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A Model is Designed and trained to Answer Questions
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@ Example: X is an image from a camera; Y is a discrete

Goodness variable e.g. Y in {animal, human, plane, truck, car}.

* ¥ 1. Best Guess for Y: which category best describes X?

¥ 2. Ranking on Y: Is X more a car than an airplane?
model ¥ 3. Distribution on Y: give an estimate of P(animal | X)

¥ 4. Best Guess for X: among all images of airplane, give me

* f the best one.
X Y

& 5. Ranking on X: is this image more of a truck than that one?

& 6. Distribution on X: among all images of airplanes, how

(input) (label)

likely is this one?

For each question, a different learning strategy is required
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0 not answer a more complex question than necessary

¥ 1. Best Guess for Y: which category best describes X?

¥ 2. Ranking on Y: Is X more a car than an airplane?

¥ 3. Distribution on Y: give an estimate of P(animal | X)

¥ 4. Best Guess for X: among all images of airplane, give me the best one.
¥ 5. Ranking on X: is this image more of a truck than that one?

¥ 6. Distribution on X: among all images of airplanes, how likely is this one?

@@ The questions are in increasing order of complexity.

i@ The machine should be designed and trained to answer the simplest
question possible.
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What is a model?

e ==

& A model measures the goodness of a combination of

observed variables (X) and variables to be predicted (Y).

Goodness & Probabilistic approaches compute the distribution P(YIX),

* and choose the Y that maximizes it.
& Sometimes, we do not need probabilities.
contrast ¥ Example: driving a robot. When the robot faces an
function obstacle, it MUST turn left of right. Computing a
distribution of steering angles is of little use.
* fY & Question: why estimate the whole distribution P(YIX)
X

when we are only interested in picking the best value of Y?

(input) (label)
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I

nergy-Based Models

wi—i;e{r —

E(W.,Y,X) - E(W,Y,X): is a scalar energy function (a.k.a. Contrast
* function) that measures the “compatibility” between Y and X.
¥ W is the parameter to be learned.
W @ MAP Inference: Given an input X, find the value of Y that
minimizes the energy:
* f Y = argmin,c (v E(W, y, X)
X Y

¥ Probabilistic Prediction: Given an input X, compute the

E(W,Y.,X)

A

conditional distribution over Y (Gibbs Distribution):
exp (—BE(W,Y, X))
> yetvy exp(—BE(W,y, X))

P(Y|X) =

» @ For decision making, we need no normalization.
Y

oIl ¥ —
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MAP Inference with Energy-Based Models

v i
L B £, %) E(w,¥,x)
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Examples of EBM: Regressor

E(M 7 X)

D (R’ Y) X and Y are vectors or other entities
W Energy: E(W,Y, X) = D(Y,G(W, X))

where D (Y, R) is a distance or dissimilarity
measure.

Best output: Y = miny E(W.Y,X) =
G(W,X).

Y. LeCun: Machine Learning and Pattern Recognition — p, 572
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Examples of EBM Regressor: Linear Regression

E(v,y,x)

Energy: E(W,Y,X) = ||Y — W'X)||%
W Best output: Y = miny E(W.,Y, X) = W'X.

Y. LeCun: Machine Learning and Pattern Recognition — p, 62
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Examples of EBM: Classifier

—} Y is a discrete variable, {V'} = {1,2, 3}.

M Energy: E(W,Y, X) =Y, Gx(W, X)d(k,Y),
where d(k,Y) = 1 iff k = Y and 0 otherwise.

W G(W, X), the k-th component of the output

vector of G(W, X)) is interpreted as the “cost” of
classifying X into category k.

S e — e e

-

L ) : W Best output: Y = minycgyy E(W,Y,X) =
——é—-—. miﬂ;-,, G;‘,(I’V, X)
L]
X Ye{l,:,;i

Y. LeCun: Machine Leamning and Patiern Recognition — p, 3/2
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Examples of EBM Classifier: Perceptron

W Y is a discrete variable, {Y'} = {—1, +1}.
B Energy: E(W,Y,X)=-Y.W'X.

