natural Language Processing (parsing, tagging....), Biological Sequence Analysis......

What architectures can manipulate sequences?

Alternative interpretations of sequences are best represented by directed graphs with values attached to the edges

- Each alternative segmentation and interpretation of a spoken sentence or a written word can be represented by a path in a lattice.

How do we build multi-layer modular systems that take graphs as inputs and produce graphs on output?
End-to-End Training of a graph manipulating machine.

- Example: a handwriting recognition system.
- Each intermediate representation is a valued graph.
- Each module is trainable.
- The entire system is trained simultaneously so as to optimize a global loss function.

Diagram:
- Written word (pixel image) -> Segmenter -> Candidate characters (image fragments) -> Character recognizer -> Possible interpretations (character sequences) -> Grammar checker -> Grammatically correct interpretations (character sequences) -> Language model.
Using Graphs instead of Vectors.

Whereas traditional learning machines manipulate fixed-size vectors, Graph Transformer Networks manipulate graphs.
Graph Transformer Networks

- **Variables:**
 - X: input image
 - Z: path in the interpretation graph/segmentation
 - Y: sequence of labels on a path

- **Loss function:** computing the energy of the desired answer:
 \[E(W, Y, X) \]
Variables:
- X: input image
- Z: path in the interpretation graph/segmentation
- Y: sequence of labels on a path

Loss function: computing the contrastive term:

\[E(W, \hat{Y}, X) \]
Graph Transformer Networks

- Example: Perceptron loss

(no margin)
Global Training Helps

Pen-based handwriting recognition
(for tablet computer)

[Bengio&LeCun 1995]
The composition of two graphs can be computed, the same way the dot product between two vectors can be computed.

General theory: semi-ring algebra on weighted finite-state transducers and acceptors.
Graph transformer network trained to read check amounts.

Trained globally with Negative-Log-Likelihood loss.

50% correct, 49% reject, 1% error (detectable later in the process).

Fielded in 1996

Processes an estimated 10% of all the checks written in the US.