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Our System
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= Detects faces independently of their poses.

= Estimates head poses.



Our System

Robust to: yaw (from left to right profile),
roll (-45, 45), and pitch (-60, 60).

Single Detector is applied to all poses.

Pose estimation: Within 15° error about 90% of
poses are estimated correctly.

Near real-time: 5 frames per second on standard
hardware.



Synergy

Common Problems

closely related * Inner class variation (skin

color, hair style, etc.)

Multi-View _ _ .
Face Pose = Lighting Variations

Detection SN = Scale Variations

= Facial Expressions

Train toaether E— Better generalization



Integrating Face Detection and Pose
Estimation: Previous Methods

Pose specific face

T

Rough pose
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Unmanageable in real problems



Integrating Face Detection and Pose
Estimation: Our Approach

Low dimensional space

Face Manifold
parameterized by
pose

Apply = Mappfing: G



Parameterization of the Face

Manifold — Single Parameter
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Parameterization of the Face

Manifold — Two Parameters
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Minimum Energy Machine
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® Energy function: EVAVY 4 )()
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label pose image
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{Z} =[-D,D]|x[-5,5] % :%) face
non face

B Ew(Y £ X) measures compatibility between X,Z,Y.

" If X is a face with pose Z then we want:
E,1ZX)]< E,QZ,X), DOZ¢
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Operating the Machine

" Clamp X to the observed value (the image)

" Find Zand Y such that:

Y.Z)= ag nin E,[Y.Z X
Yy}, z0 )

OMPELREK) = Y 16, (0 -F(@) +{L-v)T
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Operating the Machine

Clamp X to the observed value (the image)
" Find Z and Y such that:

Y.Z)= ag nin E,[Y.Z X
Yy}, z0 )

= Complete energy:
E, (Y, Z X)=YOG, (X)=F(Z) +(1-Y)T

 xisnotafece CCMl V=0




Architecture

(EW (Y.Z,X) ( energy))

| Operating the machine:
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Convolutional Network

= “end-to-end” trainable systems from low-level features to
high-level representations.

= Easily learn the type of shift-invariant features, relevant
to object recognition.

= Can be replicated over large images much more
efficiently than traditional (ﬂssifiers.



Similar to LeNet5, with more maps:

C1: feature maps

8@28x28 C3: f. maps
Input

32x32

20@10x1Q: ;.
S1: f. maps @10x1&4: f. maps
8@14x14 0C Cs: 120

Output: 9

B —4

Full

Subsampling "
Convolutions Convolditions <"

Convolutions Sulpseimeliing



Training with Discriminative Loss
Function

loss for face sample loss for non-face

with known pose

\ sample
Minimize: Lw)= =y Lw.z x)+ L 5w x|
% & % s
tralnlng faces training non-faces
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Gy

K2 Gy
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We showed that this loss function causes the machine to exhibit proper behavior:

E(y e )< B[y )+ agn



Running the Machine

Works on grey-level images.

Applied at range of scales stepping by a factor
of . 2

The network is replicated over the image at each
scale, stepping by 4 pixels in x and .

Overlapping detections are replaced by the
strongest.



IS

Our system is robust to yaw tifplane rotation :
and pitch £ 49 =4G)




Training

52,850, 32x32 grey-level images of faces (NEC Labs hand
annotated set) with uniform distribution of poses.

Initial negative set: 52,850 random non-face natural images.

Second phase: half of the initial negative set was replaced by
false positives of the initial version of the detector.

Each training image was used 5 times with random variation
In scale, in-plane rotation, brightness and contrast.

9 passes on the data: 26 hours on 2Ghz Pentium 4.

The system converged to an EER of 5% on training set and
6% on test set of 90,000 images.



Test on Standard Data Sets

" No standard set tests all poses, that our system is
designed to detect.

= 3 standard sets focusing on particular pose variation:

tilted. profile. and frontal.
Data Set->| TILTED

False positives per image->

Our Detector

Jones & Viola (tilted)
Jones & Viola (profile)
Rowley et al

Schnelderman & Kanade

PROFILE MIT+CMU
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typical pose estimation systems input centered faces; when we hand

localize this faces we get: 89% of yaw and 100% of in-plane rotations

within 15 degrees.
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Synergy Test
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