W Best output: Y = sign(W’X), where
sign(R) = +1iff R > 0 and —1 otherwise.

Y. LeCun: Machine Learning and Pattern Recognition — p, 4/2
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Linear Machines

™ The learning algorithms we have seen so far
(perceptron, linear regression) are of that form,
with the assumption that G(W, X') only depends
on the dot product of W and X.

™ In other words, The E function of 2-class linear
classifiers can be written as:

B(Y,X,W) = D(Y, f(W'X))

where W' X is the dot product of vectors W and
X, and f is a monotonically increasing scalar
function.

™ in the following, we assume Y = —1 for class 1,
and Y = +1 for class 2.

Y. LeCum: Machine Leaming and Pattern Recognition — p. 15/2
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Training Energy-Based Models

ke ¥ To train an EBM, we minimize a loss function.
E ( v Y,)t") A “Qf which is an average over training samples of a

vt phal $#md per-sample loss function (W, Y", X*):

L(W, Y, X*)

i Mw

)\; y A Y _ _ _
L " % The loss function must be designed so that min-
Trainine Somﬁt (x ",)"‘] imizing it with respect to W will make the ma-
chine approach the desired behavior.
To ensure this, we pick loss functions that, for a given training input X, will drive the
energies E(W,Y", X*) associated with the desired output Y to be lower than the
energies associated with all other (undesired) outputs values E(W,Y, X") for all

Y #Y Y € {Y}.

Y. LeCun: Machine Leaming and Patiern Recognition — p, 82
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Form of the Loss Function

W We assume that the per-sample loss function L(W, Y, X*) has a lower bound
over W forall Y, X,

W We assume that L depends on X* only indirectly through the set of energies
{EW,Y,X"),Y € {Y}}.

¥ For example, if {Y }is the set of integers between 0 and & — 1 (as would be the
case for a classifier with k categories), the per-sample loss for sample (X?,Y?)
should be of the form:

L(W,Y', X% = L(Y', E(W,0,X?), E(W,1,X%),..., E(W,k — 1, X))

¥ With this assumption, we separate the choice of the loss function from the
details of the internal structure of the machine, and limit the discussion to how
minimizing the loss function affects the energies.

Y. LeCun: Machine Leaning and Patiern Recognition — p, 9/3
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Examples of Loss: Energy Loss

Energy Loss, the simplest of all losses: Lenergy (W, Yt X)) = E(W,Y?, X*). This
loss only works if F(W,Y>X") has a special form which guarantess that making
E(W,Y*, X*) lower will automatically make E(W,Y, X*) for Y # Y larger than the

minimum.

E(‘H l; yl x;')

/

ﬁ,ti\
[

2
W
EL Example: if E(W,Y, X) is quadratic in Y/, as is the case

for regression with squared error: E(W,Y, X) = ||Y —
G(W, X)||?,
Let W(1) is the parameter before a learning update, and
— W (2) the parameter after the learning update, and let
Y Y Y Y = miny E(W(1),Y,X). Then,

Trainng Sample (X4, ¥4)

EW(2),Y", X")—EW(?2),Y,X") < EW(1),Y, X" ) - EW(1),Y, X"

¥, LeCum: Machine Leaming and Paitern Recognition — p. 1()/2
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Linear Regression

Linear regression uses the Energy loss

B R=WJX
® E(W,Y,X) = D(Y,R) = }||Y - R|]’

B L(W,Y¢ X)) = DY, W X?)

m oL _ 9D(Y',R) aR
gw — — 8R oW

oL _ 9D(Y',R) 9(W'X") _ i\ vi
oW — T OR w— = (R-Y")X

fit
W descent: W — W +n(Y" — R) X'

Y. LeCum: Machine Leaming and Paiiern Recognition — p. 16/7
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Examples of Loss: Perceptron Loss

Perceptron Loss:

Lperccl}trnn (W’: Yia -Xi) = E(I’F, };-3" *Xi) _ Ym{l‘li}} E(I"V, Ya Xi)
e

A\ *)

\1‘\ Adjust W so that E(W,Y", X") gets smaller, while
L Y = miny eivy EWY, X") gets bigger (or more

(#) precisely, so that the difference decreases).
This algorithm makes no update whenever the energy
of the desired Y is lower than all the others.

Y. LeCum: Machine Leaming and Paiiern Recognition —p. 11/2
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Perceptron

LpEFEEptFDH(IV: Y?::Xi) - E(‘H’r& Yi'}Xi) — _min E(‘Va Ya X?)

{Y}={-1,+1}.

€

Yann LeCun

|

- YR l

Ye{Y}

B R=WUX

mEYXW)=D®Y,R)=-YR

WY e {-1,+1}, hence miny —Y R = —sign(R)R
where sign(R) = 1 iff R > 0, and —1 otherwise.

B L(W, Y, X*)=—(Y"—sign(R))R

m 9L _ 9—(Y'—sign(R)R IR
R oW

—
m 2L — _(Yi_sign(W' X)X
B descent: W «— W + n(Y? — sign(W’' X)) X"

™

Y. LeCun: Machine Leaming and Paitern Recognition — p. 17/2
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Examples of Loss: Log-Likelihood Loss

Log-Likelihood Loss:

L”(W,Y'f,xi)=E(W,Y2X*)+%mg Z exp(—BE(W,Y, X"))
' Ye{Y}

where /7 1s a positive constant.

- The function F5({Y'}) = % log (ZYE{V} exp(—BE(W,Y, X“"'))) is called the free
energy of the ensemble {Y'} for temperature 1//3.

- We define Z5({Y'}) = >y ¢ vy exp(—BE(W,Y, X *)) as the partition function of
ensemble {Y }.

- Interesting property # 1: F3({Y'}) = f;lﬂg Z3{Y})

- Interesting property # 2: limg_.o, Fg({Y'}) = miny ¢y E(W,Y, X?)

For very large (3, the log-likelihood loss reduces to the Perceptron loss.

¥, LeCum: Machine Leaming and Paiiern Recognition — p. 132
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Logistic Regression (a.k.a MaxEnt)

Lu(W) = E(Y', X, W) + log ( Ly vy exp(—E(W, Y, X7)))

B R=;WX
EY,X,W)=D(Y,R)=—3YR=—-3YW'X
W L(W)=log(l+exp(=Y'W'X?))

m 9L _ aD(Y*,R) 88

W — T OR W
8L _ _ (Y'+1 _ 1 i
oF A ( 2 l—l—ﬁ-xp{—ﬂ»"’){*]) X
: S (XL _ ! i
W descent: W «— W+ ( 5 l—lwexp{—-if’l"’}f*]) X

¥. LeCun: Machine Leaming and Pattern Recognition — p. 18/3
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Examples of Loss: Margin Loss

Margin Loss: for discrete output set {Y }:

Lmargin(W,Y*, X*) = Qnm (E(W, Yt XY = ye{gifrl} Ly E(W, Y.,X*))

where (),,,(e) is any function that is monotonically increasing for e > —im, where m is
a constant called the margin.

Q"‘ (C) Adjust W so that E(W,Y*", X") gets smaller,
while all E(W,Y, X") for which E(W,Y,X") —
E(W,Y", X") < m get bigger. This guarantees that
e the energy of the desired Y will be smaller than all
other energies by at least m.

Y. LeCun: Machine Leaming and Paitern Recognition — p. 12/2

t New York University

Yann LeCun



Linear Model + Margin Loss + Regularization = SVM

m‘—‘mé‘_;_

& Minimize the hinge loss: make the energy of all the
“g00d” answers smaller that the energy of any ‘“bad”

answer by at least m (the margin).

@ Minimize the Regularization term: Make W as short

as possible.

@ This is equivalent to keeping [IWI| constant, while

maximizing m.
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i Architecture
[

& We can put anything we want in the box.

E(W*’Y’X) & The energy can be a very complicated
non-linear function of X,Y, and W (e.g. A
neural net, a graphical model, an HMM,
W Markov Random Field,....).
@ The internal structure of the box is called

the architecture of the model.

X —p
=< —p

Yann LeCun * New York University



Examples of EBM: Matcher

W X and Y are vectors of the same dimension.
W Energy:

EW.Y,X)=D(GW,Y),G(W, X)) where
D(.,.) is a distance or dissimilarity measure.
¥ Best output: Y = miny E(W,Y,X) = G' —

1)(G(W, X)).

Finding the Y that minimizes the energy

may be non-trivial

Y. LeCun: Machine Learning and Pattern Recognition — p, 7/2
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nergy-Based Models with Latent Variables

]

E(W,Y,Z,X) & 7: is the latent variable (never observed).

* W MAP inference: given an input X, find the value of Y
that minimizes the energy:
W Y = argminye{y}ﬁ(m y, X)
* * ? E(I/V, y, X) = argmian{Z}E(W, Y, z, X)
X 7ZY

@@ Probabilistic Inference: simply marginalize over Z.

fze{Z} exp (—=BE(W,Y, z, X))

PY|X) =
) s T b (<BE(W, 4,2, X))

Yann LeCun t New York University



A‘t can the latent variables represent?

& Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of the face.

» Object recognition: the pose parameters of the object (location,
orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence into
syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into phonemes
or phones.

» Handwriting Recognition: the segmentation of the line into characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun t New York University
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_Example of latent variable: location
I ————

D1 Dz D3

target vectors
for sach class

input locations
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Example of latent variable: pose

M———_—‘i

EBM Architecture for invariant object recognition

: transformable energy

image X . feature feature object model - as b

(input) extractor v porb

switch
ener
Z transformable energy selector)
;P lu:t:nt object model clas 5 2
class 2

variable) —
:.t“nw 1 [l i ----l'l-l---il--!--r

(output) smmmmmrmm .-

Each object model matches the output of the feature extractor to a reference
representation that is transformed by the pose parameters.
Inference finds the category and the pose that minimize the energy.

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models - p. 1443
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EBMs as Factor Graphs

( eneray )

+ An EBM whose energy function can be “‘fac-

Su torized” as a sum of individual functions (fac-

/’ T '\ tors) is equivalent to a graphical model repre-
sented as a factor graph.

e | [eterd ] | teetend Any traditional graphical model can be formu-
B / f A lated as a factor graph, but the converse is not
1

true. Each factor is akin to —log of the poten-
Vv A\ {
inputs outputs
( X1, X2, Xa ) ( YL, YZ, Y3, Y4 )

tial functions of a clique of variable nodes.
Efficient inference algorithms such as (loopy) belief propagation can be used to
compute the marginals of Y, or the lowest energy (MAP) configuration [Kschischang,
Frey, Loeliger, 2001].

Y. LeCun: Loss Functions for Discriminative Training of Energy-Based Models —p. 132
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_Energy-Based Graphical Models

@ A factor graph is a general way to

represent a graphical model.

& Probabilistic Factor Graph: L - J\

PY|X) = 1L ¥°(Y, X) El(Y.X)| [B2(Y.X)

S I AV

@ Energy-Based Factor Graph: ] L

exp(—3 Y, EV(Y, X))
» No latentvars: P(Y']X) = fy exp(—ﬁzfz E*(y, X))

[, exp(-85, E'(Y, 2 X))
J,.exp(=05, B'(y, 2, X))

» Latent vars P(Y‘X) —

Yann LeCun
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rchitecture + Inference Algo + Loss Function =

E(W.Y,X) -] Design an architecture: a particular form for E(W,Y,X).

¥ 2. Pick an inference algorithm for Y: MAP or conditional

distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

* f with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.
X

Y il 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?

Yann LeCun t New York University



